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Magnetocrystalline anisotropy of Fe, Co, and Ni slabs from density functional theory and
tight-binding models
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We report magnetocrystalline anisotropy (MCA) calculations of Fe, Co, and Ni slabs of various thicknesses
and crystallographic orientations from two density functional theory codes based either on a plane wave or a local
atomic basis set expansion and a magnetic tight-binding method. We analyze the evolution of the MCA with the
number of layers of the slabs. The decomposition of MCA into contributions of atomic sites helps understanding
the oscillatory behavior of the MCA with the slab thickness and highlights the role of finite size effects. We also
identify some specific systems with enhanced MCA. A k space as well as a band-filling analysis show very rich
features of the MCA that could be used to tailor systems with enhanced magnetic properties. Finally, this work
can serve as a benchmark for MCA calculations.
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I. INTRODUCTION

Spin-orbit coupling driven phenomena are the subject of
intense studies since it is at the origin of many fundamental
physical effects. Magnetocrystalline anisotropy (MCA) is one
of the important consequences of the coupling between the
spin and the orbital moment of the electron [1]. It is a property
of central interest for both fundamental and practical reasons.
MCA is characterized by the dependence of the energy of a
magnetic system on the orientation of the magnetization with
respect to the crystallographic structure of the material. The
axis (or plane) corresponding to the minimum of energy is the
so-called easy axis (plane). The magnetic energy landscape
has many physical implications for example on the thermal
stability of magnetic nanoparticles, and for technological
application the development of materials with large uniaxial
anisotropy is often requested [2]. In addition, tunability is
often a desired functionality and therefore it is essential to
analyze and understand the main parameters governing the
magnetic anisotropy in order to find ways to control MCA in
an efficient way.

From a computational point of view the calculation of the
MCA is a priori straightforward since one only needs to com-
pute the total energy for different magnetization orientations.
However, due to the smallness of energy differences and other
technical details, the determination of the MCA is numerically
delicate. In addition, besides the total MCA it is also essential
to have efficient numerical ways to decompose the MCA
as a sum of local contributions in heterogeneous systems
presenting surfaces, interfaces, or any type of defects. Several
options have been proposed either based on the (second order)
quantum mechanical perturbation (2PT) theory [1,3,4] or on
the force theorem (FT) [5–7]. Both approaches allow a local
site (and orbital) analysis of the MAE [8,9]. However, the
domain of validity of the FT is a priori larger than 2PT [10].

In this paper we present a series of density functional
theory (DFT) and tight-binding (TB) calculations based on the
FT to evaluate the MCA of Fe, Co, and Ni slabs of various
thicknesses and crystallographic orientations. We used two
very different DFT codes: Quantum espresso (QE [11,12])
based on plane wave expansion of the wave functions, and
QuantumATK (QATK [13,14]) based on a linear combination
of atomiclike orbitals. We also compare our results with a
semiempirical magnetic TB method [15]. In order to under-
stand the agreements or discrepancies between the different
methods and extract general trends we provide a local site
analysis which allows us to extract the surface contribution to
the MCA. In addition, since the MCA is extremely sensitive to
tiny details of the band structures, we have performed k-space
as well band-filling analysis providing important information
that can be used to tune the MCA.

II. METHODOLOGY

In the following section we will present the main ingredi-
ents and technical details of the methods used to determine the
MCA.

A. Density functional theory (DFT)

We have performed DFT calculations using the gener-
alized gradient approximation (GGA) in the same Perdew,
Berke, and Ernzherof (PBE [16]) parametrization but based
on radically different expansions of the valence electrons
wave functions: QE[11,12] uses plane waves while QATK
[13] uses localized atomiclike orbitals. With QE we used
ultrasoft pseudotentials [17] and the size of the basis, con-
trolled by the energy cutoff, was taken equal to 30 and
300 Ry for the wave function and the charge density, re-
spectively, while with QATK we used the norm-conserving
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TABLE I. Fe, Co, and Ni Stoner and spin-orbit coupling param-
eters used in the magnetic TB model.

Fe Co Ni

IStoner (eV) 0.95 1.10 1.05
ξSOC (eV) 0.06 0.08 0.10

pseudodojo pseudopotentials [18] and a high basis set [13].
As explained in greater detail in Sec. II C, we have applied
the force theorem (FT) to evaluate the MCA and its local
components. This approach is based on a three steps process
[19,20]: (i) a self-consistent (scf) calculation with a scalar
relativistic pseudopotential (without spin-orbit coupling), fol-
lowed by (ii) a non-self-consistent (nscf) calculation with a
fully relativistic pseudopotential including spin-orbit coupling
starting from the scf electron density rotated to the specified
magnetization orientations. Finally, (iii) the MCA is obtained
from the variation of the band energy term. In most of the
calculations (unless explicitly stated) the scf loop is performed
with a 25 × 25 k-point sampling of the two-dimensional
Brillouin zone while the nscf calculations are performed with
a denser sampling of 50 × 50 k points in the full Brillouin
zone. Marzari-Vanderbilt cold smearing with a broadening
of 0.05 eV has been used. The local quantities are obtained
by slightly different procedures: QE projects the wave func-
tions onto orthogonalized atomic pseudowave functions in
a Lowdin manner, while QATK naturally projects onto the
atomiclike orbitals (used as a basis) in a Mulliken manner
[13].

B. Magnetic tight binding

We have also used an spd semiempirical tight-binding
method [15] where the spin magnetism is taken into account
via a Stoner-like potential V Stoner = −1/2IStonerm · σ and the
spin-orbit coupling potential acting on d orbital is written
V SOC = ξL · S. The TB parameters of the model are deter-
mined by fitting to DFT results (see Table I for the SOC
and Stoner parameters). The control parameters: number of
k points, broadening, and convergence threshold are the same
as for the DFT calculations.

C. Force theorem

The MCA was calculated by making use of the force
theorem (FT) which is valid in the case of “not too large” spin-
orbit coupling (see next section for the validation). Within the
FT procedure the MCA is obtained as the difference of band
energy after a single diagonalization. In a periodic system the
eigenvalues (and eigenfunctions) are labeled by a k vector
and a discrete number n of bands such that the MCA can be

TABLE II. Fe, Co, and Ni lattice parameters used in this work.

Fe bcc Co fcc Co hcp Ni fcc

Lattice
a = 2.8665 a = 3.5447 a = 2.5071 a = 3.5249parameter

(Å) c = 4.0686

written:

MCAFT =
∑

k

∑
n

f 1
k,nεk,n(m̂1) −

∑
k

∑
n

f 2
k,nεk,n(m̂2), (1)

where εk,n(m̂) are the eigenvalues obtained after a single
diagonalization of the Hamiltonian including SOC but starting
from well-converged charge/spin density of a self-consistent
calculation without SOC rotated in a given spin orientation m̂.
fk,n = f (εk,n − EF) are the filling factors. Note that within this
approach the Fermi level is different for the two orientations.
However, to decompose the total MCA onto local components
MCAi it is necessary to adopt the grand canonical description
[9,21]:

MCAFTgc =
∫

f (E )(E − EF)�n(E )dE

=
∑

i

∫
f (E )(E − EF)�ni(E )dE=

∑
i

MCAi,

(2)

where ni(E ) is the density of states projected on site i and
�ni(E ) is the difference between the two spin orientation m̂1

and m̂2. Here EF is the Fermi level of the system without
SOC corresponding to a neutral system. However, from a
computational point of view it is also interesting to explore the
behavior of the MCA when varying the Fermi level away from
the neutrality point [10] as will be illustrated further below.

III. MCA OF Co, Fe, AND Ni SLABS

We have considered the three 3d transition metal ferromag-
netic elements Fe, Co, and Ni in their equilibrium structure:
body centered cubic (bcc) for Fe, hexagonal close pack (hcp)
for Co, and face centered cubic (fcc) for Ni. In the case
of Co we have also considered its fcc structure since this

FIG. 1. Results of TB MCA calculations: (a) Total MCA (using
FT) of a Co hcp(0001) 15-layer slab with respect to the number of
nscf k points (including SOC), the number of scf k points (collinear
spin without SOC) being fixed at 25 × 25 (vertical straight line).
(b) Total MCA (using FT) of a Co hcp(0001) 15-layer slab with
respect to the number of scf k points, the number of nscf k points
being fixed at 50 × 50 (vertical straight line). The � indicates the
results of a full scf calculation, i.e., not making use of the FT.
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FIG. 2. Total MCA as a function of the number of layers of the slabs for Co [TB (a), QE (b), QATK (c)], Fe [TB (d), QE (e), QATK (f)],
and Ni [TB (g), QE (h), QATK (i)].

element can easily adopt this structure when grown on a
substrate. For the sake of comparison between the codes we
have ignored surface relaxation and therefore the calculations
have been performed on exactly the same structures and with
the same computational parameters. The structural parameters
are summarized in Table II.

In all our calculations the MCA is defined as MCA =
E‖ − E⊥ (per surface unit cell) where ‖= m̂1 = x is in the
plane of the slab and ⊥= m̂2 = z is perpendicular to the
surface of the slabs. We checked that the in-plane anisotropy
is extremely small and therefore the choice of the x axis in
the surface plane does not influence the quantitative value
of the MCA. With this convention a positive MCA means
an out-of-plane easy axis. We have also checked (within the
FT approach) the convergence with the number of k points
of the scf (no SOC) and nscf (with SOC) calculations. In
Fig. 1 is shown the evolution of the total MCA for a Co
hcp(0001) 15-layer slab while varying the number of (scf or
nscf) k points. It comes out that the MCA is indeed more
sensitive to the number of nscf k points than to the number
of scf ones and typically 25 × 25 and 50 × 50 scf and nscf k

points, respectively, are sufficient to achieve converged MCA.
Finally, to validate the FT approach we have also calculated
the MCA from a scf calculation including SOC with 50 × 50
k points. The agreement with FT is excellent (see � in Fig. 1),
the error is estimated to be of the order of 10−4 eV = 0.1 meV
for a system containing 15 atoms in the unit cell.

A. Evolution of the MCA with the slab thickness

We have performed total MCA calculations of slabs for
the three main cubic (001), (110), and (111) crystallographic
orientations and (0001) for hcp. The slab thicknesses have
been varied from 1 to 15 layers. The results are shown in
Fig. 2. The overall qualitative agreement between the different
codes is satisfactory and the general trends are reasonably
well reproduced, in particular the sign of the MCA is gen-
erally identical (positive for Fe, negative for Ni, and close to
zero for Co). As expected, for very small thicknesses large
anisotropies as well as large amplitudes of oscillations are
observed for 1 � N � 5. In addition, for specific thicknesses
and slab orientations some accidents with maxima or minima
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FIG. 3. Layer resolved MCA [see Eq. (2)] for 15-layer slabs of Co [TB (a), QE (b), QATK (c)], Fe [TB (d), QE (e), QATK (f)], and Ni
[TB (g), QE (h), QATK (i)].

of MCA are observed. This is the case of the three-layer slab
of Co hcp(0001) (in agreement with Ref. [8]), four-layer slab
of Fe bcc(001) (already observed in Ref. [9]), or the four- and
five-layer slabs of Ni(110).

For thicknesses above N = 5 the MCA generally stabilizes
but in several cases an erratic oscillating behavior is observed
up to 15 layers. This behavior is usually attributed to the
so-called quantum-well states [22,23]. However, as already
described in our previous publication [9], it is only for very
large thicknesses (above 30 layers) that the effect of quantum
states oscillations can clearly be identified. This will be illus-
trated in Sec. III D for Co hcp(0001) slabs. In fact, we prefer
to speak about finite size rather than true quantum well states
effects.

B. Site-resolved MCA

The evolution of the total MCA with the number of atomic
layers can only be understood thoroughly via a layer-resolved
MCA analysis. Indeed, when increasing the slab thickness the
number of atoms with a bulklike environment is increasing
while the number of surfacelike atom is constant. Therefore

the total MCA(N ) can be decomposed into a bulk contribution
that should increase linearly (if the bulk MCA is nonzero) with
the number of layers and a constant surface term. However,
within this simplistic picture, finite size and quantum well
states effect are neglected. In Fig. 3 we have decomposed the
MCA of all the 15-layer slabs considered. From these results
a clear distinction can be made between the two (or three)
outermost layers and the central part of the slab. Clearly the
MCA surface component is negative (in-plane) for cobalt and
nickel and positive (out-of-plane) for iron. Note also that the
sublayer often counterbalances the outermost layer. In the case
of cobalt [hcp(0001), fcc(111), and fcc(001)] the outermost
and sublayer MCA sum up to almost zero.

In the central part, the MCA generally converges with
small oscillations towards the bulk value. Save for hcp all
the crystallographic structures considered are cubic, hence
the bulk MCA is expected to be very small, more precisely
experimentally it is found of the order of μeV for Fe (bcc)
and Ni (fcc) and around 60 μeV in Co (hcp) [24]. In conse-
quence only the surface contribution (in fact twice the surface
contribution since each slab contains two surfaces) should
remain in MCA(N ) for large enough slab thicknesses N .
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FIG. 4. (a) TB+SOC band structure of bulk Co hcp along �-
L-A-�-K-H -A path (see Brillouin zone in inset). In black (red) is
shown the band structure corresponding to an out-of-plane (in-plane)
magnetization. (b) Total MCA as a function of the position of the
Fermi level.

This overall general picture is well obeyed by the MCA(N )
curves of Fig. 2 but there are still several systems where the
stabilization of MCA(N ) is very slow and large deviations
are observed. This departure from the general simple picture
is due to two main reasons: the strength of the perturbation
induced by the presence of surfaces and finite size effects.
The strength of the surface perturbation is essentially related
to the number of neighbors that are lost at the surface. The
more open the surface the strongest the perturbation. This
rule of thumb is well obeyed and the MCA of fcc(111) or
bcc(110) slabs converges fast towards the bulk (zero) value
(see Fig. 3) which can also be seen from the fast stabilization
of MCA(N ) (see Fig. 2). In contrast for bcc(111) and fcc(110)
the MCA is perturbed over at least four layers. The QW states
in metallic ultrathin films modulate the density of states at
the Fermi level and create periodic oscillations with the film
thickness that are related to the bulk Fermi wave number
in the z direction perpendicular to the film. However, this a
priori simple rule is obscured by the complexity of the band
structure in transition metals for which the Fermi surface can
be very intricate. In practice it is very difficult to predict their
quantitative influence [22,23].

C. Co hcp k-resolved MCA and band-filling analysis

To get further insight it is also interesting to analyze the
MCA in the k space since this allows us to identify the regions
contributing to the MCA. Let us focus on the bulk Co hcp. In
Fig. 4(a) we have plotted the TB band structure of Co hcp
along a high symmetry path for two directions of the spin:
z (c axis) and x (a axis). Due to the smallness of SOC, the
two band structures are almost identical apart from specific
regions with relatively flat bands that are split when the
magnetization is along z and not split when it is along x. These
regions should contribute the most to the MCA for band filling
such that these bands would cross the Fermi level. To illustrate
this idea we have calculated the total MCA as a function of the
Fermi level which corresponds to changing the band filling.
The curve plotted in Fig. 4(b) is very instructive since it shows

FIG. 5. (kx, ky ) resolved MCA of bulk Co hcp (integrated along
kz). We can easily see that the most important contributions originate
from regions around the high symmetry points �̄ and K̄ .

rapid variations of the MCA at energies corresponding to the
position of these flat bands. Interestingly, small variations of
the band filling can lead to drastic changes of the MCA of
several meV with change of sign and therefore of easy axis
[10].

Note that the total MCA is integrated over the whole
Brillouin zone and the result is the sum of contributions
coming from various regions favoring either in-plane or out-
of-plane anisotropy. It is also worth mentioning that in TB the
bulk MCA is slightly positive (0.05 meV), while it is almost
zero with QE and QATK. In the present case TB is in better
agreement with the experimental MCA [24] (0.065 eV) than
QE and QATK but this might be fortuitous. This is essentially
due to the position of the bands forming an inverted parabola
around the � point. These bands cross the Fermi level in TB
while they are below the Fermi level in QE and QATK. One
can also check from Fig. 4(b) that the MCA falls at almost
zero 0.1 eV above the Fermi level where the inverted parabola
is filled.

We have then evaluated the MCA from a dense 100 ×
100 × 100 k-mesh TB calculation. Since we have in mind
the MCA of Co hcp(0001) slabs we have integrated the MCA
along the kz direction. The resulting MCA(kx, ky) is shown in
Fig. 5 clearly evidencing the role of symmetry points around
which the major contribution to the MCA is coming. �̄ and
K̄ point (we adopt the “bar” notation to indicate that it is the
result of a projection along kz) regions show a negative dip
surrounded by a positive ring that leads to the overall positive
total MCA. One should however note that the MCA around
the K̄ point originates essentially from the projection of a zone
near the H point. The rest of the k space is almost flat with
zero anisotropy. Note also that the M̄ point does not play any
special role.

D. Large thickness limit

For N-layer slabs one expects the total MCA to be written
as a constant surface term plus a linearly increasing bulk term:
MCAtot(N ) = 2 × MCAsurf + N × MCAbulk. Since Co hcp is
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FIG. 6. Total MCA (in blue) versus the number of layers of Co
hcp(0001) slabs obtained from the TB method. The outermost and
sublayer contributions are shown in black and red, respectively. The
outermost and sublayer MCA includes two equivalent sites (1, N )
and (2, N − 1), respectively. The linear fit of the bulk MCA is shown
as a dashed blue line. In the inset we have compared the TB results
(in blue) to the QATK ones (in green) up to 35 layers. The lower
slope is corresponding to the smaller bulk MCA value obtained with
QATK.

the only system for which the bulk contribution is nonzero
(the other systems are cubic with extremely small MCA) we
have calculated the total MCA for a series of Co hcp(0001)
slabs up to 100 layers to check the general expected trend.
The result is represented in Fig. 6 in which we have plotted the
total MCA as a function of the number of layers. The linear
behavior is clearly demonstrated. However, until 30 layers
strong oscillations are present and below 15 layers it is im-
possible to identify the linear scaling. We have also extracted
the contribution from the outermost layer (sites 1 and N)
and sublayer (sites 2 and N − 1). Interestingly, although of
opposite signs, the MCA of the outermost and sublayer follow
the same trend and the amplitude of their oscillations become
almost negligible above 15 layers. It is also clear that the
oscillations of the total MCA are dominated by the bulk
between 15 and 30 layers. We have then fitted MCAtot(N ) by
a linear formula a + bN where b gives the bulk contribution.

We found a = −0.21 meV and b = 0.049 meV which gives
MCAbulk = 0.049 meV and MCAsurf = −0.105 meV. This
is in perfect agreement with our previous estimation of the
bulk MCA obtained from a purely bulk calculation (far less
time consuming!). Note that the extraction of the surface
contribution obtained from inverting the MCAtot(N ) for-
mula: MCAsurf = 1

2 [MCAtot(N ) − N × MCAbulk] as one usu-
ally proceeds for calculating surface energies is not the best
strategy because of the oscillating behavior of the total MCA.
A better solution is to sum the local contributions over the
first outermost layers obtained from a single slab calculation.
Indeed, the surface MCA can be more safely obtained from
the following formula:

MCAsurf =
Nsurf∑
s=1

MCAs − NsurfMCAbulk, (3)

where Nsurf is the number of layers upon which the MCA is
significantly “perturbed” [(1, 2) in the case of Co hcp(0001)]
and MCAs is the contribution from layer s. Applying Eq. (3) to
Co hcp(0001) one gets the same value −0.1 meV as obtained
from the linear fit procedure.

E. Surface band-filling analysis

In the same way that we have calculated the MCA as a
function of the band filling (or rather Fermi energy) in bulk Co
hcp, one can look at the evolution of the surface component
of the MCA when varying the electron filling of the surface
plane. It has been shown that the application of an electric field
perpendicular to the surface of a metal can significantly affect
the surface MCA [25] and therefore it is very relevant to study
the variation of the surface MCA with the number of electrons
in the surface layer. Indeed, the main effect of the electric field
at the surface of a metal is the creation of a surface charge
that can be simulated by changing the number of electrons
in the outermost layer. In Fig. 7 we show the outermost
component of MCA as a function of the energy level together
with the corresponding number of electrons for Co hcp(0001),
Fe bcc(001), and Ni fcc(001). As for bulk Co hcp we observe
rapid variations of the MCA with the Fermi energy. Note that
for Co and Fe at the neutrality point the slope of the MCA is
negative while it is positive for Ni. This means that positively

FIG. 7. MCA of the outermost layer of a 15-layer slab of Co hcp(0001) (a), Fe bcc(001), and Ni fcc(001) as a function of the Fermi
level (in blue) from TB calculations. The corresponding number of electrons at the surface layer Ne is shown in red. For convenience we have
subtracted the number of valence electrons such that zero corresponds to the charge neutrality point. A zoom around the neutrality point is
shown in the inset.
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FIG. 8. Total MCA of a four-layer slab of Fe bcc(001) as a
function of the Fermi level (in blue) from TB calculations. The
corresponding number of electrons (minus the number of valence
electrons) is shown in red. A zoom around the neutrality point is
shown in the inset. Note that the value of the MCA at the maximum
is lower than the one of Fig. 2. This is due to the use of a Fermi-Dirac
broadening to smooth the curve while a Marzari-Vanderbilt cold
smearing was used to obtain the results of Fig. 2.

charging by a small amount the surface layer (i.e., decreasing
the number of electrons) will increase the MCA for Co and
Fe and decrease for Ni. At this point it is important to have
orders of magnitude in mind. Since the surface charge density
(per surface unit) σ is related to the perpendicular electric field
E by the relation E = σ

ε0
it comes out that an outward (i.e.,

pointing out of the surface) electric field as large as 1 V/Å
corresponds to a depletion of approximately 0.05 electron per
surface atom. The corresponding variation of Fermi energy is
approximately 0.04, 0.025, and 0.03 eV for Co, Fe, and Ni,
respectively. In the insets of Fig. 7 we have shown a zoom
around the neutrality point over a realistic range of energy
±0.1 eV which goes in line with the results of Duan et al.
[25] who showed by DFT that the effective application of
an outward electric field increases the surface component of
MCA for Fe and Co and decreases it for Ni [26]. Note that this
electric field effect could be amplified if instead of considering
a surface we consider an interface with a material of high
permittivity.

Finally, it should be pointed out that in the case where
the MCA is maximum (minimum) at the neutrality point,
any electric field (outward or inward) will lead to a decrease
(increase) of the MCA. This is the case of the four-layer
slab of Fe bcc(001) illustrated in Fig. 8 presenting a sharp
maximum at the Fermi level. This specific behavior is induced
by finite size effect and is at the origin of the maximum of the
MCA observed at four layers (Fig. 2).

IV. CONCLUSION

To summarize, we have presented a comprehensive elec-
tronic structure analysis of the magnetocrystalline anisotropy
energy of Fe bcc, Co fcc (and hcp), and Ni fcc slabs, obtained
from three different codes: QE, QATK, and TB. We have
used the force theorem and its grand canonical formulation
to define the layer resolved MCA. We show that total MCA
is often strongly oscillating with the number of layers and
this mainly originates from the contribution of inner (bulklike)
layers due to electronic confinement effects. However, in most
cases only the two or three outermost layers (depending on
the surface packing density) are significantly perturbed. This
allows us to define the surface contribution to the MCA
[Eq. (3)]. We also highlight an extremely rich and complex
behavior of the MCA in k space and with the electron filling.
Rapid variations are observed with change of sign and large
amplitudes of the MCA. In particular, we show that from the
variation of the MCA surface component with electron filling
one can predict the amplitude and the sign of the response
to an applied electric field. Finally, we hope that our work
can provide an interesting benchmark and general trends for
the design of materials with optimized magnetic properties.
However, one should keep in mind that any electronic struc-
ture determination of the MCA should be tested carefully with
respect to the computational (k points, broadening, etc.) and
physical (Fermi level, lattice constant) parameters.
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