
PHYSICAL REVIEW B 100, 174503 (2019)

Modeling superconductivity in the background of a spin-vortex checkerboard
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We introduce a microscopic model aimed at describing the behavior of fermionic excitations in the background
of a magnetic texture called a “spin-vortex checkerboard.” This texture was proposed previously as a possible
alternative to stripes to interpret the experimental phenomenology of spin and charge modulations in 1/8-doped
lanthanum cuprates. The model involves two kinds of interacting fermionic excitations residing in spin-rich and
spin-poor regions of the modulated structure. It is a generalization of another model developed earlier for the
so-called “grid checkerboard.” The principal terms of our model describe the decay of fermionic pairs belonging
to spin-poor regions into single fermions occupying spin-rich regions and vice versa. These terms induce intricate
fermionic correlations throughout the system but fall short of inducing superconductivity unless arbitrarily small
hopping terms are added to the model Hamiltonian. We present the mean-field solution of the model, including,
in particular, the temperature dependence of the energy gap. The latter is found to be in good overall agreement
with available experimental data for high-Tc cuprate superconductors.
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I. INTRODUCTION

Interplay between superconductivity and the onset of elec-
tronic spin and charge modulations in cuprate superconduc-
tors remains one of the intriguing and unresolved issues in the
field of high-temperature superconductivity. Manifestations of
electronic modulations are reported in a broad doping range
for several families of cuprates—most noticeably around the
doping level of 1/8 [1–14].

For 1/8-doped lanthanum cuprates, the modulated struc-
ture is widely believed to exhibit a one-dimensional pattern
often referred to as “stripes” [1,2]. Yet the principal as-
pects of the same experimental evidence are also consistent
with the possibility of two-dimensional modulations called
“checkerboards” [15–22]. The experiment-based arguments
discriminating between stripes and checkerboards in 1/8-
doped lanthanum cuprates are, at present, rather indirect.
At the same time, the issue cannot be resolved on purely
theoretical grounds, because it requires accuracy of the cal-
culations of the ground-state energy not achievable by first-
principles theories. A particularly focused effort to investigate
the consequences of the checkerboard scenario was made in
Ref. [19]. That analysis was based on a particular kind of
checkerboard called a “grid.” Later, the grid checkerboard was
shown to be inconsistent with the results of the spin-polarized
neutron scattering experiment of Ref. [23]. This experiment,
however, did not rule out another version of a checkerboard
representing a two-dimensional arrangement of spin vortices
[20], shown in Fig. 1(a). Somewhat similar noncollinear spin
textures were also considered in Refs. [24–29]. Recently an
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analogous superstructure called a “spin-vortex crystal” was
proposed to exist in iron-based superconductors [30–33].

The spin-vortex checkerboard in the context of cuprates
was introduced in Ref. [20]. Its various properties were an-
alyzed in Refs. [20–22,34]. So far, however, this analysis
has not touched the superconducting properties. In Sec. II
of the present article, we introduce a microscopic model
aimed at describing superconductivity in the background of
the spin-vortex checkerboard. The model is a generalization of
another one proposed in Ref. [19] for the grid checkerboard.
In Secs. III and IV, we find the mean-field solution of the
generalized model in the same way as done in Ref. [19].
However, our subsequent analysis in Sec. V differs from that
of Ref. [19] in one significant respect; namely, we find that
both the original model and its generalization made in Sec. II
do not induce nonzero superfluid stiffness. (In this regard,
we correct an error made in Ref. [19]). We further show
in Sec. V B that nonzero superfluid stiffness emerges once
arbitrarily small hopping terms are included in the modeling.

Experimentally, the onset of static spin modulations in 1/8-
doped lanthanum cuprates—spin vortices or stripes—largely
suppresses three-dimensional superconductivity but appears
to coexist with two-dimensional superconductivity [35–38].
In Sec. VI, we show that similarly to the stripe scenario, the
suppression of the three-dimensional superconductivity in the
spin-vortex scenario can be explained by the displacement of
the modulation patterns in the adjacent CuO2 planes.

As further argued in Sec. VI, the generic setting in cuprates
beyond the 1/8-doped lanthanum family possibly involves the
fluctuating counterpart of the static spin-vortex texture used in
the present work. These fluctuations are likely caused by the
system’s proximity to the threshold of electronic phase separa-
tion [39]. They are expected to couple spin, charge, and lattice
degrees of freedom—see, e.g., [40]. In this respect, our model
illustrates the potential of the general two-component scenar-
ios [41,42] in the limit of initially localized components for
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FIG. 1. (a) Spin-vortex checkerboard. Each arrow represents av-
erage spin polarization on a square lattice formed by Cu atoms within
CuO2 planes. (b) Partition of the spin-vortex checkerboard into
plaquettes associated with a-, b-, and c-states. Thick lines indicate
the borders of unit cells of the modulated structure. Each unit cell
(also shown in Fig. 2) includes two a-states, two c-states, and four
b-states.

describing the superconductivity in cuprates. In such scenar-
ios, the first component represents unpaired fermions, while
the second component represents preformed fermionic pairs.
The spin-vortex checkerboard just suggests to us the coupling
connectivity between the low-energy fermionic states. We

assume that in other cuprate families, the inhomogeneous
patterns have a two-dimensional character, checkerboard-like
or more disordered, where regions of stronger and weaker
antiferromagnetic correlations alternate with each other, but
the size of these regions may be different for different dopings,
and the doping dependence of that size may be different
for different cuprate families. This would be consistent with
the rather diverse phenomenology summarized in Ref. [13].
The dimensionality of charge modulations was, in particular,
discussed for the yttrium family of curates in Refs. [43–45].

Finally, in Sec. VII, we compare the temperature evolution
of the energy gap obtained from the mean-field solution of our
model with experiments in bismuth cuprates. Several impor-
tant but technical calculations behind the reported results are
placed in the appendices.

II. MICROSCOPIC MODEL: PRINCIPAL TERMS

The model to be considered has two different kinds of
fermionic states physically located in magnetic and nonmag-
netic parts of the underlying spin texture. The general reason-
ing for constructing the model is the same as in Ref. [19].
Namely, the entire texture is divided into plaquettes having
different kinds of spin background, and then, for each plaque-
tte, only one-particle fermionic states closest to the chemical
potential are retained. Given that plaquettes are rather small, it
can be estimated [19] that the spacing of one-particle energies
within each plaquette is on the order of 40 meV, which
implies that for temperatures much smaller than 400 K, it is
appropriate to retain only the levels closest to the chemical
potential.

As shown in Fig. 1, the spin-vortex checkerboard can be
represented as a square superlattice of 8d × 8d , where d is the
period of the underlying square lattice of Cu atoms. We denote
the total number of such unit cells in the system as N . Each
unit cell in Fig. 1 is further divided into four spin-polarized
plaquettes and four spin-unpolarized plaquettes. We expect
that the lowest one-particle states in spin-polarized plaquettes
are non-spin-degenerate, and hence we include exactly one
state per plaquette. We refer to two of the resulting states
as “a-states” and to the remaining two as “c-states.” Two
different kinds of a-states are distinguished by index η = ±1,
and c-states by index ζ = ±1. Two a-states or two c-states
with different values of η or ζ , respectively, are expected
to have orthogonal spin wave functions that can be obtained
from each other by spin inversion. The lowest-energy states of
spin-unpolarized plaquettes around the cores of spin vortices
are assumed to be spin-degenerate. We therefore place two
fermionic states on each such plaquette with spins “up” or
“down” along any chosen direction. We call them “b-states.”
Since the spin texture contains four nonequivalent kinds of
spin-vortex cores, we distinguish the corresponding b-states
by index α = 1, 2, 3, 4 and by spin index ↑ or ↓; see Fig. 2.

We now construct a low-energy Hamiltonian similar to that
of Ref. [19]. We expect that charge carriers in the background
of the spin-vortex checkerboard are heavily dressed by an-
tiferromagnetic fluctuations, which should lead to relatively
large effective masses. Charge carriers are also supposed to
experience strong Coulomb repulsion, which should further
prevent them from hopping. Therefore, in the zeroth order, we
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FIG. 2. Unit cell from Fig. 1 with labels α, η, and ζ as introduced
in the text. Colors represent different quasiparticle states as follows:
b-states with α = 1 (pink), α = 2 (yellow), α = 3 (green), and α = 4
(gray); even a-state [η = 1] (orange), odd a-state [η = −1] (brown);
even c-state [ζ = 1] (blue), odd c-state [ζ = −1] (cyan).

neglect single-fermion hopping between checkerboard pla-
quettes. (Hopping will be treated in Sec. V B as a small correc-
tion). As far as the interaction terms are concerned, we use the
same “heavy-mass/Coulomb-repulsion” argument to include
in the model only those terms that do not change the center-of-
mass/center-of-charge positions of the two fermions involved.
We also neglect a possible “on-site” coupling of two b-states
on the same plaquette; in our preliminary analysis, this term
would not change the essential features of the solution, but we
still plan to investigate it elsewhere. The above assumptions
amount to a relatively crude overall approximation, which
should nevertheless allow us to capture the principal behavior
of the variational solution and, at the same time, avoid intro-
ducing too many adjustable parameters.

We are, finally, left with terms representing on-site energies
εa, εb, and εc (with εa = εc) and with the following two kinds
of effective interaction terms, namely, two a-states or two c-
states adjacent to a given spin-vortex core making transitions
to the two b-states inside the core or vice versa. The resulting
Hamiltonian is

H =
∑
i,η

εaa†
iηaiη +

∑
i,ζ

εcc†
iζ ciζ +

∑
i,α,η

εbb†
iαηbiαη

+ g
∑
i,α

[(
b†

iα↑b†
iα↓a je[i,α] ako[i,α] + H.c.

)
+ (b†

iα↑b†
iα↓cme[i,α] cno[i,α] + H.c.

)]
, (1)

where g is the interaction constant, εa, εb, and εc are on-site
energies defined with respect to the chemical potential μ,
which we set equal to zero, index i labels unit cells depicted in
Fig. 2, and indices η, α, and ζ label the plaquettes within the
unit cell as illustrated in Fig. 2. Following Ref. [19], whenever
the specific value of subscripts η or ζ is fixed, as is the case
in the interaction term of Hamiltonian (1), we use subscript e
for η = 1 or ζ = 1 referring to the corresponding plaquettes
as “even” and subscript o for η = −1 or ζ = −1 referring
to the corresponding plaquettes as “odd.” Double-subscript

notations such as aje[i,α] imply that a-states labeled as { je}
must be adjacent to the b-states labeled as {i, α}.

If all terms containing c-states are removed from Hamil-
tonian (1), the result would be exactly equivalent to the
Hamiltonian considered in Ref. [19]. Since c-states do not
directly couple to a-states, and since c-states have the same
connectivity with the b-states as a-states (but shifted), the
mean-field solutions of the two models are very similar with
the only difference being that b-states now experience mean
field from both a-states and c-states, which, in turn, makes that
mean field two times larger, and, as a result, the value of the
superconducting transition temperature becomes modified.

Since the entire mean-field solution has nearly the same
structure and logic as that of Ref. [19], below we only include
the formal structure of the derivation and the results, leaving
the justification mostly to Ref. [19].

As explained later in Sec. V B, the system described by
Hamiltonian (1) will not be superconducting, because it will
have zero superfluid stiffness. In order to make it supercon-
ducting, arbitrarily small hopping terms will need to be added.
However, the model based on Hamiltonian (1) is easier to
handle, and its solution already captures the important aspects
of the resulting superconducting phase, such as the energy
gap.

III. BOGOLIUBOV TRANSFORMATIONS

In the model considered, each of the fermionic states cou-
ples to relatively few other states, which makes a mean-field
solution rather approximate. We, nevertheless, assume that
it gives at least the right qualitative picture of the model’s
behavior. The first step of this solution is to introduce the
Bogoliubov transformation for b-states within the same pla-
quette:

biα↑ = sBiα↑ + weiϕα B†
iα↓,

(2)
biα↓ = sBiα↓ − weiϕα B†

iα↑,

where s and w are positive real numbers satisfying a constraint
arising from canonical fermionic anticommutation relations

s2 + w2 = 1, (3)

and ϕα are the transformation phases, which are to be deter-
mined later by minimizing the system’s energy.

Substituting the Bogoliubov transformation for b-states in
(1) and keeping only the thermal averages of terms that do not
change the occupations of Bogoliubov B-states, we obtain the
partially averaged Hamiltonian

Ha = 8εbN[s2nB + w2(1 − nB)]

+ εa

∑
i,η

a†
iηaiη + εc

∑
i,ζ

c†
iζ ciζ

+ gsw(1 − 2nB)
∑

α

⎡
⎣
⎛
⎝e−iϕα

∑
i j

a je[i,α] ako[i,α] + H.c.

⎞
⎠

+
⎛
⎝e−iϕα

∑
i j

cme[i,α] cno[i,α] + H.c.

⎞
⎠
⎤
⎦, (4)
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where εB is the energy of B-quasiparticles and

nB = 1

exp εB
T + 1

(5)

is their occupation number. We set kB = 1.
As explained in Ref. [19], in order to assure proper

fermionic anticommutation relations for the Bogoliubov
counterparts of a- and c-states, the Bogoliubov transformation
for these states should be made in the quasimomentum space.
Therefore, we need to rewrite the Hamiltonian in terms of the
real-space Fourier transforms for a- and c-operators. To do the
Fourier transforms, we first change the notations from aiη, ciη

to the notations a(r), c(r), where r indicates the position of
the center of the respective plaquette. We also need to define
the following vectors, all in units of underlying crystal lattice
period d:

L = (0, 4), (6)

which connects an even a-state with an adjacent even c-state,
and

R1 = (4, 4),

R2 = (−4, 4),

R3 = (−4,−4),

R4 = (4,−4), (7)

which connect an even a-state with four adjacent odd a-states.
The subscript α in Rα is chosen such that the αth b-states
are located between the pairs of a-states connected by vector
Rα originating from an even a-state. Now, we define the
position of each unit cell by the position re of an even a-state
within this cell. Therefore, even a-states are located at a
set of positions {re}, odd a-states at {re + R1}, even c-states
at {re + L}, and odd c-states at {re + L + R1}. Finally, we
rewrite the Hamiltonian (4) as follows:

Ha = 8εbN[s2nB + w2(1 − nB)]

+
∑

re

{εaa†(re)a(re) + εaa†(re + R1)a(re + R1)

+ εcc†(re + L)c(re + L)

+εcc†(re + L + R1)c(re + L + R1)} + gsw(1 − 2nB)

×
∑

α

[(
e−iϕα

∑
re

a(re)a(re + Rα ) + H.c.

)

+
(

e−iϕα

∑
re

c(re + L)c(re + L + R5−α ) + H.c.

)]
. (8)

We now explicitly write separate Fourier transforms for
even and odd a- and c-states as follows:

ae(k) =
√

1

N

∑
re

a(re)e−ikre , (9)

ao(k) =
√

1

N

∑
re

a(re + R1)e−ik(re+R1 ), (10)

ce(k) =
√

1

N

∑
re

c(re + L)e−ik(re+L), (11)

co(k) =
√

1

N

∑
re

c(re + L + R1)e−ik(re+L+R1 ). (12)

Since the superlattice periods for each of the above four kinds
of states are the same, the sets of wave vectors {k} are also
the same, even though the corresponding states are shifted
with respect to each other in real space. Substituting these
transformations to (8), we obtain

H = 8εbN[s2nB + w2(1 − nB)] + εa

∑
k

a†
e (k)ae(k)

+ εa

∑
k

a†
o(k)ao(k)+ εc

∑
k

c†
e (k)ce(k)

+ εc

∑
k

c†
o(k)co(k) + gsw(1 − 2nB)

×
∑

k

{[ae(k)ao(−k)V (k) + H.c.]

+ [ce(k)co(−k)Ṽ (k) + H.c.]}, (13)

where

V (k) =
∑

α

exp−iϕα−ikRα

= 2 exp

[
−i

ϕ1 + ϕ3

2

]
cos

[
kR1 + ϕ1 − ϕ3

2

]

+ 2 exp

[
−i

ϕ2 + ϕ4

2

]
cos

[
kR2 + ϕ2 − ϕ4

2

]
(14)

and

Ṽ (k) =
∑

α

exp−iϕα−ikRα−1

= 2 exp

[
−i

ϕ1 + ϕ3

2

]
cos

[
kR2 + ϕ3 − ϕ1

2

]

+ 2 exp

[
−i

ϕ2 + ϕ4

2

]
cos

[
kR1 + ϕ4 − ϕ2

2

]
.

(15)

Bogoliubov transformations for a- and c-states can now be
defined as

ae(k) = u(k)Ae(k) + v(k)eiφa (k)A†
o(−k), (16)

ao(−k) = u(k)Ao(−k) − v(k)eiφa (k)A†
e (k), (17)

ce(k) = p(k)Ce(k) + q(k)eiφc (k)C†
o (−k), (18)

co(−k) = p(k)Co(−k) − q(k)eiφc (k)C†
e (k), (19)

where u(k), v(k) and p(k), q(k) are the real-valued co-
efficients for a- and c-states, respectively, subjected to a
constraint arising from the fermionic canonical commutation
relations for A- and C-operators:

u(k)2 + v(k)2 = 1, (20)

p(k)2 + q(k)2 = 1, (21)
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and φa and φc are complex phases—all to be found by the
energy minimization.

We now complete the following steps: (i) substituting the
above canonical transformation for a- and c-states (16)–(19)
into Hamiltonian (13), then (ii) obtaining the energy of the
system by summing over the thermal averages of the diagonal
terms—the result is given in Appendix A by Eq. (A1)—
and then (iii) minimizing the resulting energy with respect
to the choice of phases φa(k) and φc(k). As explained in
Appendix A, these steps lead to conditions

cos[φV (k) + φa(k)] = 1, (22)

cos[φṼ (k) + φc(k)] = 1, (23)

where φV (k) and φṼ (k) are the complex phases of V (k) and
Ṽ (k), respectively, which, in turn, depend on phases {ϕα}.
[Phases φa(k) and φc(k) do not need to be obtained explicitly,
because they will not enter any quantity computed in this
paper]. With the above conditions, the expression for the
energy of the system becomes

E = 8εbN[s2nB + w2(1 − nB)]

+ 2εa

∑
k

{u2(k)nA(k) + v2(k)[1 − nA(k)]}

+ 2εc

∑
k

{p2(k)nC (k) + q2(k)[1 − nC (k)]}

+ 2gsw(1 − 2nB)
∑

k

{u(k)v(k)[1 − 2nA(k)]|V (k)|

+ p(k)q(k)[1 − 2nC (k)]|Ṽ (k)|}, (24)

where

nA(k) = 1

exp εA(k)
T + 1

, (25)

nC (k) = 1

exp εC (k)
T + 1

(26)

are the Bogoliubov quasiparticle occupation numbers and
εA(k), εC (k) are their energies, obtained in the next section.

IV. SINGLE-PARTICLE EXCITATIONS, ENERGY GAP,
AND THE CRITICAL TEMPERATURE

As argued in Ref. [19], the chemical potential of the system
is likely to coincide with either εb or εa (the same as εc),
which, given our convention μ = 0, means that either εb = 0
or εa = εc = 0. Below, we treat these two cases separately,
referring to them as “case I” and “case II,” respectively, and
we also refer to the case of εa = εb = εc = 0 as “critical.”
When necessary, we further subdivide case I into case IA
(εa = εc > 0) and case IB (εa = εc < 0), and case II into case
IIA (εb > 0) and case IIB (εb < 0).

The normal state for cases IA, IB, IIA, and IIB contains,
respectively, 1/16, 1/8, 1/32, and 5/32 fermions per one
site of the underlying crystal lattice. In the critical case, it is
3/32 fermions per site. Here, however, one should be cautious
when associating the above filling fractions with cuprate
doping level, because it is possible that some of the doped

charge carriers are absorbed into the spin-vortex checkerboard
background.

The coefficients of the Bogoliubov transformations for
both cases I and II are obtained in Appendices B and C,
respectively, by minimizing the total energy (24) at fixed
quasiparticle occupation numbers [46]. We then substitute
those coefficients back into Eq. (24) and obtain the energy
of a Bogoliubov quasiparticle by taking the derivative of the
total energy (24) with respect to the quasiparticle occupation
numbers nA(k), nC (k), or nB.

A. Case I: εb = 0

In case I, the above procedure gives the following quasi-
particle energies:

εA(k) =
√

ε2
a + 1

4
g2(1 − 2nB)2|V (k)|2, (27)

εC (k) =
√

ε2
c + 1

4
g2(1 − 2nB)2|Ṽ (k)|2, (28)

εB = g2

16N
(1 − 2nB)

∑
k

{
[1 − 2nA(k)]

εA(k)
|V (k)|2

+ [1 − 2nC (k)]

εC (k)
|Ṽ (k)|2

}
. (29)

The mean-field approach now requires finding a nontrivial
solution for εA(k), εC (k), and εB from Eqs. (5) and (25)–(29).
In general, it can only be done numerically, but one can also
obtain a closed analytical equation for the critical temperature
Tc using the fact that near the transition, the ordered state is
close to the normal states, which allows one to use the limits

εA(k) → εa,

εC (k) → εc,

(1 − 2nB) → εB

2Tc
.

This gives

Tc = g2

8

{[
exp(|εa|/Tc) − 1

exp(|εa|/Tc) + 1

]
1

|εa|

+
[

exp(|εc|/Tc) − 1

exp(|εc|/Tc) + 1

]
1

|εc|
}
, (30)

from which the mean-field Tc can be obtained numerically.
As explained in Ref. [19], the energy densities of the A-

and C-states described by Eqs. (27) and (28) have Van Hove
singularities located in the both cases at the value

� =
√

ε2
a + g2(1 − 2nB)2, (31)

corresponding to |V (k)| = |Ṽ (k)| = 2. We refer to � as the
“energy gap.” As T → Tc, � approaches not zero but |εa|,
which we associate with the pseudogap.

B. Case II: εa = εc = 0

Following the same procedure as for case I, we obtain

εB =
√

ε2
b + g2

64
C̃2, (32)
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FIG. 3. Family of theoretical curves for temperature dependence
of the superconductong gap for different ratios �(0)/Tc. Thick red
line corresponds to the critical ratio �(0)/Tc = 2

√
2. Solid lines

above the thick line represent case I and below the thick line case
II. The dashed line shows the standard result of the Bardeen-Cooper-
Schrieffer theory [47].

εA(k) = g2(1 − 2nB)C̃|V (k)|
16εB

, (33)

εC (k) = g2(1 − 2nB)C̃|Ṽ (k)|
16εB

, (34)

where

C̃ = Ca + Cc, (35)

Ca = 1

N

∑
k

[1 − 2nA(k)]|V (k)|, (36)

Cc = 1

N

∑
k

[1 − 2nC (k)]|Ṽ (k)|. (37)

Detailed calculations can be found in Appendix C. In the grid
model [19], the c-states are absent; hence, Cc = 0, and the
value of Ca is reported to be 0.958.

The same approach as in case I now gives the critical
temperature

Tc = g2

4|εb|
[

exp(|εb|/Tc) − 1

exp(|εb|/Tc) + 1

]
(38)

and the gap parameter

� = g2(1 − 2nB)C̃

8εB
(39)

associated with the Van Hove singularity for A- and B-states
located at |V (k)| = |Ṽ (k)| = 2.

C. Temperature evolution of the energy gap

In Fig. 3, we present temperature dependencies of energy
gaps for cases I and II given by Eqs. (31) and (39), respec-
tively. These dependencies were obtained by the numerical

solution of the system of equations Eqs. (5) and (25)–(29) for
case I, or Eqs. (5), (25), (26), and (32)–(34) for case II.

The families of plots for cases I and II are connected
through the critical case εa = εb = εc = 0, which is repre-
sented by the thick red line. This case corresponds to the ra-
tio �(0)/Tc = 2

√
2 ≈ 2.82. Plots above the critical-case line

correspond to case I: at T = Tc, they all end at nonzero values
�(Tc) = εa. Plots below the critical-case line correspond to
case II: they all have �(Tc) = 0 and, moreover, approach
closely the canonical BCS dependence for εb/g → ∞.

Thus, if the assumptions of the present model are
valid, the critical-case ratio �(0)/Tc = 2

√
2 signifies the

transition from the conventional behavior �(Tc) = 0 for
�(0)/Tc < 2

√
2 to unconventional behavior �(Tc) �= 0 for

�(0)/Tc > 2
√

2. The value of �(0)/Tc = 2
√

2 for the critical
case makes an important quantitative difference from the
critical-case result �(0)/Tc = 4 for the grid-based model of
Refs. [19,48], which involved only a- and b-states. Such a
difference was to be expected, because the coupling between
b- and c-states in the present model leads to an additional
energy advantage for the superconducting state and hence a
higher superconducting transition temperature for the same
value of the coupling constant g.

V. SUPERCONDUCTING PROPERTIES

A. Anomalous correlation functions

Bogoliubov transformations (2) and (16)–(19) can be used
to obtain the following anomalous correlation functions for
T < Tc:

	a(k) = 〈ae(k)ao(−k)〉
= u(k)v(k)eφa (k)[2nA(k) − 1], (40)

	c(k) = 〈ce(k)co(−k)〉
= p(k)q(k)eφc (k)[2nC (k) − 1], (41)

	b(riα, r jβ ) ≡ 〈biα,−b jα′,+〉
= sweiϕiα (1 − 2nB)δ(riα − r jβ ), (42)

where riα is the position of αth b-state in the ith unit cell,
and δ(riα − r jβ ) is defined as the Kronecker delta on the
discrete superlattice. Two different components of the super-
conducting (SC) order parameter corresponding to the a-, c-,
and b-states are the correlation functions (40), (41), and (42),
respectively.

The anomalous averages for a and c components, in real
space, can be written as follows:

	a(re[i,α] , ro[ j,β] ) ≡ 〈a(re[i,α] )a(ro[ j,β] )〉, (43)

	c(r′
e[i,α]

, r′
o[ j,β]

) ≡ 〈c(r′
e[i,α]

)c(r′
o[ j,β]

)〉, (44)

where re[i,α] and ro[ j,β] are, respectively, the positions of even
(η = 1) and odd (η = −1) a-states adjacent to the b-states
labeled by indices [i, α] and [ j, β], and likewise, r′

e[i,α]
and

r′
o[ j,β]

are, respectively, the positions of even (ζ = 1) and
odd (ζ = −1) c-states adjacent to the same b-states. The
anomalous averages given by Eqs. (43) and (44) have nonzero
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values only when their two arguments correspond to states of
different kinds (i.e., even and odd). They can be expressed as

	a(re, ro) = 2

N

∑
k

	a(k)eik(re−ro), (45)

	c(r′
e, r′

o) = 2

N

∑
k

	c(k)eik(r′
e−r′

o), (46)

where 	a(k) and 	c(k) are given by Eqs. (40) and (41). These
anomalous averages also obey the following relations:

	a(re, ro) = −	a(ro, re), (47)

	c(r′
e, r′

o) = −	c(r′
o, r′

e), (48)

	a(re, r̃e) = 	a(ro, r̃o) = 0, (49)

	c(r′
e, r̃′

e) = 	c(r′
o, r̃′

o) = 0. (50)

Relations (47) and (48) follow from the fermionic anticom-
mutation rule. Variables r̃e, r̃o, r̃′

e, and r̃′
o in Eqs. (49) and (46)

represent different positions of the same kind as re, ro, r′
e, and

r′
o, respectively.

The coherence length of the order parameters 	a(re, ro)
and 	c(re, ro) should be inversely proportional to the charac-
teristic k-space scale of V (k) and Ṽ (k), respectively. The ex-
amination of Eqs. (14) and (15) reveals that this characteristic
scale is π/l , where l = 8d . Therefore, the coherence length
associated with 	a(re, ro) and 	c(r′

e, r′
o) can be estimated as

the modulation period l .
The coherence length associated with 	b is equal to zero,

which means that only b-states located on the same plaquette
form coherent pairs.

We now obtain three quantities that characterize the short-
range pair correlations:

	a(i,α) ≡ 	a
(
re[i,α] , ro[i,α]

) ≡ 〈ae[i,α] ao[i,α]

〉
, (51)

	c(i,α) ≡ 	c
(
r′

e[i,α]
, r′

o[i,α]

) ≡ 〈ce[i,α] co[i,α]

〉
, (52)

	b(iα) ≡ 	b(riα, riα ) ≡ 〈biα,↓biα,↑〉. (53)

In case I, the explicit expression for 	b(iα) can be obtained
by substituting the values of s and w given by Eqs. (C3) into
Eq. (42) for riα = r jβ , which gives

	b(iα) = 1
2 eiϕiα (2nB − 1). (54)

One can then obtain both 	a(i,α) and 	c(i,α) by making use of
the fact that

	∗
b(iα)	a(i,α) = Ea

int

4gN
, (55)

	∗
b(iα)	c(i,α) = Ec

int

4gN
, (56)

where Ea
int and Ec

int are the interaction parts of the energy (24):

Ea
int = 2gsw(1 − 2nB)

∑
k

u(k)v(k)[1 − 2nA(k)]|V (k)|, (57)

Ec
int = 2gsw(1 − 2nB)

∑
k

p(k)q(k)[1 − 2nC (k)]|Ṽ (k)|. (58)

After Ea
int and Ec

int are evaluated with the help of Eqs. (B1)–
(B4), one can use Eqs. (54)–(56) to obtain

	a(i,α) = g(1 − 2nB)eiϕiα

8N

∑
k

[1 − 2nA(k)]|V (k)|2
εA(k)

, (59)

	c(i,α) = g(1 − 2nB)eiϕiα

8N

∑
k

[1 − 2nC (k)]|Ṽ (k)|2
εC (k)

. (60)

In case II, the expressions analogous to (59), (60), and (54)
are

	a(i,α) = 1

4
eiϕiα , (61)

	c(i,α) = 1

4
eiϕiα , (62)

	b(iα) = −gC̃eiϕiα (1 − 2nB)

8εB
. (63)

B. Superfluid phase stiffness and emergence
of superconductivity

The model introduced in Sec. II is defined in terms of
localized fermionic states with a Hamiltonian that does not
contain hopping terms or interaction terms changing the
center of mass of the particles. As a result, the mean-field
solution obtained in the preceding sections has zero superfluid
stiffness and hence cannot sustain superconductivity [49]. In
order to illustrate this, let us consider the following phase
transformation of fermionic operators:

ã(r) = a(r)e−iθ (r), ã†(r) = a†(r)eiθ (r), (64)

b̃σ (r) = bσ (r)e−iθ (r), b̃†
σ (r) = b†

σ (r)eiθ (r), (65)

c̃(r) = c(r)e−iθ (r), c̃†(r) = c†(r)eiθ (r), (66)

where θ (r) is the position-dependent quantum phase, and
subscript σ represents the spins of the b-states. All other
former subscripts i, e, o, and α are unambiguously determined
by the position r. Technically, the absence of the superfluid
stiffness originates from the fact that the Hamiltonian of our
model is invariant under transformation (64)–(66) with

θ (r) = G · r, (67)

where G is an arbitrary vector. Therefore, there exists a
continuous set of mean-field solutions of equal energy, which
can be obtained from each other by applying the above set of
transformations.

Despite having zero superfluid stiffness, the mean-field
solution of the model based on Hamiltonian (1) massively
suppresses phase fluctuations of the pair correlations that
eventually lead to superconductivity. This happens for two
reasons. First, the solution fixes the relative phase of the
fermionic pairs occupying a- and c-states with respect to the
b-states. Second, each a- or c-state participates in a fermionic
pair with four adjacent states of the same kind but opposite
spins, which implies that the phase fluctuations other than
the linear ones having form (67) across the entire system
do cost energy. The above constraints leave the simultane-
ous phase fluctuations of the a-, b-, and c-states with θ (r)
given by Eq. (67) as a rather narrow channel, through which
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superconductivity is suppressed. As we illustrate below, this
channel is removed and the superconductivity is recovered
once arbitrarily small hopping terms are added to the model.

In general, the hopping terms can connect two nearest re-
gions (a ↔ b and c ↔ b), two next-to-nearest regions (a ↔ c
or b ↔ b), two next-to-next-nearest regions, etc. Because our
goal in this section is to describe the main qualitative effects
of hopping, we would like to consider the terms whose impact
is simplest to calculate. Thus we include in consideration the
hopping terms between two nearest a-states with the same
spins and between two nearest c-states with the same spins:

H ′ = H + Ht , (68)

where

Ht = t
∑
ra,α

a†(ra + Rα + Rα+1)a(ra)

+ t
∑
rc,α

c†(rc + Rα + Rα+1)c(rc). (69)

Here t is the hopping parameter, and ra and rc run over all a-
and c-plaquettes, respectively.

For the model with Hamiltonian (68), the variational mean-
field solution can be constructed in the same way as in the
preceding sections—with only one difference; namely, the
energies of unpaired fermions occupying a- and c-states now
form a band with the k-dependence:

E (k) ≡ εa + 2t[cos(2kxL) + cos(2kyL)]. (70)

Here we again assume εa = εc. The Bogoliubov transforma-
tions are still defined by Eqs. (2) and (16)–(19). As shown in
Appendix D, for small t , the k-dependence of bare energies
(70) changes the values of the Bogoliubov coefficients u(k),
v(k), p(k), and q(k) only very little. The variational wave
function of the system can still be expressed as

|	〉 =
∏

k

[u(k) − v(k)eiφa (k)a†
o(−k)a†

e (k)]

× [p(k) − q(k)eiφc (k)c†
o(−k)c†

e (k)]

×
∏
iα

(s − weiϕiα b†
iα↓b†

iα↑)|vac〉, (71)

and the resulting equation for the critical temperature changes
also only slightly. We note, however, that the hopping part
of Hamiltonian Ht introduces additional constraints on phases
ϕi, which are important for computing the superfluid stiffness.
These constraints are derived in Appendix E.

In order to calculate the phase stiffness of the above mean-
field solution, we introduce an auxiliary wave function |	̃〉
obtained from |	〉 with the help of transformation (64)–
(66). Namely, on the right-hand side of Eq. (71), we use
the inverse Fourier transform for a and c operators defined
by Eqs. (9)–(12), then replace all lattice subscripts with the
position argument r and, finally, substitute the creation opera-
tors a†(r), b†

σ (r), and c†(r) with their respective counterparts
ã†(r), b̃†

σ (r), and c̃†(r) defined by Eqs. (64)–(66). The state
represented by the wave function |	̃〉 carries supercurrent. It
is the lowest-energy state of the Hamiltonian H̃ ′ which has the
same form as H ′ but in terms of ã(r), b̃σ (r), and c̃(r).

We define the zero-temperature phase stiffness J in the
following way:∑

r

J

2
(∇θ )24L2 = 〈	̃|H ′|	̃〉 − 〈	|H ′|	〉 + o((∇θ )2),

(72)
where θ is the phase appearing in transformations (64)–(66),
and the sum in the left-hand side is taken over all 2L × 2L unit
cells of the spin-vortex checkerboard. [In the continuum limit,
this sum is replaced by

∫
J
2 (∇θ )2d2r].

In Appendix F, we obtain the following expression for the
value of J corresponding to the Hamiltonian (68) in the case
where εb = μ ≡ 0:

J = 2t

N

∑
k

cos(2kxL)sgn[E (k)]

×
[√

E2(k)

E2(k) + 1
4 g2|V (k)|2

+
√

E2(k)

E2(k) + 1
4 g2|Ṽ (k)|2

]
. (73)

We explicitly evaluated this expression in case I under the
additional assumption |t | � |g| � |εa|. In the leading order,
the result is as follows:

For 4|tεa|
g2 � 1,

J = 4t2

|εa| , (74)

while for 4|tεa|
g2 � 1,

J = |t |g2

ε2
a

. (75)

In this work, we do not attempt to calculate the super-
conducting properties at finite temperatures. Below we only
discuss qualitative considerations about the resulting thermo-
dynamic behavior.

Without hopping, the phase transition that we obtained
in the mean-field approximation for Hamiltonian (1) turns
into a crossover, whose sharpness is limited by the phase
fluctuations of the order parameter. The addition of a small
hopping part (69) to Hamiltonian (1) introduces into the sys-
tem finite superfluid stiffness and the ability to carry current
at sufficiently low temperatures. In such a setting, we expect
the temperature Tph, at which in-plane superfluid stiffness
appears, to be significantly smaller than the the mean-field
transition temperature Tc. Strong pair fluctuations should thus
be present in the temperature range between Tph and Tc.
However, in a three-dimensional setting of stacked layers and
in the presence of Coulomb interaction between charges, the
above fluctuations should be somewhat suppressed.

Once the overall phase of the superconducting solution
is stabilized, the strong spatial dependence of the anoma-
lous correlation functions described in Sec. V A can lead
to an unorthodox interpretation of the experiments sensitive
to the sign of the superconducting phase in cuprates; see
the discussion in Ref. [19]. It also implies that the standard
factorization of the Cooper-pair wave functions in terms of the
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center-of-mass dependence and the relative-coordinate depen-
dence is not applicable, which also means that the classi-
fication of Cooper pairs in terms of spin singlets and spin
triplets does not apply. This in turn may lead to nontrivial spin
susceptibility of the superconducting state, which requires
a separate investigation extending beyond the scope of the
present paper. Here, we would only like to remark that the
current experimental knowledge of the spin susceptibility of
superconducting cuprates is largely based on the Knight-shift
nuclear magnetic resonance (NMR) experiments [50], which
are subject to a number of assumptions about the chemical
shifts and about certain accidental cancellation of hyperfine
coefficients. According to a recent review [51], the overall
Knight-shift phenomenology in cuprates is still evolving,
and this may lead to a reexamination of the standard NMR
interpretations adopted in the past.

VI. THEORETICAL SCENARIOS FOR CUPRATES

A. 1/8-doped lanthanum cuprates

The model presented in this article is primarily rele-
vant to the properties of 1/8-doped lanthanum cuprates
where the static spin and charge order is stabilized, such as
La1.875Ba0.125CuO4 (1/8-doped LBCO). On cooling, the latter
system exhibits static charge order at temperatures below
TCO = 54 K. On further cooling at zero magnetic field, the
1/8-doped LBCO sample investigated in Ref. [35] exhibits the
onset of static spin order and a simultaneous sharp drop of in-
plane resistivity by a factor of 10 at temperature TSO ≈ 40 K.
At yet lower temperature, the in-plane resistivity decays to un-
measurably small values following the Berezinskii-Kosterlitz-
Thouless-like [52,53] scaling with characteristic temperature
TBKT = 16 K. Finally, at temperature Tc = 4 K, the sample
exhibits bulk superconductivity. Another sample reported by
the same group in Ref. [38] exhibits similar behavior as far as
the initial resistivity drop and the bulk superconducting transi-
tions are concerned, but in the temperature range between 4 K
and 40 K, the temperature dependence of resistivity appears
to be sample-dependent. The latter nonuniversality probably
indicates a “fragile” quantum mechanism of resistivity in the
interval between the temperature of the initial resistivity drop
and the temperature of the onset of bulk superconductivity.

A theoretical interpretation of the above phenomenology
in the framework of the stripe scenario was presented in
Refs. [36,54]. It was based on the idea of strongly suppressed
Josephson coupling between the adjacent CuO2 layers caused
by the in-plane change of the sign of the SC order parameter
between the adjacent stripes and then by the mismatch of that
sign between the adjacent layers.

A similar suppression of the Josephson coupling between
adjacent layers can exist in the checkerboard scenario. As
shown in Ref. [19] for the grid checkerboard and in the
present work for the spin-vortex checkerboard, the sign of
the SC order parameters of the a- (and c-) fermionic com-
ponents is supposed to change in real space, remaining zero
on average—thus falling under the definition of the pair-
density wave proposed in Ref. [54]. The sign of SC order
for the b-component may also change in real space but it
may or may not lead the zero real-space average. If layers

FIG. 4. Two checkerboard patterns in the adjacent planes. Violet
squares schematically denote plaquettes, corresponding to b-states,
and green squares denote antiferromagnetic a- or c-plaquettes.

described by our model are stacked on top of each other,
then, due to the Coulomb repulsion, the b-plaquettes are
supposed to be located over the a- or c-plaquettes; see Fig. 4.
This mismatch suppresses the Josephson tunneling between
the adjacent planes, which can lead to different transition
temperatures for the onsets of the two-dimensional and three-
dimensional superconductivity. (We note here that the above-
mentioned mismatch cannot be perfect, because the adjacent
CuO2 planes in lanthanum cuprates are shifted by half a
crystal period).

Apart from the difference between stripes and checker-
boards, another crucial difference between our proposal and
that of Ref. [54] is that the model of Ref. [54] is based
on one fermionic component forming Cooper pairs inside
nonmagnetic regions, while our model involves two fermionic
components—one residing in the magnetic regions (a-/c-
states) and the other one in nonmagnetic regions (b-states),
and, moreover, the Hamiltonian of our model is dominated
by the center-of-mass-conserving interaction between the
two components, which leads to anomalously low in-plane
superfluid stiffness. As discussed at the end of the pre-
ceding section, our model is then supposed to exhibit a
higher-temperature crossover associated with the appearance
of anomalous fermionic averages (42)–(44) with fluctuating
phases and the lower-temperature transition that leads to
establishing the long-range phase coherence. We associate the
above higher-temperature crossover with the initial resistivity
drop in 1/8-doped LBCO at T ∼ 40 K, while the lower-
temperature transition is assigned to the observed BKT-like
crossover.

Now we address several issues that naturally arise in the
context of the above scenario:

(i) Two-dimensional modeling versus three-dimensional
character of real materials. In the present work, we only
obtain a mean-field description of a two-dimensional model.
On the one hand, it is known that long-range fluctuations
and the proliferation of topological defects turn the transitions
obtained from such a solution into a crossover. On the other
hand, the CuO2 planes described by our model are stacked
in a three-dimensional setting and, as a result, coupled to
each other via Coulomb interaction, lattice strain, spin ex-
change, and the hopping of charge carriers. This, in turn, sup-
presses both the long-range fluctuations and the formation of
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topological defects, thereby making the mean-field solution
adequate at least semiquantitatively.

(ii) Reason for the resistivity drop coinciding with the mean-
field transition temperature in our model. Let us consider
case IA of our model in the limit g � εa = εc with small
hopping between a-states and between c-states, as also done
in Sec. V B. (In terms of the concentration of charge carriers,
case IB with g � |εa| = |εc| is likely closer to the situation in
1/8-doped LBCO, but the mathematics of this case is the same
as that of case IA, while the latter is more intuitive to discuss).
In case IA, Tc � εa and, therefore, just above Tc, the occu-
pations of the a- and c-states are exponentially small, which
means large resistivity. Below Tc, the anomalous averages of
the a- and c-states (43), (44) appear, which means that Cooper
pairs can now occupy these states. Due to anomalously low
superfluid stiffness the phase of these Cooper pairs fluctuates.
Hence, instead of carrying a supercurrent, they carry normal
current but the resulting state still has resistivity much smaller
than that above Tc.

(iii) Coincidence between the mean-field transition temper-
ature in our model and the onset of static spin modulations.
In Ref. [35], the drop of resistivity in zero magnetic field was
observed to coincide with the onset of static spin modulations.
Since we attribute the same resistivity drop to the mean-field
transition in our model, the question arises: what can our
model have to do with the onset of static spin modulations?
In the model, we do not obtain the spin background but
rather treat it as imposed externally. We can imagine, however,
that in a more complete theory, spin-background degrees of
freedom can be included in the modeling together with the
terms considered by us. In such a case, the energy gain due to
the onset of superconducting correlations can simultaneously
become a factor stabilizing the spin background, thereby
making it static. We would then expect that the magnetic
field that suppresses the onset of superconducting fluctuations
should simultaneously suppress the onset of static spin order.
Such a behavior can be contrasted with the weak sensitivity
to magnetic fields of spin orders driven by the short-range
exchange interactions.

B. Other cuprates

Let us now turn to cuprates beyond doping 1/8 and be-
yond the lanthanum family. As shown in Ref. [39], cuprates
are generically close to the threshold of Coulomb-frustrated
phase separation into nanoregions of stronger antiferromag-
netic correlations and lower density of charge carriers and
nearly nonmagnetic nanoregions attracting charge carriers.
It is, therefore, reasonable to assume that nanoscale charge
inhomogeneities are generically present in cuprates, but they
are not necessarily completely static or periodic. (Yet the evi-
dence for charge modulations that are both static and periodic
was reported for a variety of cuprates [3,5,6,10,13,14]). It is
further plausible that in the general case, clusters with stronger
antiferromagnetic correlations are not magnetically ordered
with respect to each other. In fact, each of them might be in a
singlet state as far as the total spin is concerned (see Ref. [70]).
As mentioned earlier, our model in the present form is lack-
ing variables describing the degrees of freedom of the spin
background. We expect that the generic situation in cuprates is

such that the effective hopping between different nanoregions
of inhomogeneous electronic background is larger than that
for 1/8-doped lanthanum cuprates. This larger hopping can
be sufficient to make Tph, Tc approach each other, but still not
large enough to dominate over the principal center-of-mass
conserving interaction term appearing in Hamiltonian (1).
Therefore, apart from suppressing the superconducting phase
fluctuations, the model with the dynamic spin background
can, quite plausibly, have the variational solution close in its
principal features to the one obtained in the present work, in
particular, as far as the gap of the fermionic excitations is
concerned.

At present, we are not able to establish a definite relation
between the fermionic occupations of a, b, and c plaquettes
and the doping level of actual cuprates. As already mentioned
at the beginning of Sec. IV, this relation is not straightforward
because of the uncertainty associated with the division of
the doped charge carriers between those that form the su-
perlattice background and those that occupy the low-energy
states described by our model. In addition, there are two more
factors complicating the analysis. First, the spatial period of
spin and charge modulation background changes with doping
[2,13]. Second, the concentration of “active” charge carriers
described by our model can fluctuate between different CuO2

layers and, in particular, be different on the surface and in the
bulk [19].

VII. COMPARISON OF MODEL PREDICTIONS WITH
EXPERIMENTALLY MEASURED ENERGY GAPS

We now demonstrate that the energy gap obtained in
Sec. IV C from the variational solution of the model based
on Hamiltonian (1) exhibits temperature dependence quite
similar to that of the superconducting energy gap experi-
mentally observed in a variety of cuprates. In Figs. 5 and
6, we make comparisons with the available experimental
results for break junctions (BJs) [55,61,62] and the inter-
layer tunneling (ILT) [56–60,63–69] for the bismuth family
of cuprates. Figure 5 includes the data sets reviewed in
Ref. [48], while Fig. 6 covers the experiments done later.
The predictions of the grid-based model are also plotted in
Figs. 5 and 6.

The model predictions, when limited to cases I or II only,
require two input parameters �(0) and Tc, which help us
to determine g and |εa| for case I, or |εb| for case II. The
choice between cases I and II is made on the basis of the ratio
�(0)/Tc being larger or smaller than 2

√
2.

All plots in Figs. 5 and 6 demonstrate either very good or
satisfactory agreement between the predictions of the present
model and the experiment. In comparison with the predic-
tions of the grid-based model, the agreement with experiment
has improved overall. It should be remarked here that the
experimental data themselves are subject to a number of
uncertainties, including, in particular, the overheating effect
for the ILT measurements [56–60,63,64,68,71–77].

We further remark that despite the significant experimen-
tal difficulty of measuring �(T ) close to T = Tc, the very
notion of the existence of the critical ratio �(0)/Tc which
separates the dependencies ending with �(Tc) = 0 from those
ending with �(Tc) �= 0 appears to be reasonably supported by

174503-10



MODELING SUPERCONDUCTIVITY IN THE BACKGROUND … PHYSICAL REVIEW B 100, 174503 (2019)

FIG. 5. Temperature evolution of superconducting gap �(T ), part 1 (reviewed in Ref. [48]). Circles represent experimental data sets for
break junction (BJ) and interlayer tunneling (ILT). [Open circles imply that the data points correspond to very broad and small SC peaks].
Solid red line represents theoretical results of the current work, green dashed line previous theoretical work [48]. The experimental data sets
are taken from the following references: (a), (b) BJ: Miyakawa et al. [55]; (c) ILT: Suzuki et al. [56]; (d)–(g) ILT: Suzuki and Watanabe [57];
(h), (i) ILT: Krasnov et al. [58]; (j) ILT: Krasnov [59]; (k)–(n) ILT: Krasnov [60]; (o) BJ: Vedeneev et al. [61]; (p) BJ: Akimenko et al. [62]
[plots (a)–(p) are for Bi-2212]; (q)–(s) ILT for Bi-2223 from Yamada et al. [63]; and (t) ILT for Bi-2201-La0.4 from Yurgens et al. [64]. UD
refers to underdoped samples; OP, optimally doped; OD, overdoped. The superconducting critical temperature is also indicated in each frame.
Horizontal marks in each frame indicate the critical ratio �/Tc = 2

√
2.

experiments, and moreover, the value 2
√

2 for such a critical
ratio obtained in this work leads to more consistent predictions
than the critical value 4 obtained in Ref. [48] for the grid-
based model.

Finally, in Fig. 7, we present the empirical dependence
of the model parameters g and εa on the doping level. We
extract this dependence from the ILT experiments reported
in Ref. [68], where the values of doping were explicitly
indicated. The parameters g and εa were obtained numerically
by solving Eqs. (30) and (31) with εb = 0, nB = 0 and with
experimentally determined input parameters �(0) and Tc. The
resulting plot shows that in the doping range between 0.09
and 0.2, g depends on the doping level rather weakly, while εa

depends strongly—it decreases nearly linearly with increasing
doping and, if extrapolated, reaches zero around the doping

level 0.25, i.e., close to the level above which superconduc-
tivity disappears. Such a behavior of εa is consistent with the
behavior of the pseudogap expected from other experiments.
The eventual disappearance of superconductivity at higher
dopings implies that if the present model is relevant, then
the interaction constant g should steeply decrease to zero
for doping levels beyond the plotting range of Fig. 7 (i.e.,
above 0.2).

VIII. CONCLUSIONS

In the present paper, we generalized the microscopic
model proposed in Ref. [19] for the grid background to the
background formed by the checkerboard of spin vortices. The
technical difference is that the former involves two kinds of
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FIG. 6. Temperature evolution of superconducting gap �(T ), part 2 (experiments after 2005). Circles represent experimental data sets for
interlayer tunneling (ILT). [Open circles imply that the data points correspond to very broad and small SC peaks]. Solid red line represents
theoretical results of the current work, green dashed line previous theoretical work [48]. The experimental data sets are taken from the following
references: (a), (b) Krasnov [65]; (c) Bae et al. [66]; (d)–(f) Kambara et al. [67]; (g)–(l) Suzuki et al. [68]; and (m)–(p) Ren et al. [69]. All
plots except (d)–(f) are for Bi2Sr2CaCu2O8+δ; (d)–(f) are for Bi1.9Pb0.1Sr2CaCu2O8+δ .

fermionic states, while the later involves three, even though
two of the three are similar. We have shown that the predic-
tions of the grid-based model for the temperature evolution
of the energy gap largely remain intact. The most important
difference between the spin-vortices-based model and the
grid-based model turns out to be the critical ratio �(0)/Tc

above which the temperature dependence of the energy gap
ends at the value �(Tc) �= 0, which, in turn, is probably related
to the pseudogap. For spin vortices, this critical value is 2

√
2,

while for the grid, it is 4. We have further demonstrated that
the predictions of the spin-vortices-based model for the tem-
perature evolution of the energy gap exhibit good agreement
with experiments and, moreover, this agreement is somewhat
better than that for the grid-based model.

An important difference of the present work from that of
Ref. [19] is the treatment of the superfluid stiffness of the
resulting solution. We have shown that the nonlocal character
of the interaction term of the kind used in Ref. [19] is not
sufficient to induce nonzero superfluid stiffness. The latter
appears only once arbitrarily small hopping terms are added
to the model. The resulting behavior then implies large su-
perconducting fluctuations of the kind that, possibly, exist in
1/8-doped LBCO.

In the broader context of cuprate superconductivity, the
model considered in this work is still rather oversimplified.
However, one can use it to develop intuition about more
realistic settings that must involve the fluctuations of the spin
background, as well as other interactions between fermions.
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FIG. 7. Doping dependence of the model parameters g and εa

for the calculations presented in Figs. 6(g)–6(l) to describe ILT
experiments of Suzuki et al. [68] for Bi2Sr2CaCu2O8+δ . The model
parameters were obtained by solving numerically Eqs. (30) and
(31) with εb = 0, nB = 0 and with experimentally determined input
parameters �(0) and Tc. The doping level is as indicated in Ref. [68].

ACKNOWLEDGMENTS

The authors are grateful to J. Haase, M. Jurkutat, J.
Kohlrautz, and A. V. Rozhkov for discussions. This project
was funded by the Skoltech NGP Program (Skoltech-MIT
joint project).

APPENDIX A: TOTAL ENERGY OF THE SYSTEM

In this Appendix, we elaborate on the derivation steps (ii)
and (iii) mentioned after Eq. (20).

Substituting the canonical transformation for the a- and c-
states (16)–(19) in (13), we obtain

E = 8εbN[s2nB + w2(1 − nB)]

+ 2εa

∑
k

{u2(k)nA(k) + v2(k)[1 − nA(k)]}

+ 2εc

∑
k

{p2(k)nC (k) + q2(k)[1 − nC (k)]}

+ 2gsw(1 − 2nB)
∑

k

{u(k)v(k)[1 − 2nA(k)]

× |V (k)| cos[φV (k) + φa(k)]

+ p(k)q(k)[1 − 2nC (k)]|Ṽ (k)| cos[φṼ (k) + φc(k)]},
(A1)

where all variables are defined in Sec. III.
Two interaction terms in the above expression have phase-

dependent factors cos[φV (k) + φa(k)] and cos[φṼ (k) +
φc(k)]. Eventually, the variational ground-state energy ob-
tained by finding u(k), v(k), p(k), and q(k) will mono-
tonically decrease with the increasing absolute value of
these terms. This implies that the variational energy will be
minimized for |cos[φV (k) + φa(k)]| = 1 and | cos[φṼ (k) +
φc(k)]| = 1. Choosing the sign of cosines in these rela-
tions is just a matter of sign convention for the Bogoliubov
transformation coefficients later converting into the sign of
the products swu(k)v(k) and swp(k)q(k). We adopt the
convention that the signs of the above products are negative
in the state minimizing the total energy.

APPENDIX B: CASE I

For εb = 0, the Bogoliubov transformation parameters s
and w enter the energy (24) only as a term proportional
to sw. For such a case, given the constraint s2 + w2 = 1,

the minimization of energy (24) gives s =
√

1
2 , w = −

√
1
2 .

The relative negative sign of s and w implies later the pos-
itive relative sign for the pairs of transformation parameters
{u(k), v(k)} and {p(k), q(k)}. For εa � 0, the minimization of
energy (24) with respect to u(k), v(k), p(k), and q(k) finally
gives

u(k) =

√√√√√1

2
+ 1

2

√√√√ 1

1 + T 2
a (k)

Q2
a(k)

,

v(k) =

√√√√√1

2
− 1

2

√√√√ 1

1 + T 2
a (k)

Q2
a(k)

, (B1)

p(k) =

√√√√√1

2
+ 1

2

√√√√ 1

1 + T 2
c (k)

Q2
c (k)

,

(B2)

q(k) =

√√√√√1

2
− 1

2

√√√√ 1

1 + T 2
c (k)

Q2
c (k)

,

where

Ta(k) = g(1 − 2nB)[1 − 2nA(k)]|V (k)|,
(B3)

Qa(k) = 2εa[1 − 2nA(k)],

Tc(k) = g(1 − 2nB)[1 − 2nC (k)]|Ṽ (k)|,
(B4)

Qc(k) = 2εc[1 − 2nC (k)].

The total energy E of the system in this case can be
expressed as

E = −
∑

k

{[1 − 2nA(k)]εA(k)

+ [1 − 2nC (k)]εC (k) − εa − εc}, (B5)

which is an implicit function of |V (k)| and |Ṽ (k)|. Both
|V (k)| and |Ṽ (k)| are a function of four phases ϕ1, ϕ2, ϕ3, and
ϕ4 entering Eqs. (14) and (15). Therefore the energy equation
should be further minimized with respect to the values of these
phases. Such minimization imposes only one constraint [19]:

ϕ2 + ϕ4 − ϕ1 − ϕ3

2
= π

2
+ πn. (B6)

APPENDIX C: CASE II

In this case, εa = εc = 0 in Eq. (24) and, as a result, the
minimization of energy gives u(k) = v(k) = p(k) = q(k) =
1/

√
2. The minimization with respect to s subject to condition

(3) now gives

s4 − s2 + T̃ 2

4(Q2 + T̃ 2)
= 0, (C1)
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where we introduced the following parameters:

Q ≡ 8εbN (2nB − 1),

T̃ = Ta + Tc,
(C2)

Ta = g(1 − 2nB)CaN,

Tc = g(1 − 2nB)CcN.

The parameters Ca and Cc are defined by Eqs. (36) and (37).
The solution of the biquadratic equation (C1) that minimizes
the total energy under condition εb � 0 is

s =
√√√√1

2
+ 1

2

√
1

1 + T̃ 2

Q2

,

w = −
√√√√1

2
− 1

2

√
1

1 + T̃ 2

Q2

. (C3)

We obtain εB by varying energy (24) with respect to nB:

εB ≡ 1

8N

dE

dnB
= εb[s2 − w2] + 2gsw(−2)

×
∑

k

{u(k)v(k)[1 − 2nA(k)]|V (k)|

+ p(k)q(k)[1 − 2nC (k)]|Ṽ (k)|}.
The substitution of the parameters defined by Eqs. (C3) and
(C2) now gives

εB = εb

√
Q2

Q2 + T̃ 2
− 2

T̃
2
√
Q2 + T̃ 2

1

(1 − 2nB)
T̃ ,

which, after some manipulations, leads to Eq. (32).
The quasiparticle excitation energies for the A- and C-

states are calculated in a similar way—as εA(k) ≡ 1
2

dE
dnA(k) and

εC (k) ≡ 1
2

dE
dnC (k) , which gives Eqs. (33) and (34), respectively.

The total energy of the system thus becomes

E = −2N[(1 − 2nB)εB − εb]. (C4)

In this case, phases ϕα also obey the constraint (B6).

APPENDIX D: EFFECTS OF NONZERO HOPPING ON THE
VARIATIONAL SOLUTION

In this Appendix, we discuss the properties of the super-
conducting variational solution for the Hamiltonian given by
Eq. (68). We introduce Bogoliubov transformations in exactly
the same way as was done in Sec. III. Then the energy of the
system has the following form:

E = 8εbN[s2nB + w2(1 − nB)]

+ 2
∑

k

E (k){u2(k)nA(k) + v2(k)[1 − nA(k)]}

+ 2
∑

k

E (k){p2(k)nC (k) + q2(k)[1 − nC (k)]}

+ 2gsw(1 − 2nB)
∑

k

{u(k)v(k)[1 − 2nA(k)]|V (k)|

+ p(k)q(k)[1 − 2nC (k)]|Ṽ (k)|}, (D1)

where E (k) is the band energy given by Eq. (70). The only
aspect that is different here in comparison with Eq. (24) is the
k-dependence of the band energies for the a- and c-states.

We are unable to find an analytic expression for the Bo-
goliubov transformation coefficients in the general case, but
we still can do it in case I (εb = 0), where the minimization

of energy (D1) gives s =
√

1
2 , w = −

√
1
2 . The relative neg-

ative sign of s and w implies later the positive relative sign
for the pairs of transformation parameters {u(k), v(k)} and
{p(k), q(k)}. The minimization of energy (D1) with respect
to u(k), v(k), p(k), and q(k) leads to the result having the
same form as the one given by Eqs. (B1) and (B2), with the
only difference being that the parameters Ta(k), Qa(k), Tc(k),
and Qc(k) are now defined as

Ta(k) = g(1 − 2nB)[1 − 2nA(k)]|V (k)|,
(D2)

Qa(k) = 2E (k)[1 − 2nA(k)],

Tc(k) = g(1 − 2nB)[1 − 2nC (k)]|Ṽ (k)|,
(D3)

Qc(k) = 2E (k)[1 − 2nC (k)].

The distinction between Eqs. (D2) and (D3) and Eqs. (B3) and
(B4) is that the former contain the band energy E (k) given by
Eq. (70), while the latter contain the on-site energies εa and
εc. Equation (30) for the critical temperature is now replaced
by the following one:

Tc = g2

32N

∑
k

{
exp [|E (k)|/Tc] − 1

exp [|E (k)|/Tc] + 1

× 1

|E (k)| [|V (k)|2 + |Ṽ (k)|2]

}
. (D4)

APPENDIX E: ADDITIONAL CONSTRAINTS ON PHASES
ϕi CAUSED BY HOPPING

Energy minimization for Hamiltonian (68) leads to addi-
tional constraints on phases ϕα appearing in Bogoliubov trans-
formations (2). In this Appendix, we derive these constraints
for the case εb = 0.

For convenience, let us introduce new phases

α ≡ ϕ1 − ϕ2 − ϕ3 + ϕ4

2
, (E1)

β ≡ ϕ1 + ϕ2 − ϕ3 − ϕ4

2
, (E2)

γ ≡ −ϕ1 + ϕ2 − ϕ3 + ϕ4

2
, (E3)

and then express |V (k)|2 and |Ṽ (k)|2 from Eqs. (14) and
(15) as

|V (k)|2 = 4{1 + cos (2kxL + α) cos (2kyL + β )

+ cos γ [cos (2kxL + α) + cos (2kyL + β )]}
(E4)

and

|Ṽ (k)|2 = 4{1 + cos (2kxL + α) cos (2kyL − β )

+ cos γ [cos (2kxL + α) + cos (2kyL − β )]}.
(E5)
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In the presence of nonzero hopping t , the expression (B5)
for the total energy of the system is modified as follows:

E = −
∑

k

{[√
E2(k) + 1

4
g2|V (k)|2 − E (k)

]

+
[√

E2(k) + 1

4
g2|Ṽ (k)|2 − E (k)

]}
, (E6)

where E (k) is the band energy given by Eq. (70).
Necessary conditions for phases α, β, and γ to minimize

the total energy (E6) are

∂E

∂α
= 0, (E7)

∂E

∂β
= 0, (E8)

∂E

∂γ
= 0. (E9)

In general, the system of equations (E7)–(E9) has more than
one solution for a given set of parameters εa, g, and t . The
solution representing the global minimum should then be
selected by computing the corresponding values of E .

We were able to find analytically three types of solutions
of the system (E7)–(E9).

Solutions of type A:

α = πn, β = πm, γ = πk. (E10)

Solutions of type B:

α = πn, β = π (n − 1) + 2πm, γ = πk + π

2
. (E11)

Solutions of type C (these exist only if 4|tεa|
g2 � 1):

α = 2πn, β = 2πm, cos γ = −4tεa

g2
, (E12)

α = (2n + 1)π, β = (2m + 1)π, cos γ = 4tεa

g2
. (E13)

Here k, m, and n are arbitrary integer numbers. We cannot
prove analytically that the system (E7)–(E9) has no other
solutions, but we checked numerically that the minimum of
E corresponds to the solutions of either type A, B, or C.

Let us now prove that the sets of α, β, and γ given by
Eqs. (E10)–(E13) are, indeed, the solutions of the system
(E7)–(E9).

The substitution of Eq. (E6) into Eqs. (E7) and (E8) gives,
respectively,∑

k

sin(2kxL + α) cos(2kyL + β )√
E2(k) + 1

4 g2|V (k)|2

+ cos γ
∑

k

sin(2kxL + α)√
E2(k) + 1

4 g2|V (k)|2

+
∑

k

sin(2kxL + α) cos(2kyL − β )√
E2(k) + 1

4 g2|Ṽ (k)|2

+ cos γ
∑

k

sin(2kxL + α)√
E2(k) + 1

4 g2|Ṽ (k)|2
= 0 (E14)

and

−
∑

k

cos(2kxL + α) sin(2kyL + β )√
E2(k) + 1

4 g2|V (k)|2

− cos γ
∑

k

sin(2kyL + β )√
E2(k) + 1

4 g2|V (k)|2

+
∑

k

cos(2kxL + α) sin(2kyL − β )√
E2(k) + 1

4 g2|Ṽ (k)|2

+ cos γ
∑

k

sin(2kyL − β )√
E2(k) + 1

4 g2|Ṽ (k)|2
= 0. (E15)

We now observe that α = πn, β = πm, and arbitrary γ satisfy
both Eq. (E14) and Eq. (E15), because these equations would
then contain only summations of functions that are odd with
respect to either kx or ky, while the summation regions are
symmetric. Thus all sets of α, β, and γ entering Eqs. (E10)–
(E13) satisfy Eqs. (E14) and (E15), and, hence, Eqs. (E7)
and (E8).

The substitution of Eq. (E6) into Eq. (E9) yields

sin γ

⎡
⎣∑

k

cos(2kxL + α) + cos(2kyL + β )√
E2(k) + 1

4 g2|V (k)|2

+
∑

k

cos(2kxL + α) + cos(2kyL − β )√
E2(k) + 1

4 g2|Ṽ (k)|2

⎤
⎦ = 0. (E16)

The solutions of type A given by Eq. (E10) imply that
sin γ = 0. Hence they obviously satisfy Eq. (E16).

Now let us show that the solutions of type B also satisfy
Eq. (E16). Once we substitute (E11) into (E16), we get an
expression proportional to

∑
k

cos(2kxL) − cos(2kyL)√
E2(k) + g2 cos(2kxL) cos(2kyL)

. (E17)

This expression is zero, because it changes sign under the
transformation (kx, ky) → (ky, kx ).

Finally, let us consider solutions of type C given by (E12)
and (E13) and prove that they satisfy Eq. (E16). In order to do
this, let us examine the expressions under the square roots in
the denominators in Eq. (E16):

E2(k) + 1
4 g2|V (k)|2

= ε2
a + 4tεa[cos (2kxL) + cos (2kyL)]

+ 4t2[cos (2kxL) + cos (2kyL)]2

+ g2{1 + cos (2kxL + α) cos (2kyL + β )

+ cos γ [cos (2kxL + α) + cos (2kyL + β )]} (E18)
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FIG. 8. Schematic representation of transformation (E21) in the
Brillouin zone of spin-vortex checkerboard. Each of eight triangle
regions is rotated around the nearest purple dot (± π

4L , ± π

4L ) by 180
degrees; thus orange regions map onto green ones and vice versa.

and

E2(k) + 1
4 g2|Ṽ (k)|2

= ε2
a + 4tεa[cos (2kxL) + cos (2kyL)]

+ 4t2[cos (2kxL) + cos (2kyL)]2

+ g2{1 + cos (2kxL + α) cos (2kyL − β )

+ cos γ [cos (2kxL + α) + cos (2kyL − β )]}. (E19)

When we substitute (E12) or (E13) into (E18) and
(E19), the terms 4tεa[ cos (2kxL) + cos (2kyL)] and
g2 cos γ [ cos (2kxL + α) + cos (2kyL ± β )] cancel each
other. For this reason, the sum over k in Eq. (E16) for α, β,
and γ given by (E22) becomes proportional to∑

k

[cos (2kxL) + cos (2kyL)]

× {ε2
a + 4t2[cos (2kxL) + cos (2kyL)]2

+ g2[1 + cos (2kxL) cos (2kyL)]
}− 1

2 . (E20)

Now we note that after the simultaneous change of the signs
of cos (2kxL) and cos (2kyL), the function under the sum also
changes sign. A possible transformation achieving this is

(kx, ky) →
(

π

2L
sgn(kx ) − kx,

π

2L
sgn(ky) − ky

)
. (E21)

This is illustrated in Fig. 8. The fact that transformation
(E21) maps the Brillouin zone onto itself, while the function
summed in Eq. (E20) changes sign, means that the sum itself
is equal to zero and, hence, Eq. (E16) is satisfied. This finishes
the proof that Eqs. (E10)–(E13) represent the solutions of the
system (E7)–(E9) and thus correspond to the extrema of E .

We have conducted extensive numerical tests of the min-
ima of E in the space of parameters εa, g, and t . In all these
tests, the minima corresponded to the solutions of type A,
B, or C given by Eqs. (E10)–(E13). The numerically found
“phase diagram” assigning the regions of the parameter space

FIG. 9. Numerically obtained “phase diagram” of the types of
extrema (A, B, or C) given by Eqs. (E10)–(E13) that realize the
global minimum of energy (E6) for g = 1 and for the values of
parameters (εa, t ) indicated on the axes.

(εa, t ) to different types of solutions for g = 1 is shown in
Fig. 9.

In Sec. V B and in Appendix F, we focus on the limit |t | �
|g| � |εa|. In this case, the minima of E are the following.

If 4|tεa|
g2 � 1, then

⎡
⎣cos γ = − 4tεa

g2 , α = 2πn, β = 2πm;
or
cos γ = 4tεa

g2 , α = (2n + 1)π, β = (2m + 1)π.

(E22)
If 4|tεa|

g2 � 1, then

⎡
⎣cos γ = −sgn(tεa), α = 2πn, β = 2πm;

or
cos γ = sgn(tεa), α = (2n + 1)π, β = (2m + 1)π.

(E23)
The transition between the two kinds of minima is illustrated
in Fig. 10 through the evolution of | cos γ | as a function of t
for εa = 10 and g = 1.

APPENDIX F: CALCULATION OF SUPERFLUID PHASE
STIFFNESS FOR HAMILTONIAN (68)

In this section, we obtain zero-temperature superfluid
phase stiffness for Hamiltonian (68) with εb = 0.

Let us assume for simplicity that linearly changing in space
phase θ has gradient only along the x-direction. We also
introduce variable θ0 to denote the change of phase θ across
the 2L × 2L unit cell of the spin-vortex checkerboard. The
gradient of θ can now be expressed as

|∇θ | = ∂θ

∂x
= θ0

2L
, (F1)
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FIG. 10. Numerically obtained | cos γ | realizing the global min-
imum of energy (E6) as a function of t for g = 1 and εa = 10. This
illustrates solutions (E22) and (E23) in the limit |t | � |g| � |εa|: at
t = ± g2

4εa
= ±0.025 the minimum switches from type C given by

Eq. (E22) to type A given by Eq. (E23).

and as a result, the energy (72) of the system associated with
the phase gradient can be written as

∑
r

J

2
(∇θ )24L2 = J

2
Nθ2

0 . (F2)

Using Eq. (72), we then obtain

J = 1

N

∂2

∂θ2
0

(〈	̃|H ′|	̃〉 − 〈	|H ′|	〉)

∣∣∣∣
θ0=0

. (F3)

We now observe that 〈	̃|H ′|	̃〉 = 〈	|H̃ ′|	〉, where H̃ ′ is
the Hamiltonian obtained by replacing operators a, b, and c
in Hamiltonian (68) with operators ã, b̃, and c̃ defined by
Eqs. (64)–(66). This allows us to rewrite Eq. (F3) as

J = 1

N

∂2

∂θ2
0

(〈	|H̃ ′ − H ′|	〉)

∣∣∣∣
θ0=0

, (F4)

where

H̃ ′−H ′ = H̃t − Ht

=
∑

k

2t[cos(2kxL + θ0) − cos(2kxL)][a+
e (k)ae(k)

+ a+
o (k)ao(k) + c+

e (k)ce(k) + c+
o (k)co(k)]

=
∑

k

2t{cos(2kxL)[cos(θ0)−1]−sin(2kxL) sin(θ0)}

× [a+
e (k)ae(k) + a+

o (k)ao(k)

+ c+
e (k)ce(k) + c+

o (k)co(k)]. (F5)

For the mean-field ground state in the presence of hopping
elements, one can use Eqs. (B1) and (B2) with ingredients
from Eqs. (D2) and (D3) to obtain

〈	|a+
e (k)ae(k)|	〉 = 〈	|a+

o (k)ao(k)|	〉 = v2(k)

= 1

2

{
1 − sgn[E (k)]

√
E2(k)

E2(k) + 1
4 g2|V (k)|2

}
(F6)

and

〈	|c+
e (k)ce(k)|	〉

= 〈	|c+
o (k)co(k)|	〉 = q2(k)

= 1

2

{
1 − sgn[E (k)]

√
E2(k)

E2(k) + 1
4 g2|Ṽ (k)|2

}
. (F7)

After substituting Eqs. (F6) and (F7) into Eq. (F4), we
finally get

J = 2t

N

∑
k

cos(2kxL)sgn[E (k)]

×
[√

E2(k)

E2(k) + 1
4 g2|V (k)|2 +

√
E2(k)

E2(k) + 1
4 g2|Ṽ (k)|2

]
.

(F8)

(Here and below, we do not include terms that give zero after
the summation).

Now let us study expression (F8) in the limit |t | � |g| �
|εa| and find its dependence on t . Expanding it in the powers
of g/εa and t/g, we get, in the leading order,

J = − tg2

4Nε2
a

sgn(εa)
∑

k

[|V (k)|2 + |Ṽ (k)|2] cos(2kxL).

(F9)

For α, β, γ corresponding to the energy minima (E22) and
(E23), we obtain from Eqs. (E4) and (E5) the following:

If 4|tεa|
g2 � 1:

|Ṽ (k)|2 = |V (k)|2 = 4

{
1 + cos(2kxL) cos(2kyL)

− 4tεa

g2
[cos(2kxL) + cos(2kyL)]

}
. (F10)

If 4|tεa|
g2 � 1:

|Ṽ (k)|2 = |V (k)|2 = 4{1 + cos(2kxL) cos(2kyL)

− sgn(tεa)[cos(2kxL) + cos(2kyL)]}. (F11)

This leads to the following result:
If 4|tεa|

g2 � 1:

J = 8t2

N |εa|
∑

k

cos2 (2kxL) = 4t2

|εa| . (F12)

If 4|tεa|
g2 � 1:

J = sgn(εa)sgn(tεa)
2tg2

Nε2
a

∑
k

cos2 (2kxL) = |t |g2

ε2
a

. (F13)
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