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Signatures for spinons in the quantum spin liquid candidate Ca10Cr7O28
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We present new experimental low-temperature heat capacity and detailed dynamical spin-structure factor data
for the quantum spin-liquid candidate material Ca10Cr7O28. The measured heat capacity shows an almost-perfect
linear temperature dependence in the range 0.1 K � T � 0.5 K, reminiscent of fermionic spinon degrees of
freedom. The spin-structure factor exhibits two energy regimes of strong signal which display rather different
but solely diffuse scattering features. We theoretically describe these findings by an effective spinon-hopping
model which crucially relies on the existence of strong ferromagnetically coupled triangles in the system. Our
spinon theory is shown to naturally reproduce the overall weight distribution of the measured spin-structure
factor. Particularly, we argue that various different observed characteristic properties of the spin-structure factor
and the heat capacity consistently indicate the existence of a spinon Fermi surface. A closer analysis of the heat
capacity at the lowest accessible temperatures hints toward the presence of weak f -wave spinon-pairing terms
inducing a small partial gap along the Fermi surface (except for discrete nodal Dirac points) and suggesting an
overall Z2 quantum spin-liquid scenario for Ca10Cr7O28.
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I. INTRODUCTION

The hunt for experimental realizations of novel topological
quantum states is one of the most thriving research themes
in modern condensed-matter physics. Quantum spin liquids
attract special interest since they combine various exotic phe-
nomena which completely fall outside the traditional Landau
paradigm of symmetry broken phases of matter [1–3]. Instead
of the classical long-range order of more conventional mag-
nets, quantum spin liquids exhibit topological order which
cannot be described by any local order parameter [4]. Sim-
ilarly, as a fundamental difference to the well-known spin
waves (or magnons) of magnetically ordered states, quantum
spin liquids harbor fractional spin excitations which carry
anyonic quasiparticle statistics. Particularly, the fundamental
spinful quasiparticles of a quantum spin liquid are so-called
spinons which can be thought of as a fraction (i.e., half) of a
conventional �S = 1 spin-flip excitation [5–7].

The experimental and theoretical investigation of these
phenomena, however, poses significant challenges. For exam-
ple, due to its long-range entangled nature, there are currently
no experimental techniques available which can directly iden-
tify topological order. Concerning the excitations of a quan-
tum spin liquid, their fractional nature prohibits the creation
of single spinons; however, neutron scattering at least allows
their two-particle continuum to be probed which typically
forms broad and diffuse patterns in the spin-structure factor.

Such diffuse neutron scattering has indeed been observed in
various promising spin-liquid candidate materials, such as
the kagome system Herbertsmithite [7–9] [ZnCu3(OH)6Cl2],
the triangular magnet YbMgGaO4 [10–12], and the Kitaev
honeycomb material α-RuCl3 [13–17] (even though the latter
material is known to order at low temperatures [18]). Whether
these measured responses are indeed signatures of spinons is
not yet completely settled since it is well known that nonfrac-
tional phenomena such as multimagnon continua, spin-glass
behavior, or chemical disorder effects may also give rise to
broad excitation spectra [19–24]. As a further complication
from the theory side, except for special coupling scenar-
ios as realized in the exactly solvable Kitaev model [25],
it is extremely challenging to calculate the spin excitation
spectrum starting from a generic spin Hamiltonian. For this
reason, it is often easier to theoretically investigate quantum
spin liquids based on an effective model for its fractional
excitations.

Apart from the information drawn from neutron experi-
ments, thermodynamic properties can help unravel quantum
spin-liquid behavior. According to current understanding,
spinons may behave like chargeless fermions [26–28], i.e.,
similarly to electrons in a metal, they can lead to a heat ca-
pacity and thermal conductivity linear in temperature. Indeed,
approximate linearity of these quantities has been observed in
various spin-liquid candidate materials [29–31]. Furthermore,
thermal Hall conductivity measurements have recently shown
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FIG. 1. (a) Bilayer kagome lattice as realized in Ca10Cr7O28.
The differently colored bonds carry the interactions J0, J21, J22, J31,
and J32 as indicated in the figure, see also Table I. (b) Effective
decorated honeycomb lattice arising from a projection of the fer-
romagnetically coupled triangles (green triangles labeled I and J)
of the bilayer kagome system into one plane. Bonds are colored
and labeled in the same way as in (a), except the antiferromagnetic
(blue) bonds, which are not shown for reasons of clarity. Note that
sites coupled by the vertical ferromagnetic interlayer couplings (red
lines) almost coincide in their position after projection. We have,
hence, increased their in-plane distance in this illustration for better
visibility. Dark gray (light gray) dots denote sites in the lower
(upper) plane. Dashed lines mark the boundaries of the unit cell and
numbers label the sites within ferromagnetically coupled triangles.
(c) Effective honeycomb lattice with hopping amplitudes ta1, ts2 as
they are used in the phenomenological model in Eqs. (5) and (12).
In this illustration, each green point corresponds to a ferromagnetic
triangle.

TABLE I. Exchange couplings of Ca10Cr7O28 as determined in
Refs. [33,34]. All couplings are given in meV.

J0 J21 J22 J31 J32

−0.08(4) −0.76(5) −0.27(3) 0.09(2) 0.11(3)

promising signatures of fractional edge states in the Kitaev
candidate compound α-RuCl3 [32].

In this paper, we address the aforementioned opportu-
nities and challenges in identifying quantum spin liquids
based on the compound Ca10Cr7O28 [33–38]. Particularly, we
demonstrate that new heat capacity and single-crystal neutron-
scattering data in conjunction with an effective model for
the low-energy excitations allows an interpretation in terms
of emergent spinon degrees of freedom that is remarkably
straightforward and consistent. In a previous publication by
some of the authors, Ca10Cr7O28 has been shown to feature
striking properties of a quantum spin liquid such as an ab-
sence of magnetic long-range order down to at least 19 mK,
persistent spin dynamics at low temperatures, and a diffuse
scattering signal in neutron experiments [33]. Furthermore, in
contrast to other spin-liquid candidate systems, Ca10Cr7O28

is characterized by a larger immunity to chemical disorder
since site mixing is suppressed by distinctly different ionic
radii. The strong quantum fluctuations in this compound can
be explained by a special frustration mechanism arising due
to interacting spin-1/2 magnetic moments from Cr5+ ions,
arranged in a stacked bilayer kagome geometry, see Fig. 1.
Based on neutron scattering in a magnetic field combined with
a spin-wave analysis, a microscopic Heisenberg Hamiltonian
H = 1

2

∑
i, j Ji jSiS j has been identified which features five

different interactions Ji j on geometrically distinct bonds of
the bilayer system denoted by J0, J21, J22, J31, and J32 (see
Table I for the coupling strengths found in Refs. [33,34]).

In contrast to the ideal antiferromagnetic kagome Heisen-
berg model discussed in the context of Herbertsmithite, the
magnetic lattice of Ca10Cr7O28 exhibits various peculiarities.
Particularly, the “up” and “down” triangles of both kagome
layers are all symmetry inequivalent, resulting in four differ-
ently coupled equilateral triangles carrying antiferromagnetic
and ferromagnetic interactions, J21, J22, J31, and J32, where
the ferromagnetic couplings (J21 and J22) are even the largest
ones. Ferromagnetic (green) and antiferromagnetic (blue) tri-
angles alternate within each layer and the two layers are
stacked so that the ferromagnetic triangles in the first layer lie
on top of the antiferromagnetic triangles in the second layer
and vice versa. The fifth coupling J0 is also ferromagnetic
and vertically connects sites in the two layers. While the two
layers individually only exhibit relatively weak spin frustra-
tion (three spins on ferromagnetic triangles approximately
combine into spins-3/2 living on an antiferromagnetic trian-
gular lattice in each layer [36,37]) the interlayer interactions
J0 induce very strong frustration effects and are primarily
responsible for the destruction of magnetic order. Despite the
complexity of the system, numerical studies confirmed the
nonmagnetic ground state of the proposed spin Hamiltonian
[33,36–38] and reproduced the overall weight distribution
of the static spin-structure factor [33,36,37]. Yet a coherent
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interpretation and explanation of the measured observables in
terms of emergent spinon quasiparticles as will be presented
below has not been developed so far.

The effective spinon model which we propose in this
work relies on new experimental heat capacity and dynamical
spin-structure factor data on Ca10Cr7O28. The presented heat
capacity data ranges down to lower temperatures as compared
to our previous work (37 mK versus 330 mK in Ref. [33]).
Interestingly, the newly resolved temperature regime shows
a nearly perfect linear behavior over almost one order of
magnitude in T , reminiscent of fermionic spinons. Our single-
crystal neutron-scattering data capture the dynamical spin
structure with better energy resolution and, hence, shows var-
ious additional details which previously remained unresolved.
We find that the excitation spectrum reveals two clearly
separated diffuse bands of strong response where the one at
lower energies exhibits a characteristic V shape in energy
around the � point. The central assumption in the ensuing
theoretical analysis amounts to attributing the absence of mag-
netic long-range order, the linear heat capacity, and the overall
diffuse magnetic scattering to the existence of a quantum spin-
liquid ground state with emergent spinon excitations. Various
known properties of Ca10Cr7O28 such as its approximate spin
isotropy and the presence of strong ferromagnetic interactions
allow us to put constraints on the low-energy dynamics of
spinons. This naturally leads us to an effective spinon-hopping
model which reproduces key experimental features even with-
out a fine-tuning of parameters. Particularly, we find that the
weight distribution in the two bands of scattering is rooted
in the special pattern of ferromagnetic bonds. Similarly, the
linear heat capacity and V-shaped spin-structure factor are
explained by an (approximate) spinon Fermi surface where
a small deviation from linearity at the lowest temperatures
possibly indicates the formation of a partial gap along the
Fermi level (except for discrete gapless Dirac points) due to
weak spinon pairing. We, therefore, conclude that a gapless
Z2 spin liquid is the most plausible scenario for Ca10Cr7O28.

The paper is organized as follows: In Sec. II we provide
experimental details about the measurements performed
(Sec. II A) and present the new low-temperature heat capacity
and detailed dynamical spin-structure factor data (Sec. II B).
The theoretical analysis in Sec. III starts by reviewing the
general parton theory for quantum spin liquids (Sec. III A)
before the microscopic spinon model for Ca10Cr7O28

is addressed more specifically (Sec. III B). The overall
implications of this model for the spin-structure factor are
discussed in Sec. III C and a more detailed comparison with
the experimental data can be found in Sec. III D. In Sec. III E
we also include the heat capacity into our analysis which
modifies the spinon model at low energies. The paper ends
with a conclusion in Sec. IV.

II. MEASURED SPIN-STRUCTURE FACTOR
AND HEAT CAPACITY

A. Experimental details

Single-crystal samples of Ca10Cr7O28 were prepared ac-
cording to the procedure described in Ref. [35]. The heat
capacity was measured on two different calorimeters. The

first measurement was performed on a 0.93-mg single crystal
in the temperature range 0.3–6.5 K using a quasiadiabatic
relaxation method in combination with a 3He cryostat at the
Core Lab for Quantum Materials, Helmholtz-Zentrum Berlin.
The second measurement was performed between 37 mK and
1.7 K on a larger 11.1-mg single crystal at the Physikalisches
Institut, Goethe-Universität Frankfurt using a home-made
calorimeter operated in both a relaxation mode as well as a
continuous heating mode.

Inelastic neutron scattering was measured on the MACS II
spectrometer (NIST Center for Neutron Research, Gaithers-
burg, USA). Two coaligned rod-shaped single crystals with
a total mass of 1.7 g and a mosaicity of less than 2◦ were
used. The kagome bilayer [H, K, 0] plane was aligned with
the horizontal scattering plane and the temperature was kept
below 0.1 K throughout the measurement. The final energy
was fixed to 2.5 meV for energy transfers E � 0.25 and
3.0 meV for energy transfers E � 0.25 meV. An empty sam-
ple holder measurement was used for background subtraction.
The energy resolution broadening of our data increases with
incident energy from �E = 0.1 meV at E = 0.15 meV to
�E = 0.3 meV at 1.55 meV. The data are visualized using
the DAVE software package [39].

B. Experimental results

We start discussing the heat capacity data of Ca10Cr7O28

which is shown in Fig. 2(a) to 7 K. Note that the figure
contains two independent data sets, as described above, where
the one at higher temperatures has already been presented
in Ref. [33]. In the temperature range 0−7 K the phonon
contribution was calculated to be negligible and the total
specific heat was found to be of magnetic origin [34]. The
broad peak centered at T ≈ 3 K indicates the onset of short-
ranged magnetic correlations. Furthermore, both data sets
show a small kink at 500 mK. This feature is consistent with
a crossover in the same temperature regime observed in muon
spin resonance measurements where the spin fluctuation rate
becomes constant and the system enters a low-temperature
phase of persistent slow dynamics [33]. We, therefore, in-
terpret this kink as crossover into a quantum spin-liquid
phase. The two data sets differ somewhat in the sharpness
of the kink at 500 mK, which indicates a small sample de-
pendence of this feature (possibly due to differently ther-
malized samples). Most importantly, no lambdalike anomaly
indicative of long-range magnetic order is observed down to
the lowest measured temperature of 37 mK. Remarkably, the
low-temperature data (and also the lowest data points of the
high temperature measurement) exhibit an intriguing almost
perfect linear behavior of the heat capacity below 500 mK.
An enlarged view of the heat capacity in this temperature
regime [Fig. 2(b)] reveals that the linear behavior persists
down to approximately 100 mK and shows a slight decrease
of the slope for lower temperatures. This linear dependence
is reminiscent of fermionic spinon quasiparticles and will
be discussed in more detail in Sec. III E. The heat capacity
was fitted to the power-law expression Cp = γ T β , where β

is the power of temperature T and γ is the proportionality
constant. Assuming a linear specific heat (β = 1) such as
that shown by the black line in Fig. 2(b) we get the value
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FIG. 2. (a) Measured heat capacity of Ca10Cr7O28 in an extended
temperature range. Shown are two different data sets as described
in Sec. II A. The black line indicates the approximate linear behav-
ior at low temperatures. (b) Enlarged view of the low-temperature
behavior of the measured heat capacity (relaxation/continuous
heating method). Several fits are shown: Linear temperature
dependence as obtained for an intact Fermi surface (black line),
s-wave-pairing model with a k-independent gap �s = 0.039 meV
(gray dashed line), and f -wave-pairing model with the gap func-
tion in Eq. (13) using � f = 0.039 meV (blue line). Inset: Heat-
capacity data in a double-logarithmic plot. For comparison, the
black line shows a ∼T 2 temperature dependence. (c) Low-energy
spinon band structure for the f -wave-pairing model in Eq. (13)
with � f = 0.039 meV. The energy regimes which lead to a linear
and quadratic temperature dependence of the heat capacity are
indicated.

FIG. 3. Inelastic neutron-scattering data of Ca10Cr7O28. [(a)–(d)]
Constant energy slices as a function of the momentum transfer in
the kagome bilayer plane. The black (red) hexagons indicate the
boundaries of the first (extended) Brillouin zone. The energy transfer
is indicated in each plot. [(e) and (f)] Energy versus momentum
slices along two high-symmetry directions within the kagome bilayer
plane. The two momentum cuts are illustrated by the gray lines in
(d). Note that the color scale is different in each subfigure. The
sharp features appearing in red outside the color scale are phonons
dispersing from nuclear Bragg peaks. Note that the constant energy
slices in (a) and (b) were measured with a final energy of Ef =
2.5 meV, which leads to an overall lower intensity compared to the
constant energy slices in (c) and (d) measured with Ef = 3 meV.
For the energy versus momentum slices in (e) and (f) all data were
taken with Ef = 3 meV. Furthermore, the data in these two plots
were collected by integrating the signal over ±0.2 reciprocal lattice
units in directions perpendicular to the respective cuts.

of γ = 13−14 J/mol K2, if β is also fitted the best fit gives
β = 1.20(1) and γ = 16−17 J/mol K2.

Next, we present our new single-crystal inelastic neutron-
scattering data which we display as selected cuts in mo-
mentum and energy space. While Figs. 3(a)–3(d) show the
scattering signal for several fixed energies E , in Figs. 3(e)
and 3(f) we display slices as a function of energy along two
different momentum space directions [see Fig. 3(d) where
these momentum cuts are indicated by the gray lines]. Two
different contributions to the scattering cross section are im-
mediately evident. The sharp intense features (appearing in
red on our color scale) are acoustic phonons dispersing from
strong nuclear Bragg peaks. Note that the phonon scattering
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illustrates the sharpness of the q resolution. The broad diffuse
signal of intermediate intensity (green on our color scale)
has a |q| dependence consistent with the Cr5+ magnetic
form factor and hence measures the magnetic-scattering cross
section of Ca10Cr7O28. The latter is directly proportional to
the dynamical spin-structure factor S (q, E ), which we will
investigate theoretically in Sec. III.

The spin excitation spectrum S (q, E ) exhibits several
interesting features, some of which were already described
in Ref. [33]. First, the scattering signal is divided into two
energy bands with a region of weak intensity separating
them. The low-E band [Figs. 3(a) and 3(b)] extends to energy
transfers up to 0.6 meV while the high-E band [Figs. 3(c) and
3(d)] spreads between 0.8 and 1.4 meV. The separation of the
response into these bands is most evident from the energy-
momentum slices of Figs. 3(e) and 3(f). We find sizable
scattering intensities down to the lowest accessible energies
of 0.15 meV, which gives an upper bound for the system’s spin
gap and possibly indicates a gapless spin excitation spectrum.
At these energies the intensities are centered around the �

point as seen in Fig. 3(a). Increasing the energy within the
low-E region, the response disperses from the � point to the
boundary of the first Brillouin zone (black hexagons in Fig. 3).
Within the experimental resolution this dispersion appears
to be linear with energy which manifests in a V-shaped
onset of intensity dispersing from the � point, see Figs. 3(e)
and 3(f). The magnetic response in the upper band is found
to be fundamentally different with intensity concentrated
around the boundary of the extended Brillouin zone (which
is identical to the fourth Brillouin zone illustrated by the
red hexagons in Fig. 3). Within the upper band the intensity
varies but the overall shape of S (q, E ) remains almost
unchanged. Most importantly, neither of the two regimes
shows sharp magnetic excitation modes as would be expected
for conventional magnetically ordered states. In addition to
the results in Fig. 3 we show the full neutron-scattering data
for further fixed energies in the Appendix.

III. THEORETICAL MODELING

A. General parton description of quantum spin liquids

In this section, we develop and discuss a microscopic
model for the magnetic excitations of Ca10Cr7O28 which
qualitatively reproduces the measured data presented in the
previous section and, hence, allows for additional insights into
the fundamental quasiparticles of this compound. Particularly,
due to strong experimental evidence, we base the following
considerations on the assumption that Ca10Cr7O28 realizes
a quantum spin-liquid ground state. We shall, therefore, in-
terpret the linear heat capacity and the diffuse scattering in
neutron experiments as signatures of spinons which represent
the elementary spinful excitations in a quantum spin liquid
[2,3,40,41]. Before we discuss Ca10Cr7O28 more specifically,
we first briefly review some general properties of spinon
excitations in quantum spin liquids and explain how these
quasiparticles can be theoretically modeled.

Spinons can generally be viewed as half of a physi-
cal �S = 1 spin flip and are therefore referred to as frac-
tional quasiparticles. This property is most conveniently

expressed in a parton picture where spinons are mod-
eled by spinful fermionic [40,42–44] or bosonic [43,45–47]
creation/annihilation operators f †

iα , fiα , where i is the site
index and α =↑,↓ labels the spin degree of freedom. The
fractional property of spinons implies that the physical spin
operator Si becomes a composite object when expressed in
terms of spinon operators. This is described by the relation

Sμ
i = 1

2

∑
αβ

f †
iασ

μ
αβ fiβ, (1)

where σμ with μ = x, y, z denotes the Pauli matrices. While
this representation is valid for both bosonic and fermionic
partons, we will use a fermionic description in the following.
This is because the experimental neutron data points toward
a gapless quantum spin liquid (or a very small gap size)
which can only be described by fermionic spinons. Gapless
bosonic spinons, in contrast, would inevitably condense,
which would yield a magnetically ordered state. Fermionic
spinons are also in agreement with the measured linear heat
capacity. Note that Eq. (1) only represents a valid description
of the spin operator in the subspace of single fermion
occupancy on each site, i.e., for ni ≡ f †

i↑ fi↑ + f †
i↓ fi↓ = 1.

Most importantly, in a quantum spin liquid there cannot be
long-range confining forces between spinons which would
bind them into conventional �S = 1 magnetic excitations
(such as spin waves of a classical magnet). Hence, in a first
simple approach, the dynamics of spinons may be described
by a general model of free fermions [40,44]

H =
∑

i j

(
ti j

∑
α

f †
iα f jα + �i j fi↑ f j↓ + H.c.

)
+μ

∑
i

ni. (2)

Due to the experimental observation that Ca10Cr7O28 shows
mostly isotropic magnetic response [33], we will restrict to
spin-independent (i.e., spin isotropic) hopping ti j and singlet
pairing �i j (however, also see the discussion in Sec. III D). On
the level of such mean-field-like quadratic Hamiltonians, the
exact constraint is usually replaced by the simpler averaged
constraint 〈ni〉 = 1 which is equivalent to half-filled spinon
bands. It is crucial to emphasize that Eq. (2) does not yet fully
describe a quantum spin liquid. The key missing ingredient
which turns a simple model of free fermions into a low-energy
effective theory of a quantum spin liquid are gauge degrees
of freedom, which correspond to phase fluctuations in
the hopping and pairing amplitudes ti j , �i j giving rise to
additional spinless excitations called visons or fluxes [48–53].
Furthermore, promoting the chemical potential μ to a fluctu-
ating field (which acts as the time component of a gauge field)
allows us to fulfill the constraint ni = 1 exactly instead of just
implementing it on average. Unfortunately, the coupling of
the fermions to emergent gauge fields results in a complicated
many-body theory which (at least in the generic case) cannot
be easily treated. There are, however, experimental indications
that the gauge excitations in Ca10Cr7O28 are gapped while the
spinon excitations are gapless (see Sec. III E). In this so-called
Z2 spin-liquid scenario [48–50] the gauge fluctuations take
the simplest possible form and only amount to variations
in the sign of the hopping/pairing amplitudes (as described
by the replacement ti j → σi jti j , �i j → σi j�i j with the gauge
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field σi j = ±1). As a consequence, the coupling of the
spinons to gapped vison excitations would not modify the
fermionic theory in Eq. (2) at low energies such that this
simple model would still be qualitatively correct (gapped
visons can at most induce short-range interactions between
spinons). For these reasons, we will mostly neglect the effect
of visons in our considerations and only qualitatively discuss
their possible impact at the end of Sec. III D.

With these arguments, the remaining theoretical task
amounts to identifying a model of free spinons [such as
Eq. (2)] which correctly reproduces the experimentally mea-
sured spin-structure factor and the specific heat presented in
Sec. II B. It is crucial to emphasize that due to the emer-
gent nature of spinons, there is usually no simple relation
between the bare interactions in Table I and the effective
parton model such that at this point we cannot make direct use
of these couplings (except of the fact that the ferromagnetic
interactions dominate over the antiferromagnetic ones, see the
discussion below). We, hence, construct an effective parton
theory for Ca10Cr7O28 within a more phenomenological and
experimentally motivated approach.

As explained in more detail below, the spin-structure factor
is given (up to weight factors) by the two-spinon spectrum
of Eq. (2). While it is rather straightforward to diagonalize
Eq. (2) with given amplitudes ti j , �i j , μ and calculate the cor-
responding two-spinon excitations, the reverse, i.e., deducing
a free fermion model from the spin-structure factor, is quite
challenging. In previous works attempting a similar fitting
for other compounds (see, e.g., Refs. [10,54–59]), the lattice
structures and magnetic couplings were often comparatively
simple and it was sometimes even sufficient to assume a single
spatially uniform spinon-hopping/-pairing amplitude [10]. In
the case of Ca10Cr7O28, however, there are many inequivalent
ferromagnetic and antiferromagnetic nearest-neighbor bonds
on which the hopping and pairing amplitudes ti j , �i j may
all be different. Hence, the most direct approach of simply
testing a large number of free fermion models and searching
for agreement between the measured and calculated spin-
structure factor represents a rather cumbersome task. Further-
more, in contrast to the short-range exchange couplings Ji j of
the original spin Hamiltonian and the amplitudes ti j and �i j

may also be longer ranged. Another complication arises due
to the inherent gauge freedom of a parton theory which allows
for a so-called projective implementation of symmetries. As a
consequence of these gauge properties, the free fermion model
does not need to obey all spatial symmetries of the original
spin Hamiltonian, leading to an even wider class of allowed
hopping and pairing amplitudes (a classification of all possible
free spinon models is achieved within the projective symmetry
group approach [44]). In total, this results in a fitting problem
with a large number of free parameters and a complicated
map between such parameters and the target function (i.e., the
spin-structure factor).

Here we try to avoid the aforementioned complications by
not attempting to systematically explore all possible parame-
ter settings for ti j and �i j . Rather, we will show below that
based on physical arguments and experimental insights it is
possible to construct a relatively simple and general spinon
model which reproduces the key features of the measured
spin-structure factor and specific heat.

B. Effective spinon model for Ca10Cr7O28

In the first step of developing a microscopic spinon model
for Ca10Cr7O28 we will, for simplicity, neglect all pairing
terms �i j . This results in a model for a so-called U (1) spin
liquid which is characterized by the fact that their low-energy
effective theory in Eq. (2) is invariant under gauge transfor-
mations fiα → eiϕ fiα , where eiϕ is a complex U (1) phase.
In Sec. III E), we will explain how the pairings need to be
reintroduced to obtain the best agreement with experimental
results. Such pairings may turn the U (1) spin liquid into a
Z2 spin liquid, which guarantees that the flux excitations are
gapped.

An important piece of information about Ca10Cr7O28 is
that the strongest couplings in its microscopic spin Hamilto-
nian are ferromagnetic and act within triangular units. Since
these ferromagnetic couplings are considerably larger than
the antiferromagnetic ones the three spins on such triangles
add up equally to form (approximate) spin-3/2 entities which
represent the system’s effective magnetic degrees of freedom
at low energies. To account for this in our parton picture we
likewise assume that the three spinon operators on a ferro-
magnetically coupled triangle symmetrically combine into an
effective low-energy fermionic degree of freedom csIα via

csIα = 1√
3

( fI1α + fI2α + fI3α ). (3)

Here we have introduced a new notation which replaces the
site label i by two indices I and κ where I denotes the
ferromagnetically coupled triangle the site i belongs to and
κ = 1, 2, 3 labels the sites within this triangle, i.e., we replace
fiα → fIκα . Furthermore, the index “s” in csIα stands for
the symmetric combination of spinon operators on triangle
I . Apart from these low-energy degrees of freedom there
are two more linear independent spinon combinations which
model energetically higher spin-1/2 excitations where the
three spinons on triangle I no longer equally add up. We label
these combinations by a1 and a2 and define them by

ca1Iα = 1√
2

( fI1α − fI2α ),

ca2Iα = 1√
6

( fI1α + fI2α − 2 fI3α ). (4)

For the following considerations it will be convenient to il-
lustrate the ferromagnetically coupled triangles of the bilayer
kagome system by projecting them into one plane effec-
tively resulting in a decorated honeycomb lattice, shown in
Figs. 1(b) and 1(c). In this way of drawing the lattice, the
bonds between nearest-neighbor triangles (which belong to
different planes) are the ones with ferromagnetic interlayer
couplings (red bonds) and second-neighbor triangles (which
lie in the same plane) are connected by antiferromagnetic
intralayer couplings [they are not shown in Fig. 1(b) for clarity
of the figure]. Also note that the unit cell consists of six
sites formed of two nearest-neighbor ferromagnetic triangles.
Below, we will label the six sites of a unit cell by an index κ̃

where the tilde distinguishes it from the index κ which runs
only over the three sites of one ferromagnetic triangle [one
green point in Fig. 1(c)].
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The central conceptual step of the following considerations
is to formulate our spinon model in terms of the effective
degrees of freedom csIα , ca1Iα , ca2Iα instead of the original
operators fIκα . A generic fermionic hopping model in these
degrees of freedom with hopping terms ranging up to second-
neighbor triangles can then be written as

H =
∑
〈IJ〉,α

[
t1sc

†
sIαcsJα + t1a

(
c†

a1Iαca1Jα + c†
a2Iαca2Jα

)]

+
∑

〈〈IJ〉〉,α

[
t2sc

†
sIαcsJα + t2a

(
c†

a1Iαca1Jα + c†
a2Iαca2Jα

)]
+ H.c.

+
∑
Iα

[
μsc

†
sIαcsIα + μa

(
c†

a1Iαca1Iα + c†
a2Iαca2Iα

)]
. (5)

The degrees of freedom in this Hamiltonian are formulated
in terms of triangular units I , J , where 〈IJ〉 (〈〈IJ〉〉) denote
nearest- (second) neighbor ferromagnetic triangles, i.e., t1s

and t1a (t2s and t2a) are nearest- (second) neighbor honeycomb
hopping amplitudes for the low-energy symmetric and high-
energy asymmetric spinon degrees of freedom, respectively
[pairs of points labeled “t1a” and “t2s” in Fig. 1(c) are ex-
amples for pairs of triangles 〈IJ〉 and 〈〈IJ〉〉, respectively].
Furthermore, μs and μa are chemical potentials acting on
the two types of spinons. We emphasize that since all three
sites in a ferromagnetic triangle are symmetry equivalent the
Hamiltonian must be invariant under the exchange of indices
a1 ↔ a2. In this case, the Hamiltonian does not depend on the
precise definition of the high-energy degrees of freedom in
Eq. (4) as long as the c operators all correspond to orthogonal
states.

A central requirement for the model in Eq. (5) is that μa

is large enough to ensure a clear separation of low-energy
and high-energy spinon modes as is visible in the measured
spin-structure factor showing two energy intervals with strong
signal and a relatively weak response in between. As will
become clear in the next subsection, under this condition the
model in Eq. (5) already reproduces some key aspects of the
experimental neutron data irrespective of the precise choice of
the parameters t1/2s/a and μs/a.

C. General weight distribution of the dynamical
spin-structure factor

We start discussing the dynamical spin-structure factor,
which is defined by

S (q, E ) ≡ Szz(q, E )

= 1

N

∫ ∞

−∞
dt

∑
i j

eiEt eiq(ri−r j )
〈
Sz

i (t )Sz
j (0)

〉
, (6)

where N is the total number of sites and ri denotes the
position of site i [because we assume here that the system
is spin isotropic we have S (q, E ) = Sxx(q, E ) = Syy(q, E ) =
Szz(q, E )]. Particularly, we analyze some general properties
of the weight distribution of S (q, E ) in energy and momentum
space for the spinon model in Eq. (5) and show that it
qualitatively matches the experimental results even without
fine-tuning of the hopping parameters.

To explicitly calculate the dynamical spin-structure factor
for an effective parton model, we need its eigenenergies (i.e.,
free spinon-band dispersion) which for Eq. (5) we denote by
εa(q). Here a is a band index with values a = 1, 2, . . . , 6
due to the six-atomic unit cell. Note that a = 1, 2 labels
the low-energy bands resulting from csIα while a = 3, 4, 5, 6
corresponds to the high-energy bands due to ca1Iα and ca2Iα .
Inserting the spin representation of Eq. (1) into Eq. (6) and
expanding the expectation value of the fermionic operators
one finds

S (q, E ) = π

24

∑
a,b

∫
d2k

(2π )2
f (k, q, a, b)[na(k) − nb(k + q)]

× δ[εb(k + q) − εa(k) − E ], (7)

where f (k, q, a, b) is a weight function to be discussed further
below and na(k) is the occupation number of an eigenstate of
Eq. (5) with band index a and wave vector k. From Eq. (7), the
spin-structure factor can be interpreted as a spinon particle-
hole excitation spectrum taking into account all processes
where a fermion in the occupied state with energy εa(k) is
destroyed and a fermion in the unoccupied state εb(k + q) is
created, leading to a contribution to S (q, E ) at the correspond-
ing momentum and energy transfers q and E = εb(k + q) −
εa(k), respectively. The contributions from such processes are
modulated with the weight function f (k, q, a, b) given by

f (k, q, a, b) =
∣∣∣∣∣
∑

κ̃

φ∗
aκ̃ (k)φbκ̃ (k + q)eiqRκ̃

∣∣∣∣∣
2

, (8)

where φaκ̃ (k) is the eigenstate of Eq. (5) at sublattice site
κ̃ , wave vector k, and band index a. Furthermore, Rκ̃ is the
position of the sublattice κ̃ within a unit cell, i.e., relative
to a fixed base point inside each unit cell. Since f contains
the overlap of the two wave functions involved in the spinon
particle-hole process, which can range from zero to 1, it has a
significant effect on the qualitative form of the spin-structure
factor. To quantify this effect, we discuss the momentum-
integrated weight function,

g(q, a, b) =
∫

d2k

(2π )2
f (k, q, a, b), (9)

to identify regions in q where the modulation due to f
enhances or suppresses the spin-structure factor. Particularly,
we consider the weight function gLL for all particle-hole
excitations between the two low-energy bands,

gLL(q) =
∑

a,b=1,2

g(q, a, b). (10)

Note that this function only has an effect on the spin-structure
factor if such particle-hole processes exist in the first place,
i.e., if the Fermi energy lies within these low-energy bands.
The latter assumption will turn out to be an important property
for the following considerations. Furthermore, we investigate
the weight function gLH for all particle-hole excitations be-
tween the low and high-energy bands

gLH(q) =
∑

a=1,2

∑
b=3,4,5,6

g(q, a, b). (11)
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FIG. 4. [(a) and (b)] Weight factors gLL(q) and gLH(q) of the dynamical spin-structure factor S (q, E ) as defined in Eqs. (7)–(11) for the
spinon-hopping amplitudes given in Eq. (12). Here gLL(q) (gLH(q)) is the total weight factor for all particle-hole excitation processes within
the low-energy bands formed by cs (between the low-energy bands formed by cs and the high-energy bands resulting from ca1 , ca2 ). Black
(red) dashed lines indicate the boundaries of the first (extended) Brillouin zone. (c) Spinon band structure for the same set of spinon-hopping
amplitudes [see Eq. (12)]. Low-energy (high-energy) bands are marked by the corresponding spinon operators cs (ca1 and ca2 ) they result
from. The red line marks the Fermi surface. Note that all bands are doubly degenerate. (d) Illustration of two different particle-hole excitations
around the Fermi surface with a given energy E . Process 1 shows an excitation from an occupied state (full black dot) with momentum k and
energy ε to an unoccupied state (open dot) with k + q, and ε + E for the minimal momentum transfer q which linearly depends on the energy
E . Process 2 is an example for a particle-hole excitation with larger momentum transfer.

Since we assume that the high-energy bands are unoccupied
in the ground state, particle-hole processes within these bands
do not need to be considered. Due to the orthogonality of
eigenmodes, it is clear from Eq. (8) that f (k, q = 0, a, b =
a) = 1 and f (k, q = 0, a, b �= a) = 0. Hence, gLL(q) has its
maximum at the � point (q = 0), while gLH(q) = 0 for q =
0. With the properties at q = 0 fixed, a closer numerical
inspection shows that even for finite q vectors gLL(q) and
gLH(q) are rather insensitive to the precise values of the
parameters t1/2s/a and μs/a in Eq. (5). As an example, we show
in Figs. 4(a) and 4(b) the quantities gLL(q) and gLH(q) for the
hopping amplitudes t1s = 0, t2s = 0.05 meV, t1a = 0.1 meV,
t2a = 0, μs = −0.1 meV, and μa = 0.9 meV (this parameter
setting will be considered further below). Particularly, gLL(q)
is found to be sizable everywhere inside the first Brillouin
zone but drops off rapidly beyond its boundaries. On the other
hand, gLH(q) is large in significant portions of q space (even
up to the edges of the extended Brillouin zone) except inside
the first Brillouin zone.

These properties have various important consequences
for the form of S (q, E ) obtained from the spinon model in
Eq. (5).

(i) At low energies where only bands with a, b = 1, 2
contribute in Eq. (7), i.e., the function gLL(q) determines
the general weight distribution, the spin-structure factor
is mainly concentrated inside or around the boundaries
of the first Brillouin zone. Furthermore, the orthogonality
of spinon eigenmodes yields f (k, q = 0, a = 1, b = 2) = 0,
which suppresses contributions to the spin-structure factor
around q = 0 stemming from particle-hole processes be-
tween the two low-energy bands. Combining both properties,
S (q, E ) inevitably shows a pattern of ringlike magnetic re-
sponse at low (but finite) energies which is approximately
distributed along the boundaries of the first Brillouin zone.
This behavior matches the experimental observation and will
be demonstrated more explicitly in the next subsection. Note
again that an important requirement for having particle-hole
processes within the low-energy bands a = 1, 2 in the first
place is that the Fermi level passes through these bands.

The Fermi surface which is formed with these bands is also
crucial for explaining the linear heat capacity and the low-
energy behavior of the spin-structure factor further discussed
in Sec. III D.

(ii) If μa is chosen sufficiently large, i.e., there is a
clear separation between spinon bands with a = 1, 2 and a =
3, 4, 5, 6, then a regime of low signal at intermediate energies
E , as observed experimentally, can be realized.

(iii) At high energies, the more-spread-out weight function
gLH(q) allows the dynamic spin-structure factor to be sizable
within large parts of reciprocal space also reaching out to the
edges of the extended Brillouin zone. This behavior again
matches the experimental finding.

In the next subsection we will demonstrate these properties
based on a numerical evaluation of Eq. (7) for a particular
choice of spinon-hopping parameters and spinon chemical
potentials.

D. Comparison with the measured spin-structure factor

The aforementioned weight factors gLL(q) and gLH(q)
largely determine the form of the dynamical spin-structure
factor and allow to reproduce some of its key features for a
wide range of amplitudes t1/2s/a and μs/a in Eq. (5). However,
the identification of the optimal set of these six parameters
for which the agreement between theory and experiment is
best still represents a nontrivial task. Moreover, systematically
justifying such amplitudes, i.e., developing a microscopic
theory of how these parameters arise from the exchange
couplings is, likewise, very difficult and goes beyond the
current understanding of quantum spin liquids. We will not
try to pursue these directions here. Rather, we will show that
for the particular set of amplitudes depicted in Fig. 1(c) and
given by

t1s = 0, t2s = 0.05 meV, t1a = 0.1 meV, t2a = 0,

μs = −0.1 meV, μa = 0.9 meV (12)

the properties (i), (ii), and (iii) of Sec. III C are fulfilled,
leading to an approximate agreement with experimental
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observations. An illustration of the corresponding spinon dis-
persion is plotted in Fig. 4(c). We wish to emphasize again
that we do not claim that these exact values are realized in
Ca10Cr7O28 since there are wide parameter regions which
yield similar (or possibly even better) agreement. Our aim
here is to demonstrate that based on the considerations lead-
ings to Eq. (5) the overall form of the measured spin-structure
factor can be explained rather straightforwardly in an effective
spinon picture. While the amplitudes in Eq. (12) do not result
from a systematic optimization they can still be motivated
based on various physical arguments and observations:

(a) As already mentioned in point (i) of Sec. III C the
observed ringlike signal in S (q, E ) at small energies may
be modeled by particle-hole excitations within the bands
with a = 1, 2 and the linear heat-capacity points toward the
existence of a Fermi surface. The simplest way of obtaining
a sizable Fermi surface in an effective honeycomb model is
via dominant second-neighbor t2s hoppings. This is in contrast
to dominant first-neighbor honeycomb hoppings t1s leading to
Fermi points from spinon Dirac cones which would not yield
the desired particle-hole processes. For simplicity we set the
first-neighbor amplitude to zero, t1s = 0.

(b) In the experimental spin-structure factor the two energy
regions of strong signal, i.e., around 0.3 meV and around
1 meV, are similar in magnitude. In our spinon model, how-
ever, the low-energy region arises from particle-hole excita-
tions within the spinon bands with a = 1, 2, while the high-
energy response results from excitations between bands with
a = 1, 2 and a = 3, 4, 5, 6. Hence, the latter process involves
more spinon bands which typically leads to more possibilities
of particle-hole excitations and, therefore, to higher intensities
of S (q, E ) at large energies as compared to small energies.
This particularly occurs when the spinon bands with a =
3, 4, 5, 6 are degenerate (or energetically nearby) such that
two-particle processes with the same q and E but different
a = 3, 4, 5, 6 all add up. To avoid such effects, we make sure
that these bands are well separated from each other, which is
realized when setting t1a �= 0 and t2a = 0, leading to a spinon
Dirac cone dispersion in the higher bands. [We note, however,
that since ca1 and ca2 need to appear symmetrically in Eq. (5) it
cannot be avoided that pairs of high-energy spinon bands with
a = 3, 4 and a = 5, 6, respectively, are always degenerate.]

(c) The size of the remaining nonvanishing spinon param-
eters t2s, t1a, μs, and μa are adjusted such that the extent
of the two high-intensity regions of S (q, E ) as well as the
size of apparent gapped region between them comes out
approximately correct.

We start discussing the low-energy region of the calculated
spin-structure factor [Figs. 5(a) and 5(b) for E = 0.15 meV
and E = 0.25 meV, respectively] and compare it with the
measured data [Figs. 3(a) and 3(b) for the same energies].
As can be seen, the combined effects of the weight function
gLL(q) and the suppressed response around the � point due
to the argument given in Sec. III C (i) lead to a ringlike
pattern in S (q, E ). Furthermore, as is evident from the q space
cuts along two momentum directions in Figs. 5(e) and 5(f),
the diameter of the rings increases linearly with energy and,
hence, the calculated spin-structure factor exhibits a similar
characteristic V shape as the experimental data in Figs. 3(e)
and 3(f). This linear onset of response can be directly

FIG. 5. Calculated spin-structure factor for the effective spinon
model in Eq. (5) using the representation of S (q, E ) from Eq. (7)
and the spinon parameters in Eq. (12). The plots (a)–(d) show the
spin-structure factor in momentum space for the same fixed energies
E as for the experimental neutron data in Figs. 3(a)–3(d). Black (red)
dashed lines indicate the boundaries of the first (extended) Brillouin
zone. Panels (e) and (f) show S (q, E ) as a function of energy along
two momentum space directions to compare with Figs. 3(e) and
3(f), respectively. The data in (a)–(d) have been convoluted with a
Gaussian distribution function to match the experimental resolution
while in (e) and (f) the finite-energy resolution and perpendicular q
integration have not been taken into account. Note that the magnetic
form factor of the Cr5+ ions is not included in these plots.

explained by the presence of a spinon Fermi surface in our
parton model around which the spinons have an approximate
linear dispersion. As a consequence, any particle-hole excita-
tion near the Fermi surface with a given energy E (i.e., where
a spinon from an occupied state with momentum k and energy
ε changes into an unoccupied state with momentum k + q
and energy ε + E ) requires at least a momentum transfer |q|
which linearly depends on the energy, i.e., E = vsp|q|, where
vsp is the spinon Fermi velocity. For an illustration of such
particle-hole excitations, see Fig. 4(d). We, hence, suggest
that the V-shaped scattering signal at low q and E is a direct
consequence of a spinon Fermi surface.

Moving up in energy, the dynamical spin-structure factor
exhibits a regime of relatively weak signal at around 0.6 meV
followed by stronger response which reaches up to approxi-
mately 1.4 meV, see Figs. 5(e) and 5(f). As shown in Figs. 5(c)
and 5(d), in this latter regime, the strong signal extends over
large parts of reciprocal space (except for small q) and,
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particularly, fills the area between the first and the extended
Brillouin zones. Note that our calculated spin-structure factor
in this high-energy region shows a rather complex pattern
of intensity which varies on smaller momentum and energy
scales [see Figs. 5(c)–5(f)] and which sensitively depends on
the precise choice of parameters in the effective spinon model.
A detailed comparison of such features with the measured
spin-structure factor data would possibly allow for more
insights into the spinon band structure; however, given the
uncertainties of these parameters and the limited experimental
resolution, we only discuss the more extended features here.

While our calculated spin-structure factor reproduces some
overall characteristic features of the measured data, pro-
nounced differences are also revealed. Most obviously, the
measured signal spreads out into much larger regions in
reciprocal space than the calculated response. For example,
the experimental spin-structure factor along the momentum
direction M-K-�-K-M and at small energies E [see Fig. 3(f)]
remains large throughout this line, while our spinon model
predicts a rapidly decaying signal for increasing |q| [see
Fig. 5(f)]. Such a “smearing” of the measured data as com-
pared to our calculated results may be a consequence of the
neglect of gauge fields in our theoretical modeling which man-
ifest as phase fluctuations of all amplitudes t1/2s/a, μs/a; see
Sec. III A. These gauge degrees of freedom (whose excitations
are called visons or fluxes) represent an essential ingredient
of effective theories for quantum spin liquids. While the full
theory consisting of fermionic partons coupling to emergent
gauge fields cannot be easily solved, special cases still allow
for a closer investigation; see, for example, Ref. [53] studying
the effects of gauge fluctuations in a purely antiferromagnetic
monolayer kagome Heisenberg system. Such works indicate
that gauge fluctuations lead to a smearing of the spin-structure
factor becoming more spread-out in momentum space. We,
therefore, propose that the inclusion of gauge fluctuations in
our model might yield a better agreement between the cal-
culated and measured spin-structure factor. Such an analysis,
however, goes beyond the scope of the present work.

Differences between the measured and calculated data
are also pronounced in the high-energy region where the
measured response shows a rather uniform distribution in the
entire q space. In contrast to our calculations which yield
a vanishing spin-structure factor at q = 0, the experimental
data even remains finite at the � point. This property cannot
be entirely explained by a smearing due to flux excitations,
since the frequency-integrated spin-structure factor at q = 0
is proportional to 〈S2

tot〉, where Stot = ∑
i Si is the total spin.

Hence, under the assumption that 〈Stot〉 = 0 (i.e., the system
does not order with a net ferromagnetic moment), a finite
spin-structure factor at q = 0 indicates that Stot fluctuates
and cannot be conserved. This points toward the existence
of spin-anisotropic interactions which are not reflected in our
isotropic parton model. Since the measured magnetic sus-
ceptibility is—to a good approximation—independent of the
field direction [33] we still conclude that such spin-anisotropic
interactions are small compared to the Heisenberg couplings.

Given the many possibilities of perturbing our parton
model with spin-anisotropic terms, including triplet spinon-
hopping and triplet spinon-pairing terms (each of which has
three components and may not only be restricted to nearest

neighbors), we did not attempt to model the finite weight of
the spin-structure factor at q = 0 in the high-energy region.
The overall mechanism of obtaining a finite response at the
� point within our parton theory is still worth explaining:
As long as the fermionic model is isotropic, all spinon
bands are spin degenerate. Particle-hole processes with zero-
momentum transfer between any two bands contribute to the
spin-structure factor with the weight factor f (k, q = 0, a, b �=
a) [see Eq. (8)], which vanishes exactly due to the two
involved orthonormal spinon states. Hence, the spin-structure
factor of a spin-isotropic parton theory cannot be finite at
q = 0. However, in the presence of spin-anisotropic parton
terms the spinon bands may become spin split. Assuming,
e.g., that at a certain momentum k a pair of nondegenerate
spinon bands has spin polarizations ↑ and ↓ with respect
to the z axis (or, equivalently, any other polarization axis) a
q = 0 particle-hole process between these states still has a
vanishing contribution to the zz component Szz(q = 0, E ) of
the spin-structure factor due to the above orthogonality argu-
ment. However, this argument does not hold for the transverse
components Sxx(q = 0, E ) and Syy(q = 0, E ), which may,
hence, become finite.

E. Heat capacity and spinon pairing

The above approach of modeling the measured spin-
structure factor naturally leads to a spinon-hopping model
with a Fermi surface. A spinon Fermi surface is again con-
sistent with the linear heat capacity at low temperatures. Yet
the picture developed so far is problematic due to two reasons:

(i) When introducing gauge fields in our pure fermionic
hopping model, the resulting theory has a U (1) gauge struc-
ture, implying that the gauge excitations are gapless [3,60].
These low-energy excitations would give an additional contri-
bution to the heat capacity at low temperatures changing the
linear behavior to a T 2/3 dependence [61] which is not ob-
served experimentally. At the lowest accessible temperatures
(i.e., T < 0.1 K) the measured data rather seem to have a T 2

behavior; see the inset of Fig. 2(b), showing the heat capacity
in a double-logarithmic plot.

(ii) As explained in Sec. III A, a free spinon model as
shown in Eq. (2) is subject to the constraint of half filling,
i.e., 〈ni〉 = 1. However, since the Fermi level cuts through the
lowest two of six bands, our model is less than half-filled.

Fortunately, both problems may be simultaneously solved
by introducing spinon-pairing terms �i j in Eq. (2). First,
spinon pairing breaks down the gauge structure from U (1)
to Z2. This gaps out the flux excitations which therefore
do not contribute to the heat capacity at sufficiently low
temperatures. Second, a spinon model with finite pairing may
fulfill the parton constraint even if the corresponding model
with all �i j set to zero is not half-filled. To be more precise,
the generalized constraint in the presence of pairing may be
formulated as ∂Eground/∂μ = 0, where Eground is the ground-
state energy of Eq. (2) [44,62].

These arguments indicate that pairing is a necessary ingre-
dient in our effective spinon theory. We will now demonstrate
that its inclusion also allows for a more accurate modeling of
the heat capacity at low temperatures. It is important to em-
phasize, however, that a finite spinon pairing does not imply
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that the system becomes a real superconductor, since spinons
do not carry charge. In the following, we take the measured
heat-capacity data literally and strictly assume that it is of pure
spinon origin in the temperature regime up to ≈0.5 K (i.e., we
exclude possible contributions from phonons or flux excita-
tions and also neglect impurity scattering). We first reiterate
that under this assumption an intact Fermi surface would lead
to a perfect linear heat capacity. While its measured behavior
is indeed mostly linear in the temperature regime T � 0.5 K,
a small reduction from linearity is observed for T � 0.1 K,
see Fig. 2(b). This can be interpreted as a signature of pairing
in the low-energy spinon band which gaps out the Fermi
surface (at least partially) and, as a consequence, reduces the
density of states and heat capacity at energies/temperatures
below the gap. If chosen sufficiently small, spinon pairing
could, hence, explain this low-temperature deviation from
linearity but at the same time keep the almost-perfect linear
behavior at 0.1 K � T � 0.5 K intact (a similar scenario for
triangular lattice compounds is discussed in Ref. [63]). As
we will see below, the corresponding pairing amplitudes are
on an energy scale much smaller than the minimal energy
≈0.15 meV down to which the spin-structure factor is mea-
sured. The inclusion of pairing, therefore, has a negligible
effect on our results in the last subsection and does not affect
the conclusions already made.

Given that the spinon-hopping amplitudes discussed in
Sec. III D are already subject to large uncertainties we will not
attempt here to determine explicit pairing parameters �i j and
to fine-tune them according to the constraint ∂Eground/∂μ = 0.
Rather, we will concentrate on the low-energy spinon band
and discuss the general momentum space dependence of the
pairing gap which yields the best agreement with the mea-
sured data. Two pairing scenarios seem possible: First, pairing
may be of s-wave type [i.e., with a constant gap function
�(k) ≡ �s in reciprocal space] gapping out the entire Fermi
surface which leads to an activated behavior in the heat capac-
ity, i.e., C(T ) ∝ exp[−�s/(kBT )] at the lowest temperatures
T � �s. Second, pairing may gap out the Fermi surface
except for discrete nodal points. In this case, the threefold
in-plane rotation symmetry of the system suggests f -wave
pairing, which is characterized by six gapless Dirac points, see
Fig. 2(c). An f -wave-pairing gap has the momentum structure

�(k) = � f | sin(3ϕk + ϕ0)|, (13)

where ϕk is the polar angle in momentum space (for carte-
sian coordinates) with tan(ϕk ) = ky/kx and ϕ0 is a possible
constant offset. In Fig. 2(b), we compare the measured data
with the best fits for both cases [making use of Eq. (13) with
� f = 0.039 meV in the case of f -wave pairing] and also
show the strictly linear behavior for an intact Fermi surface,
i.e., without any pairing (black line). As can be seen, the
f -wave-pairing scenario yields the best agreement with the
experimental data and, therefore, seems most reasonable un-
der the above assumptions. The resulting f -wave low-energy
spinon bands are depicted in Fig. 2(c). Note that the Dirac
cones yield a quadratic behavior of the heat capacity at the
lowest temperatures T � � f in agreement with the experi-
mental data in the inset of Fig. 2(b). The spinon dispersion
can be thought of as originating from the intersection of two
bands (i.e., the original spinon band from pure hopping and

its particle-hole reversed version) which are gapped out along
the Fermi surface with a gap according to Eq. (13). Note that
the results of our fits are independent of the diameter of the
initial Fermi surface and the Fermi velocity which only enter
as an overall scaling factor of the heat capacity.

We wish to conclude this analysis with a remark of caution:
While our effective spinon model for Ca10Cr7O28 explains
the experimental heat capacity and spin-structure factor on a
qualitative level, it relies on assumptions which seem phys-
ically well founded but are hard to prove rigorously based
on currently available experimental data. This, particularly,
applies to the assumption of the pure spinon origin of the
measured low-energy/low-temperature data which we hope
will be further scrutinized in future experimental studies.

IV. CONCLUSION

We have presented new experimental lower-temperature
heat capacity and highly detailed dynamical spin-structure
factor data for the quantum spin-liquid candidate material
Ca10Cr7O28. The measured heat capacity C(T ) shows an
almost-perfect linear temperature dependence in the range
0.1 K � T � 0.5 K. While this type of behavior has also
been (approximately) observed in other proposed quantum
spin-liquid materials [29–31] and is often interpreted as a sig-
nature of fermionic spinon excitations with a Fermi surface,
in Ca10Cr7O28 the linear dependence appears remarkably
accurate and occurs within an extended temperature interval.
The overall very diffuse scattering signal of the measured
dynamical spin-structure factor S (q, E ) without any well-
defined spin-wave excitations further supports the existence
of a quantum spin-liquid ground state with spinon excita-
tions. Two energetically well-separated bands of scattering
are observed in the spin-structure factor. A lower regime of
magnetic response shows broad ringlike structures around the
edges of the first Brillouin zone whose diameter increases
with increasing energy. In the high-energy regime of magnetic
scattering the intensities are located at larger momenta q
reaching out to the edges of the extended Brillouin zone.

Guided by these observations, we model the system’s
fundamental spinful excitations by fermionic spinons and
develop a microscopic theory for the dynamics of these quasi-
particles. The key conceptual property of our model is that the
three spinons on a ferromagnetically coupled triangle symmet-
rically combine into new effective spinon degrees of freedom
(which we denote by cs operators), accounting for the strong
ferromagnetic interactions on such bonds and giving rise
to the low-energy regime of scattering in the spin-structure
factor. We further introduce two asymmetric combinations of
spinons (called ca1 and ca2 ) to model the high-energy behavior
of the spin-structure factor. We show that already under rather
weak assumptions, such as the existence of a spinon Fermi
surface in the bands formed by cs, a generic hopping model
in our new spinon operators correctly describes the different
patterns of scattering in the aforementioned two regimes of the
dynamical spin-structure factor. Moreover, the existence of a
spinon Fermi surface is also crucial in explaining the observed
V-shaped onset of signal in S (q, E ) at small energies and
the linear temperature dependence of the heat capacity. The
simultaneous explanation of various different experimental
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FIG. 6. Full inelastic neutron-scattering data for Ca10Cr7O28 at various fixed energy transfers as indicated in each subplot. See text for
details.

observations by a spinon Fermi surface hence provides strong
evidence for such a behavior.

We further provide various arguments for the need of
additional weak spinon-pairing terms in our spinon theory,
resulting in a quantum spin liquid with an effective Z2

gauge structure. We demonstrate that a proper choice for the
spinon-pairing gap allows us to correctly describe a deviation
of the heat capacity from linearity at the lowest accessible
temperatures. Putting together all experimental evidence and
theoretical arguments, we propose a Z2 spin-liquid scenario
for Ca10Cr7O28 with an almost intact spinon Fermi surface
that is only weakly gapped out by small f -wave spinon-
pairing terms, leaving behind six nodal Dirac points.

We conclude that the presented experimental data on
Ca10Cr7O28 allows for a remarkably comprehensive and co-
herent description of its hypothetical spin-liquid ground state,
representing a rare situation compared to other spin-liquid
candidate materials currently investigated. Concerning future
directions of research, it will certainly be desirable to test our

effective spinon theory with further experimental probes such
as low-temperature susceptibility and thermal conductivity
measurements. From the theory side, the precise effect of
gauge excitations (visons) remains an open question which,
however, goes beyond the scope of this paper. While their
inclusion inevitably results in a nontrivial many-body prob-
lem, at this stage it might already be illuminating to account
for their effects in a perturbative approach. We leave such
investigations for future studies.
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APPENDIX: FULL NEUTRON-SCATTERING DATA

In Fig. 6 we present the full inelastic neutron-scattering
dataset. The data were measured in the kagome bilayer plane
(a-b plane) within the spin-liquid phase at temperatures below
T = 0.1 K. The data were collected on the MACS spectrom-
eter at NIST and each subplot shows the scattering pattern at
a different fixed energy transfer (as indicted in the plot). The

intensity is indicated by the colors. The final neutron energy
was fixed at 3.0 meV and the incident neutron energy was
varied to change the energy transfer. The energy resolution
increases with energy transfer from �E = 0.17 meV at E =
0.25 meV to �E = 0.3 meV at E = 1.55 meV. The data
were collected by rotating the sample over an angular range
of 150◦ in steps of 2◦. While the scattering angle covers a
range of approximately 90◦ with a step size of approximately
2.5◦. A measurement of an empty sample holder was used
to indicate the background and was subtracted from the
data. For energy transfers E � 0.45 meV this background
is unreliable within the lowest wave-vector-extended Bril-
louin zone. For this reason these regions have been excluded
in Fig. 3.
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