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Translation constraints on quantum phases with twisted boundary conditions
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Bulk properties of quantum phases should be independent of a specific choice of boundary conditions as
long as the boundary respects the symmetries. Based on this physically reasonable requirement, we discuss the
Lieb-Schultz-Mattis-type ingappability in two-dimensional quantum magnets under a boundary condition that
makes evident a quantum anomaly underlying the lattice system. In particular, we direct our attention to those
on the checkerboard lattice, which are closely related to frustrated quantum magnets on the square lattice and on
the Shastry-Sutherland lattice. Our discussion is focused on the adiabatic U(1) flux insertion through a closed
path in a boundary condition twisted by a spatial rotation and a reflection. Two-dimensional systems in this
boundary condition are effectively put on a nonorientable space, namely the Klein bottle. We show that the
translation symmetry on the Klein-bottle space excludes the possibility of the unique and gapped ground state.
Taking advantage of the flux insertion argument, we also discuss the ground-state degeneracy on magnetization
plateaus of the Heisenberg antiferromagnet on the checkerboard lattice.
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I. INTRODUCTION

Quantum critical points provide a good starting point to-
ward understanding phases of quantum many-body systems.
In the language of quantum field theory, which effectively de-
scribes low-energy physics of quantum many-body systems,
a quantum critical point corresponds to a fixed point of the
renormalization group. One will thus know possible quantum
phases neighboring a quantum critical point by listing possible
relevant perturbations to a corresponding fixed point.

In quantum many-body systems, when listing possible
quantum phases, the Lieb-Schultz-Mattis (LSM) theorem im-
poses a strong constraint that excludes the possibility of a
unique and gapped ground state under a certain condition
[1–4]. Originally, LSM proved the absence of the unique and
gapped ground state in the spin-1/2 Heisenberg antiferromag-
netic chain [1]. Later, the LSM theorem was extended to vari-
ous systems on higher-dimensional lattices [2–7]. In quantum
field theories, one can make a claim corresponding to the
LSM theorem on the basis of quantum anomalies such as the
’t Hooft anomaly [8–11]. When a quantum field theory under
a given symmetry has an anomaly, a corresponding quantum
critical point is not driven into the quantum disordered phase
as long as the symmetry is maintained.

The anomaly manifests itself as an obstacle when defining
the quantum field theory as an effective description of the
bulk phase of quantum many-body systems. For example, the
anomaly leads to an unphysical dependence on boundary con-
ditions. It is widely believed that bulk properties, such as the
existence of the gap and the ground-state degeneracy due to
the spontaneous symmetry breaking, should be independent of
a specific choice of boundary conditions unless the boundary
breaks the symmetry. One of the authors in Ref. [12] discussed
the violation of the modular invariance as the obstacle in
(1 + 1)-dimensional systems. The modular invariance signi-

fies the fact that the two-dimensional conformal field theory in
the bulk phase is unfettered by symmetric modifications of the
boundary conditions. Its violation is indeed unphysical. The
anomaly as the violation of the modular invariance explains
consistently the LSM-type ingappability of excluding the
possibility of the unique and gapped ground state in 1 + 1
dimensions [12].

It will also be interesting to extend the argument of
Ref. [12] to higher-dimensional systems in order to foster a
better understanding of relations between the anomaly and
the boundary condition. Yao and Oshikawa reported quite re-
cently a paper that follows this line [11], where they adapt the
flux insertion argument [3,13] in a “tilted” boundary condition
instead of the periodic one. The tilt of the boundary condition
clarifies the existence of the anomaly of, for example, the
S = 1/2 Heisenberg antiferromagnet on the d-dimensional
hypercubic lattice (d = 2, 3, . . . ). An appropriate choice of
the boundary condition turned out to make the anomaly
manifest.

It then came to our attention that there is a frustrated quan-
tum magnet whose anomaly, though it is certainly present, is
out of sight in the periodic boundary condition or in the tilted
boundary condition. It is a spin-1/2 Heisenberg antiferromag-
net on the checkerboard lattice [14]. One can demonstrate the
presence of the anomaly of the checkerboard in several ways,
for instance by applying the lattice homotopy argument [6].
Nevertheless, as we show later, the flux insertion argument
fails to detect the anomaly in those boundary conditions. It
is interesting by itself to construct a boundary condition that
incarnates the anomaly on the checkerboard. In addition, such
an argument is attractive in its potential application to mag-
netization plateaus [15,16]. In fact, it was recently shown that
the checkerboard Heisenberg antiferromagnet hosts numerous
magnetization plateaus [17,18].
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In this paper, we introduce translationally invariant bound-
ary conditions that are twisted by a spatial rotation and
a reflection. In that context, we discuss the LSM-type in-
gappability on the checkerboard lattice as a continuation of
the work in Refs. [11,12]. First, we show that the twisted
boundary condition indeed enables us to detect the anomaly
of the checkerboard through the flux insertion process in the
presence of time-reversal symmetry. Next, removing the time-
reversal symmetry, we discuss the ground-state degeneracy on
magnetization plateaus of the checkerboard.

II. CONJECTURE

Here, we clarify the physical meaning of a conjecture made
in this paper about relations between the LSM-type anomaly
and boundary conditions. In Sec. I, we mentioned the modular
invariance (noninvariance) of the two-dimensional conformal
field theory as a manifestation of the absence (presence) of the
LSM-type anomaly [12]. This result naturally motivates us to
make the following conjecture: If the unique gapped ground
state is allowed under a symmetry in the periodic boundary
condition, the system is free from the anomaly in any other
symmetric boundary conditions. Therefore, in order to show
the ingappability, we just need to find a certain symmetric
boundary condition under which the LSM-type anomaly is
clearly present. This is what we do in the remainder of the
paper. The above conjecture is also supported by the fact that
the topological field-theoretic classification of the anomaly is
independent of boundary conditions.

III. CHECKERBOARD

A. S = 1/2 Heisenberg antiferromagnet

Let us start with a simple spin-1/2 Heisenberg antiferro-
magnet on the checkerboard lattice [Fig. 1(a)]. We may regard
them also as a crossed chain model [Fig. 1(b)] [14]. It has the
following Hamiltonian:

HCBH = Hh + Hv + Hc, (1)

(a) (b)

FIG. 1. The checkerboard lattices. One can see the checkerboard
lattice as (a) a square lattice with diagonal bonds on every other
square plaquette, and also as (b) a crossed chain model.

where Hh and Hv denote the Heisenberg exchange interac-
tions on the horizontal chains and the vertical chains, respec-
tively, and Hc denotes frustrated interchain interactions:

Hh = J
Lh∑

n=1

Lv∑
m=1

Sh

(
n − 1

2
, m

)
· Sh

(
n + 1

2
, m

)
, (2)

Hv = J
Lh∑

n=1

Lv∑
m=1

Sv

(
n, m − 1

2

)
· Sv

(
n, m + 1

2

)
, (3)

Hc = J×
Lh∑

n=1

Lv∑
m=1

{
Sh

(
n − 1

2
, m

)
+ Sh

(
n + 1

2 , m

)}

×
{

Sv

(
n, m − 1

2

)
+ Sv

(
n, m + 1

2

)}
. (4)

Sh(x, y) and Sv (x, y) are S = 1/2 spins at a site (x, y) on a
horizontal chain and on a vertical chain, respectively. Lh and
Lv are the lengths of the system along the horizontal and the
vertical axis of Fig. 1(b), respectively, in the unit of the unity
lattice spacing. The exchange couplings J and J× are both
positive and thus the model (1) has only antiferromagnetic
interactions.

The checkerboard Heisenberg antiferromagnet (1) exhibits
an interesting ground-state phase diagram [14]. For J×/J�1,
the ground state exhibits a dimerization that spontaneously
breaks the translation symmetry. For J×/J � 1, on the other
hand, it has spontaneous Néel order because the checker-
board is reduced to being a simple square lattice in the
limit of J×/J → +∞. For a moderate J×/J ∼ 1, the pla-
quette valence-bond-solid phase is realized in between the
above two phases, as validated by the exact diagonaliza-
tion [19] and the density-matrix renormalization-group [17]
methods. Reference [14] proposed two possible scenarios of
the ground-state phase diagram in changing J×/J ∈ [0,∞),
both of which contain no quantum disordered phase of the
unique and gapped ground state. It is thus natural to guess that
the S = 1/2 checkerboard Heisenberg antiferromagnet has an
anomaly that prevents the ground state from being unique and
gapped.

B. ’t Hooft anomaly

In fact, it is shown by the classification of three-
dimensional weak symmetry-protected topological (SPT)
phases that the checkerboard Heisenberg antiferromagnet has
the ’t Hooft anomaly in the U(1) × ZT

2 × Z2 symmetry. Here,
U(1) is the U(1) spin rotation symmetry, ZT

2 is the time-
reversal symmetry, and Z2 is the translation symmetry in
the horizontal and vertical axes. The field-theoretic derivation
of the classification is given in Appendixes A and B. The
’t Hooft anomaly implies that under time-reversal symmetry,
the U(1) gauge transformation will be incompatible with the
translation symmetry. This anomaly is expected to appear in
the argument of the adiabatic flux insertion [3]. However, as
we mentioned, the flux insertion method under the periodic
boundary condition does not show it clearly.
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C. Generic spin-S quantum magnets

Let us first demonstrate that the U(1)-flux insertion devel-
oped in Ref. [3] fails to capture the anomaly on the checker-
board.

1. In the periodic boundary condition

In what follows, we consider the spin-S checkerboard
Heisenberg antiferromagnet for general S � 1/2. First, we
rewrite the model (1) as a bilayer system [Fig. 1(b)] where
the red circles are located on the upper layer and the light
blue ones are on the lower layer. Let us assign a new label to
the spin,

Sn,m,1 := Sv

(
n, m + 1

2

)
, (5)

Sn,m,2 := Sh
(
n − 1

2 , m
)
. (6)

Sn,m,l satisfies the periodic boundary condition:

Sn+Lh,m,l = Sn,m,l ,

Sn,m+Lv ,l = Sn,m,l (7)

for l = 1, 2.
Next, we pierce the system with the flux by replacing the

xy component of the exchange interactions as

S+
n,m,l S

−
n+1,m′,l ′ + H.c. −→ exp

(
−i

�

Lh

)
S+

n,m,l S
−
n+1,m′,l ′ +H.c.

(8)

Note that S±
n,m,l := Sx

n,m,l ± iSy
n,m,l . We increase � adiabati-

cally from zero to 2π , i.e., the unit amount. The unit flux is
erased by a U(1) large gauge transformation generated by

UP = exp

⎛
⎝i

2π

Lh

Lh∑
n=1

Lv∑
m=1

n
∑
l=1,2

(
S − Sz

n,m,l

)⎞⎠. (9)

Let |�0〉 be a ground state of the checkerboard Heisenberg
antiferromagnet without the flux. The adiabatic insertion of
the flux metamorphoses |�0〉 eventually into |� ′

0〉, which is a
ground state of the checkerboard Heisenberg antiferromagnet
with the unit flux. UP |� ′

0〉 is then a ground state of the original
checkerboard Heisenberg antiferromagnet without the flux.
In general, if one can find a conserved charge O that does
not commute with UP, the system cannot have the unique
and gapped ground state. Namely, |�0〉 and UP |� ′

0〉 are
orthogonal to each other since they are distinguished by the
eigenvalues of O. In the LSM paper [1] and Ref. [3], they
chose O as the one-site translation along the direction in which
the periodic boundary condition is imposed. This corresponds
in our case to O = Th defined by a relation ThSn,m,l T

−1
h =

Sn+1,m,l . From the relation

ThUPT −1
h = UP exp

⎛
⎝−i

2π

Lh

Lh∑
n=1

∑
m

∑
l=1,2

(
S − Sz

n,m,l

)⎞⎠,

(10)

it follows that Th and UP commute with each other as long as
the ground state has zero total magnetization. Therefore, we
cannot deduce the expected ground-state degeneracy by a flux
insertion under the boundary condition of Eq. (7).

2. In the tilted boundary condition

Following the requirement of insensitivity of the bulk
phase to boundary conditions, we replace the boundary condi-
tion and keep track of the translation symmetry. Let us impose
the tilted boundary condition on the system [11]. The tilted
boundary condition is defined as

Sn+Lh,m,l = Sn,m+1,l ,

Sn,m+Lv ,l = Sn,m,l (11)

for l = 1, 2. Under the tilted boundary condition, we can
sweep the whole checkerboard lattice by performing the one-
site translation Th iteratively. The tilted boundary condition
allows us to regard the checkerboard as a one-dimensional
ring on which all the 2LhLv sites are located. We then pierce
the system as the ring adiabatically with the flux until it
reaches the unit amount. The unit flux is erased by a U(1)
large gauge transformation,

UT = exp

⎛
⎝i

2π

LhLv

LhLv∑
r1=1

r1

∑
l=1,2

(
S − Sz

n,m,l

)⎞⎠. (12)

Here, r1 = 1, 2, . . . , LhLv − 1, LhLv is a label of the site along
the ring, and it is related to the two-dimensional coordinate
(n, m) for n ∈ [1, Lh] and m ∈ [1, Lv] through

r1 = n + (m − 1)Lh. (13)

It immediately follows that

ThUTT −1
h = UT exp

⎛
⎝−i

2π

LhLv

∑
n,m

∑
l=1,2

(
S − Sz

n,m,l

)⎞⎠. (14)

Again, we obtain ThUTT −1
h = UT in the absence of the total

magnetization, and the expected ground-state degeneracy can-
not be deduced.

IV. SPATIALLY TWISTED BOUNDARY CONDITIONS

In the previous section, we found that the periodic or the
tilted boundary condition fails to make the anomaly clear in
the flux insertion. Here, in this section, we introduce another
symmetric boundary condition that enables the flux insertion
along with a shift of the crystal momentum.

A. The Klein bottle and the tilted Klein bottle

First, we introduce a Klein-bottle boundary condition
shown in Fig. 2(a). When we reach the right edge of the
system, we reenter the system from the bottom edge. This
boundary condition is more precisely defined as

Sh
(
n − 1

2 + Lh, m
) = Sv

(
m, n − 1

2

)
,

Sv

(
n, m − 1

2 + Lv

) = Sh
(
m − 1

2 , n
)
. (15)

Namely, this boundary condition is twisted by a spatial rota-
tion S(x, y) 
→ S(y,−x) and a spatial reflection S(y,−x) 
→
S(y, x). As a consequence of this geometrical operation, the
boundary condition (15) is valid when

Lh = Lv = L. (16)
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FIG. 2. The Klein-bottle boundary condition on the two-
dimensional plane. (a) Sites at boundaries labeled by the same
symbol are identified in the Klein-bottle boundary condition. (b), (c)
The square is cut into four equal-area parts and recombined to the
rectangle. (d) The rectangle so produced is made of a pair of Möbius
strips and is equivalent to the Klein bottle.

Imposing the boundary condition (15) on the system is
equivalent to putting the system on the Klein bottle. To
see this, we divide the system into four equal-area parts
[Fig. 2(b)] and recombine them into a rectangle as shown
in Fig. 2(c). The rectangular system is made of two Möbius
strips [Fig. 2(d)] and is equivalent to the Klein bottle. The
Klein-bottle boundary condition, as well as the tilted one,
maintains the one-site translation symmetry across the seam
of the system.

Next, we tilt the boundary and modify the Klein-bottle
boundary condition to

Sh
(
n − 1

2 + L, m
) = Sv

(
m, n − 1

2

)
,

Sv

(
n, m − 1

2 + L
) = Sh

(
m − 1

2 , n + 1
)
. (17)

Relation (17) consists of the twisting operation of (15) and
the tilt. Thus, we call the boundary condition (17) a tilted
Klein-bottle boundary condition.

The Klein-bottle boundary conditions (15) and the tilted
Klein-bottle boundary condition (17) are compatible with the
square system (16), though the length on one side can be even
or odd integers in the unit of the unity lattice spacing. The re-
striction in the shape will be irrelevant in the thermodynamic
limit. However, we will discuss in Sec. VI that the restriction
in the shape can be crucial in predicting the ground-state
degeneracy of finite-size systems.

B. Flux insertion

The tilted Klein-bottle boundary condition (17) allows a
one-dimensional sweep of the checkerboard lattice just as the

tilted boundary condition (11) does. The only and crucial dif-
ference in these boundary conditions is the number of layers,
or the number of spins in the unit cell. In the tilted boundary
condition of the previous section, the unit cell contains two
sites. In the tilted Klein-bottle boundary condition, the unit
cell contains only a single site.

Let us pierce the checkerboard in the tilted Klein-bottle
boundary condition with the U(1) flux and erase it by the
following U(1) large gauge transformation,

UR = exp

⎛
⎝i

2π

2L2

2L2∑
r′

1=1

r′
1

(
S − sz

r′
1

)⎞⎠, (18)

where r′
1 = 1, 2, . . . , 2L2 − 1, 2L2 is the one-dimensional co-

ordinate to specify the location of the spin sr′
1
, which cor-

responds to Sh(n − 1
2 , m) and Sv (n, m − 1

2 ) in the following
manner:

Sh
(
n − 1

2 , m
) = sn+2(m−1)L, (19)

Sv

(
n, m − 1

2

) = sm+(2n−1)L. (20)

The tilted Klein-bottle boundary condition defines the one-
dimensional path sweeping the whole checkerboard lattice.
The one-site translation along the path, which we call Tr , acts
on sr′

1
as

Trsr′
1
T −1

r = sr′
1+1. (21)

It is then obvious that Tr and UR satisfy

TrURT −1
r = UR exp

⎛
⎝−i

2π

2L2

2L2∑
n,m=1

(
S − sz

r′
1

)⎞⎠. (22)

In the absence of the total magnetization, we obtain

TrURT −1
r = UR exp(−2πSi). (23)

Therefore, for any half-odd-integer S, the translation Tr and
the U(1) large gauge transformation UR do not commute with
each other. We reach the conclusion that the spin-S Heisen-
berg antiferromagnet on the checkerboard lattice cannot have
a unique and gapped ground state when S ∈ Z + 1/2. The
anomaly related to the LSM-type ingappability, which we call
the LSM-type anomaly, is Z2 in our case.

C. Symmetric and asymmetric modifications of the model

We may add various interactions to the spin-S checker-
board Heisenberg antiferromagnet without affecting the
anomaly as long as those interactions maintain the symme-
tries.

1. Symmetric modifications

One can modify the checkerboard Heisenberg model to
a frustrated square-lattice Heisenberg model by adding an
interaction

J
∑
n,m

{
Sh

(
n − 1

2
, m

)
· Sh

(
n − 1

2
, m + 1

)

+ Sv

(
n, m − 1

2

)
· Sv

(
n + 1, m − 1

2

)}
(24)
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to the Hamiltonian (1). The resultant model is the so-called
J1-J2 model on the square lattice where the nearest-neighbor
exchange coupling is J1 = J× and the next-nearest-neighbor
one is J2 = J .

The ground-state phase diagram of the spin-1/2 J1-J2

model has been numerically discussed for many years. Ob-
viously, the ground state is in the Néel ordered phase for
0 � J2/J1 � 1. When the ratio J2/J1 is increased, the system
undergoes a quantum phase transition and enters into a phase
different from the Néel one. The nature of this phase has long
been discussed and is still controversial. In fact, there are
many proposals for that phase, such as the gapped spin-liquid
phase [20,21], the gapless spin-liquid phase [22–26], and a
columner valence-bond-crystal phase [27].

From the viewpoint of flux insertion, the J1-J2 frustrated
square-lattice Heisenberg model is incapable of having a
unique and gapped ground state because the interaction (24)
is U(1) × ZT

2 × Z2-symmetric. The spin-1/2 J1-J2 square-
lattice Heisenberg antiferromagnet has either a gapless ground
state or gapped degenerate ground states. This conclusion on
the J1-J2 model can also be obtained in the tilted boundary
condition.

2. Asymmetric modifications

The anomaly exists in the one-site translation symmetry
of Tr and the U(1) large gauge symmetry in the presence
of time-reversal symmetry. Therefore, breaking either the
translation or the U(1) symmetry permits the unique and
gapped ground state. As we show below, the breakdown of
the translation is interesting in its relation to the well-known
Shastry-Sutherland lattice [28].

The one-site translation in a direction is easily broken by
the introduction of a bond alternation in that direction. Let
us demonstrate that the bond alternation renders the ground
state unique and gapped by taking as an example the S = 1/2
checkerboard Heisenberg antiferromagnet for 0 � J×/J � 1.
For J×/J = 0, where the system is reduced to being a com-
position of decoupled spin chains, the statement is obviously
true. The bond alternation in each spin chain opens the gap
without breaking any symmetry spontaneously. This is clearly
shown in the bosonization scheme [29].

Let us examine J×/J . Keeping the most relevant interaction
allowed by the U(1) × ZT

2 × Z2 symmetry, we can approxi-
mate the interchain interaction (4) effectively as [14]

Hc ≈
∑
n,m

gn,m(−1)n+mεh,m(na)εv,n(ma), (25)

where εh,m(na) := (−1)nSh(n − 1
2 , m) · Sh(n + 1

2 , m) and
εv,n(ma) := (−1)mSv (n, m − 1

2 ) · Sv (n, m + 1
2 ) are the

dimerization operator on the mth horizontal chain and
that on the nth vertical chain, respectively, and gn,m ∈ R.
We can assume gn,m > 0 without loss of generality. The
relevant interaction (25) pins (εh,m(na), εv,n(ma)) to either
〈εh,m(na)〉 > 0 > 〈εv,n(ma)〉 or 〈εh,m(na)〉 < 0 < 〈εv,n(ma)〉.
Thus, the relevant interaction (25) drives the model into a
spontaneously dimerized phase, a crossed-dimer phase [14],
resulting in the double degeneracy of the ground state with a
finite excitation gap.

FIG. 3. The bond-alternating Heisenberg antiferromagnet on the
checkerboard lattice. The thick bonds represent the stronger ex-
change interaction of J (1 + δ), and the dashed bonds represent the
weaker exchange interaction of J (1 − δ) for 0 � δ � 1. When all the
dashed bonds are removed (i.e., when δ = 1), the lattice is reduced
to the Shastry-Sutherland one.

Now, we break the translation symmetry, say, in the hori-
zontal axis. Then it is permissible to add to V× an interaction,

gh

∑
m

∫
dx (−1)mεh,m(x), (26)

where x = na. Clearly, the interaction (26) lifts the afore-
mentioned double degeneracy and renders the ground state
trivially dimerized, that is, unique and gapped. The same
occurs when breaking the translation symmetry in the vertical
axis.

Note that the bond alternation bridges the checkerboard
lattice and the Shastry-Sutherland lattice. Let us add the
following bond alternation to the checkerboard Heisenberg
antiferromagnet (1):

δH′ = − Jδ
∑
n,m

(−1)n+m

{
Sh

(
n − 1

2
, m

)
· Sh

(
n + 1

2
, m

)

− Sv

(
n, m − 1

2

)
· Sv

(
n, m + 1

2

)}
. (27)

We depicted the model with the Hamiltonian

Hδ = HCBH + δH′ (28)

in Fig. 3. Let us increase δ from 0 to 1. The model Hδ=0 is
the original Heisenberg antiferromagnet on the checkerboard
lattice. On the other hand, the model Hδ=1 is the Heisenberg
antiferromagnet on the Shastry-Sutherland lattice. As is well
known [28], the S = 1/2 Heisenberg antiferromagnet on the
Shastry-Sutherland lattice has a unique and gapped ground
state where all the thick bonds in Fig. 3 are paved with the
singlet-dimer states. It is consistent with our anomaly argu-
ment that the interaction (28) breaks the translation symmetry
for δ = 0 and thus removes the anomaly.

V. ANOMALY AS A 1D SYSTEM

Our discussion on the flux insertion is consistent with
the topological field-theoretic classification of the LSM-type
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anomaly explained in Appendixes A and B. The latter dis-
cussion is focused on the relation of the LSM-type anomaly
in (2 + 1)-dimensional systems to the surface anomaly of
(3 + 1)-dimensional systems in a weak SPT phase.

On the other hand, the tilted Klein-bottle boundary condi-
tion defines a one-dimensional closed path along which all
the sites are swept once. The tilted Klein-bottle boundary
condition thus allows us to view the (2 + 1)-dimensional
system on the checkerboard as a (1 + 1)-dimensional system
with the periodic boundary condition. Our conclusion should
be independent of such a difference in viewpoints of the
system. However, this independence is a priori nontrivial in
terms of the topological field theory.

Let us briefly show that even when we regard the system as
(1 + 1)-dimensional, we obtain the same LSM-type anomaly.
The proposition F.7 of Ref. [30] leads to

hD(B(G × Z)) = hD−1(BG) ⊕ hD(BG), (29)

where hD(BG) refers to a generalized cohomology theory
that classifies SPT phases protected by G symmetry in D-
dimensional spacetime. The term hD(BG) on the right-hand
side is related to the surface anomaly of SPT phases and not
of weak SPT phases. Thus, when we focus on the sector that
is relevant in the weak SPT phase, we obtain the relation

hD(B(G × Z))
∣∣
weak = hD−1(BG). (30)

The relation (30) indicates that the anomaly resulting from
the translational symmetry in D-dimensional spacetime can
be detected as an anomaly in (D − 1)-dimensional spacetime.
If we take G as U(1) × Z and hD as D�D+1

O , we obtain the
expected independence of the viewpoint of our system. In
fact, the Z2 anomaly discussed in Sec. IV is related to the Z2

group as a subgroup of D�3
O(BU(1)), which is also a subgroup

of both of D�5
O(B[U(1) × Z2]) and D�4

O(B[U(1) × Z]). The
former classifies the LSM-type anomaly in time-reversal sym-
metry, U(1) symmetry, and Z2 translation symmetry in 2 + 1
dimensions. The latter classifies the LSM-type anomaly in
time-reversal symmetry, U(1) symmetry, and one-dimensional
Z translation symmetry in 1 + 1 dimensions.

VI. MAGNETIZATION PLATEAUS

In Secs. III, IV, and V, we discussed the LSM-type in-
gappability in the presence of the time-reversal symmetry.
Here, in this section, we break the time reversal by imposing
the magnetic field on the S = 1/2 checkerboard Heisenberg
model in order not to interfere with the U(1) spin-rotation
symmetry.

The magnetization curve of the S = 1/2 checkerboard
Heisenberg model was discussed in Refs. [17,18,31], where
numerous magnetization plateaus were found. The S = 1/2
checkerboard Heisenberg antiferromagnet hosts magnetiza-
tion plateaus at M/Msat = 1/4, 3/8, 1/2, and 3/4, where M
and Msat are the total magnetization and its saturated value.

In the presence of the total magnetization M > 0, the
operator UR satisfies

TrURT −1
r = UR exp[−2π i(S − m)], (31)

where m = M/2L2 is the magnetization density. Generically,
when S − m = p/q with positive integers p and q, which are

coprime to each other, the relation (31) claims that the ground
state is at least q-fold degenerate [3]. The degenerate ground
states are given by |�0〉 and U s |� ′

0〉 for s = 1, 2, . . . , q − 1.
On the magnetization plateau, for example, at the 3/8

plateau, there are least 16-fold degenerate ground states
because S − m = 5/16. This prediction of the ground-state
degeneracy on the plateau is consistent with numerical ob-
servation [17]. However, in general one must be careful about
the geometrical shape of the system when comparing the flux
insertion argument (31) with numerical results. Numerical
calculations are often performed on a finite-size cluster. Once
the shape of the cluster is fixed, the ground-state degeneracy
is expected to be independent of the choice of the boundary
condition. Still, the ground-state degeneracy is in general de-
pendent on the shape of the cluster. For example, the relation
(31) predicts the at least eightfold degeneracy of the ground
state on the 1/4 plateau, while only fourfold degeneracy was
numerically observed [18]. Actually, the finite-size clusters
used in Refs. [17,18] are incompatible with the tilted Klein-
bottle boundary conditions because they are not the square
defined in Eq. (16). Instead, those clusters are compatible with
the tilted boundary condition (11). If we employ the tilted
boundary condition, we obtain

ThUTT −1
h = UT exp[−4π i(S − m)], (32)

where m = M/2LhLv . Then, we conclude on the basis of
Eq. (32) that the ground state on the 1/4 magnetization plateau
is at least fourfold degenerate in the tilted boundary condition
because 2(S − m) = 3/4. This prediction is consistent with
the numerical finding [18]. It will be interesting to check
the ground-state degeneracy numerically on the magnetization
for a square-shape cluster checkerboard lattice [Fig. 1(b)]
compatible with the tilted Klein-bottle boundary condition
(17). However, this problem is beyond the scope of this paper
and we leave it for future works.

VII. SUMMARY

We discussed the LSM-type ingappability in two-
dimensional frustrated quantum antiferromagnets. Our
discussion was focused on the anomaly between U(1)
spin-rotation symmetry and translation symmetry and the
physically reasonable conjecture explained in Sec. II. First, we
considered time-reversal symmetric cases. In the presence of
time-reversal symmetry, LSM-type ingappability is expected
in the generic argument based on the ’t Hooft anomaly and
the surface anomaly of the weak SPT phase. Nevertheless,
the well-known flux insertion argument turned out not to
demonstrate the anomaly explicitly in the periodic [3] or the
tilted [11] boundary conditions. Instead of them, we imposed
another boundary condition on the two-dimensional system,
which is connected to the spatial rotation and the spatial
reflection. In the twisted boundary condition, which we call
the tilted Klein-bottle boundary condition, the flux insertion
successfully demonstrated the intrinsic LSM-type anomaly
between U(1) and translation symmetries. In particular,
we showed that quantum magnets with U(1) × ZT

2 × Z2

symmetry on the checkerboard lattice cannot have a unique
and gapped ground state. If the ground state is gapped, it is at

174435-6



TRANSLATION CONSTRAINTS ON QUANTUM PHASES … PHYSICAL REVIEW B 100, 174435 (2019)

least doubly degenerate as a consequence of the Z2 LSM-type
anomaly.

Next, we discussed the magnetization plateau in the ab-
sence of time-reversal symmetry. Taking advantage of the
flux insertion argument, we discussed the ground-state de-
generacy on magnetization plateaus of the S = 1/2 checker-
board Heisenberg antiferromagnet. While we explained the
numerically found degeneracy on some plateaus at M/Msat =
0, 1/2, 3/8 [17,18], we could not on the plateaus at M/Msat =
1/4 and 3/4. We concluded in Sec. VI that this disagreement
originates from the shape of the finite-size cluster. Though
the bulk properties should be independent of the choice of
the boundary condition, it can be dependent on the geometric
shape of the system. We emphasize that the 16-fold degen-
eracy of the 3/8 plateau is explained by the flux insertion
argument in the tilted Klein-bottle boundary condition but not
in the periodic or the tilted boundary condition.

The tilted Klein-bottle boundary condition is applicable to
any two-dimensional quantum many-body systems on square-
like lattices. Just as Ref. [11] did in the tilted boundary
condition, we can extend the tilted Klein-bottle boundary
condition to higher dimensions straightforwardly, though such
a higher-dimensional tilted “Klein-bottle” boundary condition
should be unrelated to the Klein bottle directly. In partic-
ular, it will be an interesting problem to apply the tilted
“Klein-bottle” boundary condition to three-dimensional sys-
tems whose anomaly is less understood yet, but this remains
an open problem.
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APPENDIX A: CLASSIFICATION
OF THE U(1) × ZT

2 × Z2 ANOMALY

In Appendixes A and B, we give a field-theoretic interpre-
tation of the LSM-type ingappability presented in the main
text. Our discussion here is based on Refs. [32–34], where
the correspondence between weak SPT phases and LSM-type
ingappability is discussed. In the main text, we summarized
LSM-type ingappability as follows. For a time-reversal sym-
metric ground state, U(1)-gauge transformation produces a
nonzero momentum, that is, the gauge transformation is not
compatible with translational symmetry. It is then natural to
consider that the LSM-type anomaly can be identified with the
’t Hooft anomaly of U(1)×ZT

2 × Z2 symmetry, where ZT
2 and

Z2 represent time-reversal and lattice-translation symmetries,
respectively.

Based on this viewpoint, we identify the ’t Hooft anomaly
that describes the ingappability, and we give a physically
reasonable interpretation of the anomaly. For this purpose, we
first give a cobordism classification of the ’t Hooft anomaly of
U(1)×ZT

2 × Z2 symmetry. In the classification, the observed
LSM-type ingappability is attributed to the surface anomaly of
the Haldane phase of the spin-1 Heisenberg antiferromagnetic
chain.

Since every SPT phase supports an anomalous boundary,
it is widely believed that the classification of the ’t Hooft

TABLE I. Cobordism groups D�d
O(BU(1)).

d 0 1 2 3 4 5

D�d
O(BU(1)) 0 Z2 0 Z2

2 0 Z4
2

anomaly in the D-dimensional spacetime is given by that
of SPT phases in the (D + 1)-dimensional spacetime. Based
on this physically sound assumption, here we classify SPT
phases protected by U(1)×ZT

2 × Z2 symmetry in order to
classify the anomaly in the lower dimension. According to
Ref. [35], bosonic SPT phases with G symmetry and time-
reversal symmetry in D + 1 dimensions are classified by the
Anderson dual D�D+2

O (BG) [36,37] of the unoriented bordism
group on the classifying space BG [38]. According to the
Proposition F.7 in Ref. [30], we find

D�d
O(B[U(1) × Z2])

= D�d−2
O (BU(1)) ⊕ [

D�d−1
O (BU(1))

]2 ⊕ D�d
O(BU(1)),

(A1)

where D�d
O(BU(1)) is obtained from the universal property

of the Anderson dual [35] and the bordism groups [39] as
shown in Table I. The cobordism group D�d

O(B[U(1) × Z2])
is immediately obtained from Eq. (A1) and Table I, and it is
shown in Table II.

APPENDIX B: LSM-TYPE ANOMALY AS STACKED
HALF ODD-INTEGER SPIN

In this Appendix, we give an interpretation of the LSM-
type anomaly in view of the generalized cohomology clas-
sification. For this purpose, we use the identification of the
LSM-type anomaly in (2 + 1)-dimensional systems observed
in the main text with the surface anomaly emerging in a
weak SPT phase in (3 + 1)-dimensional systems protected
by U(1) × ZT

2 × Z2 symmetry. In particular, we focus on the
physical understanding of the subgroup Z2 ⊂ D�3

O(BU(1)),
which describes the ingappability observed in the main text.

1. Topological-field-theoretic classifications

The LSM-type anomaly with which we are concerned
corresponds to the surface anomaly of the weak SPT phase
in 3 + 1 dimensions classified by D�d=5

O (B[U(1) × Z2]) in
Table II. Here, the latter is further reduced to

D�5
O(B[U(1) × Z2]) = D�3

O(BU(1)) ⊕ D�5
O(BU(1))

= Z2
2 ⊕ Z4

2, (B1)

where the subgroup D�5
O(BU(1)) � Z4

2 represents the
(3 + 1)-dimensional SPT phases protected only by U(1) and
time-reversal symmetries independently of the translation. In

TABLE II. Cobordism groups D�d
O(B(U(1) × Z2)).

d 0 1 2 3 4 5

D�d
O(B[U(1) × Z2]) 0 Z2 Z2

2 Z2 ⊕ Z2
2 Z4

2 Z2
2 ⊕ Z4

2
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TABLE III. The E2 page of the Atiya-Hirzebruch spectral se-
quence Eq. (B2). p + q corresponds to d in Table I.

5 Z2
2 0 Z2

2 0 Z2
2 0 Z2

2

4 0 0 0 0 0 0 0
3 Z2 0 Z2 0 Z2 0 Z2

2 0 0 0 0 0 0 0
1 Z2 0 Z2 0 Z2 0 Z2

0 0 0 0 0 0 0 0

q/p 0 1 2 3 4 5 6

such phases, the surface theory of the SPT phase is free from
the anomaly originating in the translational symmetry. In other
words, the surface theory cannot have a trivial ground state
even in the absence of translational symmetry. This situation
does not fit into the lattice model of our interest. In fact,
the lattice model can be gapped trivially by a translational
symmetry-violating perturbation.

The remaining subgroup D�3
O(BU(1)) � Z2

2 in Eq. (B1)
represents the (3 + 1)-dimensional weak SPT phases con-
structed by stacking (1 + 1)-dimensional SPT phases pro-
tected by U(1) and time-reversal symmetries. In such weak
SPT phases, the translational symmetry plays the role of an
obstacle that prohibits the system from becoming trivially
gapped when being stacked. To see the nature of the elements
in D�3

O(BU(1)) � Z2
2, we consider the Atiya-Hirzebruch

spectral sequence of the generalized cohomology theory:

D�d
O(BU(1)) ⇐� E p,q

2 = H p(BU(1); D�
q
O(pt )). (B2)

Here, d on the left-hand side corresponds to p + q. The E2

page is shown in Table III. Note that ⊕p+q=d E p,q
∞ is equal as

a set to D�d
O(BU(1)). In addition, we can see in Eq. (B2) that

E p,q
2 = E p,q

∞ holds true for p + q � 5. Tables III and I turn out
to be consistent with each other.

We are interested in the d = 5 case in Eq. (B2) corre-
sponding to the (3 + 1)-dimensional weak SPT phase. One
can construct the latter by stacking (1 + 1)-dimensional SPT
phases represented by the d = 3 case in Eq. (B2), that is,
D�3

O(BU(1)) � Z2
2. The E∞ page of the spectral sequence

leads to

D�3
O(BU(1))

� H0(BU(1); D�3
O(pt )) ⊕ H2(BU(1); D�1

O(pt ))

� D�3
O(pt ) ⊕ H2(BU(1); D�1

O(pt )) (B3)

�Z2 ⊕ Z2. (B4)

In Eq. (B3), D�3
O(pt ) � Z2 represents the (1 + 1)-

dimensional SPT phase protected only by the time-reversal
symmetry. The effective action on its (0 + 1)-dimensional
surface is deduced in the following. The universal property of
the Anderson dual gives

D�d
O(pt ) � Ext1

Z

(
�O

d−1(pt ),Z
) ⊕ HomZ

(
�O

d (pt ),Z
)
,

(B5)

where �O
d (pt ) is the d-dimensional unoriented bordism group.

From the definition of the Ext functor, the short exact
sequence 0 → Z → R → R/Z → 0 induces the following

long exact sequence:

0 → HomZ

(
�O

d (pt ),Z
) → HomZ

(
�O

d (pt ),R
)

→ HomZ

(
�O

d (pt ),R/Z
)

→ Ext1
Z

(
�O

d (pt ),Z
) → Ext1

Z

(
�O

d (pt ),R
)

→ Ext1
Z

(
�O

d (pt ),R/Z
)

→ · · · . (B6)

We note that �O
d (pt ) is a two-torsion group because for

a bordism class [M] ∈ �O
d (pt ), 2[M] = ∂[M × I] = 0. This

fact leads to HomZ(�O
d (pt ),R) = 0 and Ext1

Z(�O
d (pt ),R) =

0 in the above long exact sequence. We thus have

HomZ

(
�O

d (pt ),R/Z
) � Ext1

Z

(
�O

d (pt ),Z
)
, (B7)

which relates the Pontryagin dual [40,41] and the Anderson
dual of the unoriented bordism groups. Consequently, we have

D�3
O(pt ) � HomZ

(
�O

2 (pt ),R/Z
)
. (B8)

Note that the unoriented bordism groups are characterized
by the Stiefel-Whitney numbers. Therefore, the generator
of D�3

O(pt ) finally turns out to be exp (iπ
∫

w1 	 w1), as
already specified in Ref. [39]. On an oriented spacetime M,
w1 = δη for a cochain η ∈ C0(M;Z2) and the topological
action becomes exp [iπ

∫
M δ(ηδη)]. If M has a surface ∂M,

the surface-effective action becomes

exp

(
iπ

∫
∂M

ηδη

)
. (B9)

This effective action is not invariant under the gauge transfor-
mation η → η + θ (w1 → w1 + δθ ). Now suppose ∂M is a
triangle whose vertices are labeled by the numbers 0, 1, and 2,
and suppose η(0) = 1, η(1) = η(2) = 0, which signifies that
the time-reversal operation acts on the system twice along
the time direction. In this situation, the partition function
exp (iπ

∫
∂M ηδη) takes on the value of −1. Therefore, the

anomaly represents the Kramers doublet in (0 + 1)D.
Let us consider the other part H2(BU(1); D�1

O(pt )) of
Eq. (B3),

H2(BU(1); D�1
O(pt )) � Z2 (B10)

which is generated by the mod-2 reduction of the first Chern
class c1 as already specified in Ref. [39]. The topological
action exp(iπ

∫
M c1) on a spacetime M without the monopole

is given by exp(iπ
∫

M δa), where δa = c1. When M has a
surface ∂M, the surface-effective action becomes

exp

(
iπ

∫
∂M

a

)
. (B11)

Here, the anomaly emerges as the noninvariance of the
(0 + 1)-dimensional surface theory under the large gauge
transformation of a → a + θ (c1 → c1 + δθ ) with θ ∈
C1(BU(1);Z) ⊗ Z2. Therefore, the anomaly is characterized
by a half-odd-integer U(1) charge [39].

2. Interpretation of the anomaly

These topological-field-theoretic characterizations of the
anomalies can be understood intuitively. Let us recall that our
lattice model is composed of half-odd-integer spins on each

174435-8



TRANSLATION CONSTRAINTS ON QUANTUM PHASES … PHYSICAL REVIEW B 100, 174435 (2019)

site. The half-odd-integer spin is the Kramers doublet and,
at the same time, has a half-odd-integer U(1) charge. We are
thus led to the fact that the relevant ’t Hooft anomaly in our
quantum spin systems is the element

(1, 1) ∈ D�3
O(pt ) ⊕ H2(BU(1); D�1

O(pt )
)
, (B12)

which is merely the surface anomaly of the spin-1 chain
in the Haldane phase. We thus reach the following reason-
able interpretation of the LSM-type anomaly. Each site is
equipped with a half-odd-integer spin whose eigenstate is
doubly degenerate. The degeneracy cannot be lifted because
the translation symmetry forbids the stacking of such a spin
with nearby spins. This interpretation is consistent with the
lattice homotopy argument [6].

3. Spin-1 Haldane phase as the U(1) × ZT
2 SPT phase

In the above discussion, the spin-1 Haldane phase
is identified with the element (1, 1) ∈ D�3

O(pt ) ⊕
H2(BU(1); D�1

O(pt )) as (1 + 1)-dimensional U(1)×ZT
2

SPT. It is worth noting that the spin-1 Haldane phase
has the topological action of exp(iπ

∫
c1) in addition to

exp(iπ
∫

w2
1 ). To see this, we check that the spin-1 Haldane

phase exhibits a nontrivial response to a monopole insertion
into the (1 + 1)-dimensional spacetime, since the topological
action exp(iπ

∫
c1) counts the number of monopoles. To

realize the monopole insertion in the operator formalism, we
employ the twist operator U of the original LSM theorem in
(1 + 1) dimensions [1,42],

U := exp

(
i
2π

L

L∑
n=1

n
(
S − Sz

n

))
. (B13)

In the following, we argue that the operator U acting on
quantum spin chains inserts a monopole into the (1 + 1)-
dimensional spacetime. More precisely, we argue that the
ground-state expectation value of U is the partition function
(i.e., the generating functional of response functions) Z[A] in
the presence of the external U(1)-gauge field A created by a
monopole.

The nature of U is clarified in the continuum limit of van-
ishing lattice spacing a → 0 with fixed system size lx = La =

const, where S − Sz
n is regarded as the U(1)-charge density

nc(x = na). Consequently, the operator U can be regarded as
the minimal coupling term between the charge density nc(t, x)
and the U(1)-gauge field A(t, x):

U = exp

(
i
∫ lx

0

∫ T/2

−T/2
dx dt A · j

)
, (B14)

where

A0(t, x) = 2π

lx
δ(t )x, A1(t, x) = 0, (B15)

j0(t, x) = nc(t, x), j1(t, x) = 0. (B16)

The partition function in the presence of the external gauge
field is obtained by the expectation value of the minimal
coupling term, namely

Z[A] =
〈
exp

(
i
∫

dx dt A · j
)〉

= 〈GS|U |GS〉. (B17)

Now we are ready to show that the external gauge field (B15)
represents a monopole. From Eq. (B15), the field strength F
of the external gauge field becomes

F = dA = 2π

lx
δ(t )dx ∧ dt, (B18)

and the first Chern number (i.e., the number of monopole)
becomes ∫

F

2π
=

∫ lx

0

∫ T/2

−T/2
dx dt

1

lx
δ(t ) = 1. (B19)

We can thus conclude that the external gauge field Eq. (B15)
is indeed created by a monopole.

We have shown that the ground-state expectation value
of U is the partition function Z[A] in the presence of
a monopole. If the system is in an SPT phase (1, 1) ∈
D�3

O(pt ) ⊕ H2(BU(1); D�1
O(pt )), the partition function Z[A]

contains a nontrivial phase factor of the topological action
exp (iπ

∫
c1), and thus the ground-state expectation value of

U must contain a nontrivial phase factor of eiπ = −1. Indeed,
in the spin-1 Haldane phase, the ground-state expectation
value of the operator U contains the nontrivial phase factor,
which means that the twist operator U is an order parameter
of the Haldane phase [42].
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