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Chaos in nanomagnet via feedback current
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Nonlinear magnetization dynamics excited by spin-transfer effect with feedback current is studied both
numerically and analytically. The numerical simulation of the Landau-Lifshitz-Gilbert equation indicates the
positive Lyapunov exponent for a certain range of the feedback rate, which identifies the existence of chaos in
a nanostructured ferromagnet. Transient behavior from chaotic to steady oscillation is also observed in another
range of the feedback parameter. An analytical theory is also developed, which indicates the appearance of
multiple attractors in a phase space due to the feedback current. An instantaneous imbalance between the
spin-transfer torque and damping torque causes a transition between the attractors, and results in the complex
dynamics.
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I. INTRODUCTION

Nonlinear dynamics can be found in a wide variety of
physical, chemical, and biological systems from small to
large scale [1,2]. Recent observations of rich magnetization
dynamics, such as switching, auto-oscillation (limit cycle),
and synchronization, excited in a nanostructured ferromagnet
have also proved the applicability of nonlinear science to
a fine structure [3–12]. These dynamics are driven by spin
current carried by, for example, conducting electrons in metals
[13–15]. Since the spin current in metals can survive only
within nanometer scale [16], these magnetization dynamics
had not been observed until the development of fabrication
technology of nanostructure was achieved. A new direction
investigating the applicability of such nonlinear magnetization
dynamics to non-von Neumann computing scheme, inspired
by human brain, has been growing very recently [17–20].

An attractive and intriguing phenomenon in nonlinear
science is chaos [21,22]. It should be noticed here that the
previous works in magnetism and spintronics have clarified
that the magnetization dynamics in a nanostructured fer-
romagnet is sufficiently well described by two dynamical
variables [23–28]. For example, the macrospin model has
two dynamical variables describing the zenith and azimuth
angles of the magnetization. The Thiele equation depicting the
magnetic vortex or skyrmion dynamics includes two variables
corresponding to the radius and phase of the core, whereas
the domain wall motion is represented by the center of the
wall position and the tilted angle of the magnetization at
the center. On the other hand, according to the Poincaré-
Bendixson theorem, chaos is prohibited in a two-dimensional
system [21]. Therefore, an additional degree of freedom is
necessary to induce chaos in ferromagnets. In previous works,
chaos has been studied for systems with alternative current
[29,30] or magnetic and/or electric interaction between two

ferromagnets [31,32]. The former makes the system nonau-
tonomous, whereas the latter utilizes many-body system. An-
other possible source causing highly nonlinear dynamics is
feedback force with delay because the presence of the delay
makes the dimension of the system infinite [33]. Recently, the
modulation of the threshold current by the self-injection of
the feedback current into the vortex ferromagnet was theoreti-
cally predicted [34] and was experimentally confirmed [35].
Complex dynamics in an in-plane magnetized ferromagnet
with feedback current was also found by numerical simulation
[36]. However, it should be emphasized that the existence
of the feedback effect does not necessarily guarantee chaos.
Therefore, a careful analysis is necessary for the magnetiza-
tion dynamics in the presence of feedback effect in order to
identify chaos.

The purpose of this work is to develop a theoretical anal-
ysis of the nonlinear magnetization dynamics in a nanostruc-
tured ferromagnet in the presence of feedback current. We per-
form the numerical simulation of the Landau-Lifshitz-Gilbert
(LLG) equation in spin-torque oscillator (STO), and find that
the feedback current causes highly nonlinear dynamics of
the magnetization. This work identifies chaos by the positive
Lyapunov exponent, which is found in a certain range of the
feedback rate, whereas transient behavior is also observed in
another range of the feedback rate. We also develop an analyt-
ical theory to reveal the origin of such complex dynamics. The
bifurcation analysis indicates that the feedback current results
in the appearance of multiple attractors in the phase space. An
instantaneous imbalance between the spin-transfer torque and
damping torque allows a transition between these attractors,
and induces the complex dynamics found in the numerical
analysis.

The paper is organized as follows. In Sec. II, we describe
the structure of the STO and show the LLG equation including
feedback current. In Sec. III, the results of the numerical
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FIG. 1. (a) Schematic view of the system. The direct current I
is injected from the reference layer to the positive layer, whereas
the current, χ Im · p, outputted from the STO is injected into the
STO with time delay τ . The feedback current oscillates when the
magnetization m in the free layer is in a dynamical state. (b) Typical
magnetization dynamics in the absence of the feedback current. The
inset shows an auto-oscillation in a steady state.

simulation of the LLG equation are presented. The Lyapunov
exponents and bifurcation diagrams as functions of the feed-
back rate and delay time are also presented. In Sec. IV,
a theoretical analysis on a multiple attractor is discussed.
Section V summarizes this work.

II. SYSTEM DESCRIPTION

In this section, we describe the system under consideration,
and provide the comment on the numerical methods. The
details of the algorithms are also given in the Supplemental
Material [37] (which includes Ref. [38]).

A. LLG equation

The system under consideration is schematically shown
in Fig. 1(a). The unit vectors pointing in the magnetization
directions in free and reference layers are denoted as m and p,
respectively. Direct current I is injected from the reference to
free layer, and excites an auto-oscillation of the magnetization
m via spin-transfer effect [13,14]. Here, we focus on the STO
consisting of a perpendicularly magnetized free layer and an
in-plane magnetized reference layer because this type of STO
can emit large emission power with narrow linewidth [10]
and, therefore, is of great interest from viewpoints of both
fundamental and applied physics. The magnetization p in the
reference layer points to the positive x direction, whereas the
z axis is perpendicular to the film plane. The magnetization
dynamics in the free layer is described by the Landau-Lifshitz-
Gilbert (LLG) equation given by

dm
dt

= −γ m × H − γ Hsm × (p × m) + αm × dm
dt

, (1)

where γ and α are the gyromagnetic ratio and the Gilbert
damping constant, respectively. The magnetic field H =
[Happl + (HK − 4πM )mz]ez consists of an applied field Happl,
interfacial magnetic anisotropy field HK [39–41] and demag-
netization field −4πM. The spin-transfer torque strength Hs

is given by

Hs = h̄ηI[1 + χm(t − τ ) · p]

2e(1 + λm · p)MV
, (2)

where M and V are the saturation magnetization and the
volume of the free layer, respectively. The spin-transfer torque
strength is characterized by the spin polarization η and spin-
transfer torque asymmetry λ. The values of the parameters
used in this work are derived from the experiment [10], as
well as a theoretical analysis [42] as M = 1448.3 emu/c.c.,
HK = 18.616 kOe, Happl = 2.0 kOe, V = π × 602 × 2 nm3,
η = 0.537, λ = 0.288, γ = 1.764 × 107 rad/(Oe s), and α =
0.005. The current of I = 1.0 mA corresponds to the current
density of 8.8 MA/cm2. An auto-oscillation in the absence of
the feedback is excited in this type of STO when the current
magnitude becomes larger than a threshold value [42] (see
also Appendix A for derivation),

Ic = 4αeMV

h̄ηλ
(Happl + HK − 4πM ), (3)

which is about 1.6 mA for the present parameters. Figure 1(b)
shows a typical magnetization dynamics in the absence of
the feedback current, where the direct current is I = 2.5 mA.
As shown, an auto-oscillation having a period of 0.16 ns is
excited after a relaxation time on the order of 10 ns. The inset
of Fig. 1(b) shows the dynamics of mx (red) and mz (black)
in a steady state. It can be seen from the figure that mz is
almost temporally constant but slightly oscillates around a
certain value. These results will be used for comparison with
the dynamics in the presence of the feedback current, as well
as for the development of an analytical theory, below.

B. Description of feedback effect

The strength of the spin-transfer torque, Eq. (2), includes
the feedback current given by χ Im(t − τ ) · p, where χ is the
rate of the feedback current with respect to the direct current I ,
whereas τ is the delay time. Due to tunnel magnetoresistance
effect, the feedback current depends on the relative direction
of the magnetizations, m · p [10]. The feedback current brings
the past information of the magnetization state, and extends
the dimension of the phase space, which presents a possibility
to excite chaos in STO.

Let us give brief comments on experiment to measure
chaos in an STO. An experimental work injecting the feed-
back current to a vortex STO and measuring the output
power was already reported [35]. The feedback current can be
injected to the STO independently from the direct current by
using a bias-Tee and delay line. The numerical analyses shown
below, as well as the analytical theory developed in Sec. IV,
predict that chaos appears for a large feedback rate χ and/or
long delay time τ compared to typical timescales of the STO.
The typical value of the delay time possible in experiment is
on the order of 10 ns [35]. On the other hand, the oscillation
period (∼3 ns) of the vortex STO used in the previous work
[35] is only 10 times shorter than the delay time. This might
be the reason why chaos was not confirmed in the previous
works. Regarding this point, two approaches are taken into
account to observe chaos in STO. The first one is to make
the delay time long. A long delay time is realized by using
a long electric cable. The second approach is to use an STO
having a short oscillation period. In fact, the STO studied in
this work has a short period because of macrospin structure of
the magnetization. Therefore, the theoretical analyses shown
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FIG. 2. Time evolutions of the perpendicular component mz(t ) for the feedback rates of (a) χ = 0.02, (b) 0.50, and (c) 0.89. The current
and the delay time are I = 2.5 mA and τ = 30 ns. Note that the time range of each figure is different. Fourier spectra of the in-plane component
mx (t ) for (d) χ = 0.02, (e) 0.50, and (f) 0.89 are also shown.

below will possibly be examined experimentally. A possible
remaining issue, however, may be an energy loss in a cable,
which should be optimized in experiments.

We also give a comment on the method to identify chaos
by experiments. The experimental methods to identify chaos
are, for example, the estimation of the Lyapunov exponent
from time series of data and/or Fourier analysis. The former
method requires to measure the dynamical trajectory in the
system and estimate the Lyapunov exponent from a discrete
set of time series data by evaluating the principal axis of
the expansion [43]. A possible problem in applying this
method to STO is the limitation of the information on the
dynamical trajectory obtained. The magnetization dynamics
in the STO is measured through the magnetoresistance effect.
Both giant and tunnel magnetoresistances are proportional to
m · p. Therefore, we can measure only the component of the
magnetization m projected to the direction of p. This fact
might make it difficult to reproduce the dynamical trajectory
and identify chaos from the time series of data. The Fourier
analysis, on the other hand, indicates chaos from the shape of
the spectrum. The Fourier spectrum shows a sharp peak for a
nonchaotic dynamics, whereas it has a broad structure without
a unique peak in chaos state; see also Sec. III A. Therefore, the
Fourier spectrum provides an evidence to identify chaos.

C. Numerical method

Here, let us provide a brief description of the numerical
technique used in the next section. The LLG equation (1)
with the feedback current is solved by a fourth-order Runge-
Kutta scheme accompanied with continuation method. The
details of this algorithm are summarized in the Supplemental

Material [37]. We also evaluate the bifurcation diagram,
which is defined as the local maximum of mz(t ) after the mag-
netization moves to an attractor. In this work, chaos is defined
as the dynamics with the positive Lyapunov exponent. The
Lyapunov exponent in this work is defined as an average of
the instantaneous expansion rate of the dynamical trajectory
in the phase space with respect to a small perturbation ε as

λ̃ = lim
NL→∞

1

NL
t

NL∑
i=1

log

∣∣∣∣ ε̃i

ε

∣∣∣∣, (4)

where 
t is the time step of the LLG simulation. The number
of the perturbations applied to the STO is NL, whereas ε̃i is
the expansion of the dynamical trajectory with respect to the
ith perturbation. The detail of the algorithm to evaluate the
Lyapunov exponent is also summarized in the Supplemental
Material [37].

III. NUMERICAL ANALYSIS

In this section, we show the results of the numerical simu-
lation of the LLG equation, as well as the Lyapunov exponent
and bifurcation diagram.

A. Lyapunov exponent as a function of feedback rate

Here, we show the Lyapunov exponent and the bifurcation
diagram as a function of the feedback rate χ . The value
of τ in this section is set to be 30 ns. Figures 2(a)–2(c)
show the time evolutions of mz(t ) for χ = 0.02, 0.50, and
0.89, respectively. Note that the time range of each figure is
different to understand the characteristics of each dynamics.
In the presence of a small feedback current shown in Fig. 2(a),
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FIG. 3. (a) (Maximum) Lyapunov exponent and (b) bifurcation cascade (local maximum of mz) as a function of the feedback rate χ � 0.10.
The current and delay time are I = 2.5 mA and τ = 30 ns, respectively. The range of χ is extended to χ � 1.00 in (c) and (d).

although the amplitude of the oscillation is modulated, the
dynamics in the steady state is still periodic. On the other
hand, when the feedback rate becomes relatively large, chaotic
behavior appears, as shown in Fig. 2(b). In this case, non-
periodic and highly nonlinear dynamics appears over a wide
time range. The value of mz oscillates almost over its possible
value |mz| � 1. A further increase of the feedback rate leads
to a transition of the magnetization dynamics from chaotic
to nonchaotic, as shown in Fig. 2(c). The chaotic dynamics
suddenly disappears after a comparatively long period, i.e.,
longer than the oscillation period of the limit cycle in the
absence of the feedback current. As mentioned below, the
Lyapunov exponents of the dynamics in Figs. 2(a) and 2(c)
are zero, whereas it is positive for the dynamics in Fig. 2(b).

Note that evaluating the perpendicular component mz in
time domain is useful for theoretical analysis because it
is approximately constant in the absence of the feedback
effect, whereas it becomes complex by the feedback force,
as mentioned above. On the other hand, evaluating the in-
plane component mx will be useful for experiments be-
cause it directly relates to the experimentally observed signal
through magnetoresistance effect. Therefore, we also show
the Fourier spectra of mx for χ = 0.02, 0.50, and 0.89 in
Figs. 2(d)–2(f), respectively. The Fourier spectrum has a sharp
peak with subpeaks for χ = 0.02, which is a typical spectrum
of the oscillation with the amplitude modulation. The Fourier
spectrum for χ = 0.50, on the other hand, shows a broad
structure over a relatively wide range of the frequency. A main
peak is not uniquely determined. The structure implies that the
dynamics is chaos. The Fourier spectrum for χ = 0.89 shows
a sharp peak, corresponding to the oscillation frequency after

the transition from chaotic to limit cycle oscillation. The os-
cillation frequency is different from that in the absence of the
feedback because the oscillation amplitude is modified due to
the feedback effect. Regarding these results, the Fourier anal-
ysis will be a possible tool to experimentally identify chaos.

Figures 3(a) and 3(b) show the Lyapunov exponent and
the bifurcation diagram as a function of the feedback rate
in a small range χ � 0.10. The Lyapunov exponent remains
zero for χ � 0.024, where the dynamics is a limit cycle, such
as shown in Fig. 1(b), or the oscillation with an amplitude
modulation as shown in Fig. 2(a). In the limit cycle state, the
local maximum of mz is a single value, whereas it takes several
values and shows symmetric distributions around its center
in the modulated dynamics, as can be seen in Fig. 3(b). The
Lyapunov exponent becomes positive for χ � 0.025, where
the bifurcation diagram shows an inhomogeneous (asymmet-
ric) structure. The Lyapunov exponent and the bifurcation
diagram for a wide range of the feedback rate χ � 1.00
are shown in Figs. 3(c) and 3(d), respectively. The positive
Lyapunov exponent indicates the existence of chaos in STO.
The Lyapunov exponent becomes zero again when the feed-
back rate is further increased to χ � 0.87. The magnetization
dynamics shown in Fig. 2(c), corresponding to this parameter
region, can be regarded as transient chaos, which can be found
in, for example, a spatially extended turbulence model [44],
where the dynamical system finally arrives at an attractor
with zero or negative Lyapunov exponent long time after
showing chaotic behavior [21]. For example, the transient
time observed in Fig. 2(c) is on the order of 0.1 ms, which
is sufficiently longer than the period of the auto-oscillation in
the absence of the feedback current (0.16 ns) but is measurable
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FIG. 4. Time evolutions of mz(t ) for the delay times of (a) τ = 0.03, (b) 0.3, (c) 9.3 ns, and (d) 9.6 ns. The current and the feedback rate
are I = 2.5 mA and χ = 0.20. (e) The Lyapunov exponent and (f) bifurcation cascade (local maximum of mz) as a function of the delay time.

because it is shorter than the experimentally available time
range for STO dynamics reported up to date, 1.6 ms [45].

B. Lyapunov exponent as a function of delay time

Here, we show the Lyapunov exponent and the bifurcation
diagram as a function of the delay time τ . The value of χ

in this section is set to be 0.20. Figures 4(a) and 4(b) show
the time evolutions of mz for short delay times, τ = 0.03 and
0.3 ns, respectively. For such a sufficiently short delay time,
the current necessary to excite an auto-oscillation of the mag-
netization is given by (see also Appendix A for derivation)

Ĩc = 4αeMV

h̄ηλp0
(Happl + HK − 4πM ), (5)

where p0 = p(χ, τ, θ = 0) is

p0 = 1 − χ

λ
cos 2π fFMRτ, (6)

where fFMR = γ (Happl + HK − 4πM )/(2π ) is the ferromag-
netic resonance (FMR) frequency. In the absence of the feed-
back current (χ → 0), Eq. (5) becomes identical to Eq. (3).
According to Eqs. (5) and (6), the threshold current to move
the magnetization from the energetically stable state (θ = 0)
is an oscillating function of τ . For example, Ic given by Eq. (5)
becomes 1.9 mA for τ = 0.03 ns, which is smaller than the
applied current, I = 2.5 mA. Therefore, the magnetization
can move from the initial state, as shown in Fig. 4(a). On the
other hand, Ic becomes 4.4 mA for τ = 0.3 ns and, therefore,
the magnetization stays in the energetically stable state in
Fig. 4(b). Such a modification of the instability threshold
was studied in a vortex oscillator both theoretically and ex-
perimentally [34,35]. For a sufficiently long delay time, the
magnetization dynamics becomes highly complex, and Eq. (5)
does not work. The periodic oscillation with the amplitude
modulation is found for τ = 9.3 ns, whereas nonperiodic dy-
namics appears for τ = 9.6 ns, as shown in Figs. 4(c) and 4(d).
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Figures 4(e) and 4(f) summarize the Lyapunov exponent
and bifurcation diagram as a function of the delay time,
respectively. Note that the magnetization stays in the energet-
ically equilibrium state for 0.3 � τ < 1.2 ns, as in the case
shown in Fig. 4(b). In such a case, the Lyapunov exponent is
negative, indicating that the magnetization saturates to a fixed
point. On the other hand, chaos appears with increasing the
delay time, whereas the periodic oscillations with the ampli-
tude modulation appear for specific values of τ . The negative
Lyapunov exponent for a short delay time is approximately
estimated from a linearized LLG equation [46] as

λ̃ � −2πα fFMR

(
1 − I

Ĩc

)
. (7)

For example, for τ = 0.3, Eq. (7) is −0.09 GHz, which is
close to the numerically estimated value −0.11 GHz. We
simultaneously emphasize that the limit of τ → 0 does not
correspond to the zero-feedback limit (the zero-feedback limit
corresponds to χ → 0). Even in the limit of τ → 0, the feed-
back current exists and affects the dynamics. For example, for
τ = 0.03, the magnetization shows a limit cycle oscillation,
and the Lyapunov exponent is zero. Equation (7) works when
the magnetization stays at a fixed point, and the delay time τ

is short.

IV. THEORETICAL ANALYSIS

The above numerical results indicate the existence of rich
variety of nonlinear dynamics, including chaos, in an STO.
Although it is difficult to solve the LLG equation exactly due
to its nonlinearity, let us investigate the physical origin of
the complex dynamics with help of an approximated theory,
which has been known to be useful to analyze nonlinear
dynamics such as auto-oscillation (limit cycle) [28,42] and
synchronization [47]. An auto-oscillation in an STO is excited
when the spin-transfer torque balances with the damping
torque, and the field torque −γ m × H remains finite. The
field torque leads to a sustainable oscillation of the magne-
tization on a constant energy curve of the magnetic energy
density defined as E = −M

∫
dm · H. In the present system,

the constant energy curve corresponds to the trajectory with
a constant zenith angle θ = cos−1 mz, where the oscillation
frequency f (θ ) on the constant energy curve is f (θ ) =
γ [Happl + (HK − 4πM ) cos θ ]/(2π ). It should be, however,

emphasized that there is often an instantaneous imbalance
between the spin-transfer torque and damping torque because
of their different angular dependencies. Therefore, strictly
speaking, θ (or mz) in the present system is not a constant
variable [42]; see also the inset of Fig. 1(b). However, for a
sufficiently small damping constant α, the real trajectory of
the auto-oscillation is practically close to a constant energy
curve. In such a case, it is useful to derive the equation
of motion of θ averaged over the precession period T (θ ) =
1/ f (θ ) as dθ/dt ≡ (1/T )

∮
dt (dθ/dt ) (see also Appendix A

for derivation):

dθ

dt
= −αγ [Happl + (HK − 4πM ) cos θ ] sin θ

+ γ Hs0

λ tan θ

(
1√

1 − λ2 sin2 θ
− 1

)
p(χ, τ, θ ), (8)

where Hs0 = h̄ηI/(2eMV ), whereas p(χ, τ, θ ) is given by

p(χ, τ, θ ) = 1 − χ

λ
cos 2π f (θ )τ. (9)

The angle θ satisfying dθ/dt = 0 and d (dθ/dt )/dθ <

(>)0 corresponds to a stable (unstable) fixed point in the
reduced phase space [1]. In the absence of feedback current,
there is only one stable fixed point (attractor), corresponding
to auto-oscillation state in real space, in the present STO [42].
On the other hand, Fig. 5(a) shows an example of dθ/dt in
the presence of the feedback. As shown, several attractors
satisfying dθ/dt = 0 and d (dθ/dt )/dθ < 0 appear due to the
feedback current. Figures 5(b) and 5(c) show the attractors
mz = cos θ as a function of the feedback rate χ and the delay
time τ , respectively. It can be understood from these figures
that the number of the attractor increases with increasing
the feedback rate and/or delay time. Let us here call such
structures as multiple attractors. Although these results are
obtained with an approximation mentioned above, they are
useful to understand the origin of the complex magnetization
dynamics found by numerical simulation, as discussed below.

The multiple attractors originate from the function
p(χ, τ, θ ) given by Eq. (9). In the absence of the feedback
current (χ = 0), the function p(χ, τ, θ ) = 1 is independent of
the angle θ . On the other hand, in the presence of the feedback
current (χ �= 0), several values of the angle θ give an identical
value of p(χ, τ, θ ) because the function includes a periodic
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FIG. 5. (a) The averaged dθ/dt given by Eq. (8) solved in the phase space as a function of θ = cos−1 mz. The current, feedback rate, and
delay time are I = 2.5 mA, χ = 0.10, and τ = 30 ns. (b), (c) Stable fixed points mz = cos θ estimated analytically as a function of (b) the
feedback rate χ with τ = 30 ns and (c) the delay time τ with χ = 0.10.
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(cosine) function depending on θ . As a result, several θ can
simultaneously satisfy the conditions of the stable fixed point.

The origin of the complex dynamics found in the numer-
ical simulation is considered to be the existence of multiple
attractors. Since the attractors locate discretely, as shown in
Fig. 5, one might consider that once the magnetization is
trapped by one of the attractors, it cannot move to the others.
It should be, however, reminded that the assumption of a
constant angle θ was used in the derivation of Eq. (8). As
emphasized above, the real angle θ = cos−1 mz in a limit cycle
slightly oscillates around the fixed point estimated analytically
by Eq. (8) because of the instantaneous imbalance between
the spin-transfer torque and damping torque. As a result,
the magnetization can move from one attractor to the other
when the distance between the attractors is smaller than the
oscillation amplitude of the angle θ . The transition between
the attractors causes the highly complex dynamics shown in
Fig. 2, contrary to the system without feedback in which an
auto-oscillation state is uniquely determined.

It is considered that the above analytical theory can be
applied to any type of STO, although Eq. (8) was derived for
its specific type. For example, the complex dynamics found
in an in-plane magnetized STO [36] may be caused by the
same mechanism, i.e., the appearance of multiple attractors
due to the existence of feedback current. The periodicity of the
multiple attractors in this type of STO is described by elliptic
functions in contrast with Eq. (9) where the periodicity is de-
scribed by a simple trigonometric function; see Appendix B.

V. CONCLUSION

In conclusion, the nonlinear magnetization dynamics in a
spin-torque oscillator was studied by taking into account the
effect of spin-transfer torque excited by the feedback current.
The numerical simulation reveals rich variety of the nonlinear
magnetization dynamics, which can be controlled by the feed-
back parameter. The positive Lyapunov exponent for a certain
range of the feedback rate indicated the existence of chaos
in the spin-torque oscillator, whereas transient behavior from
the chaotic to the steady state was also observed in another
range of the feedback parameter. The analytical theory based
on the averaged equation of motion revealed that the feedback
current results in the multiple attractors in the phase space.
The number of the attractors increased with increasing the
feedback rate and/or delay time. An instantaneous imbalance
between the spin-transfer torque and damping torque caused
a transition between the attractors, and induces the complex
magnetization dynamics.
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APPENDIX A: AVERAGED LLG EQUATION OF
PERPENDICULARLY MAGNETIZED STO

Introducing the zenith and azimuth angles (θ, ϕ) as m =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ), the LLG equation (1) for θ is
given by

dθ

dt
= −γ h̄ηI[1 + χm(t − τ ) · p]

2e(1 + λ sin θ cos ϕ)MV
cos θ cos ϕ

− αγ [Happl + (HK − 4πM ) cos θ ] sin θ, (A1)

where the higher-order terms of α are neglected. As men-
tioned in the main text, an auto-oscillation is excited with
a trajectory depicting practically on a constant energy
curve of E = −M

∫
dm · H = −MHappl cos θ − [M(HK −

4πM )/2] cos2 θ . The dynamical trajectory on the constant
energy curve, which is the solution of dm/dt = −γ m × H,
is given by mx = sin θ cos ω(θ )t , my = sin θ sin ω(θ )t , and
mz = cos θ , where θ is constant whereas

ω(θ ) = γ [Happl + (HK − 4πM ) cos θ ]. (A2)

The frequency and period of the auto-oscillation are f (θ ) =
ω(θ )/(2π ) and T (θ ) = 1/ f (θ ), respectively. Substituting
these solutions mx, my, and mz into Eq. (A1), we find that

1

T (θ )

∮
dt

dθ

dt

= − γ h̄ηI

2eMV T (θ )

×
∫ T (θ )

0
dt

[1 + χ sin θ cos ω(t − τ )] cos θ cos ωt

1 + λ sin θ cos ωt

− αγ

T (θ )

∫ T (θ )

0
dt[Happl + (HK − 4πM )] sin θ. (A3)

Using the integral formulas, we find that

1

T (θ )

∮
dt

dθ

dt
= γ h̄ηI

2eλMV tan θ

(
1√

1−λ2 sin2 θ
−1

)
p(χ, τ, θ )

− αγ
[
Happl + (HK − 4πM ) cos θ

]
sin θ,

(A4)

where p(χ, τ, θ ) is given by Eq. (9). Equation (A4) is identical
to Eq. (8). The threshold current given by Eq. (5) is the current
satisfying limθ→0 dθ/dt = 0, whereas Eq. (3) is Eq. (5) in the
limit of χ → 0.

APPENDIX B: AVERAGED LLG EQUATION OF IN-PLANE
MAGNETIZED STO

In the main text, the multiple attractors are investigated for
an STO consisting of a perpendicularly magnetized free layer
and an in-plane magnetized reference layer. On the other hand,
previous works had focused on an STO consisting of in-plane
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magnetized free and reference layers [29–31,36]. Therefore,
let us show that the in-plane magnetized STO also shows
the multiple attractors structure when the spin-transfer torque
includes the feedback current. In this Appendix, the values of
the parameters are derived from Refs. [47–49]. The magnetic
field and the strength of the spin-transfer torque of an in-plane
magnetized STO are given by H = HKmyey − 4πMmzez and
Hs = h̄ηJ/(2eMd ), respectively, where HK = 200 Oe is an
in-plane anisotropy field along the easy (y) axis, J is the
current density, and d = 2.0 nm is the thickness of the free
layer. The saturation magnetization and the Gilbert damping
constant are M = 1500 emu/c.c. and 0.01, respectively. The
spin polarization η is 0.5, whereas the spin-transfer torque
asymmetry λ is assumed to be zero, for simplicity. The spin-
polarization direction p is parallel to the easy axis p = ey.

1. Energy range of in-plane auto-oscillation

As mentioned in the main text, the averaged LLG equation
is derived by assuming an auto-oscillation on a constant
energy curve. The energy density of an in-plane magnetized
ferromagnet is given by

E = −MHK

2
m2

y + 4πM2

2
m2

z . (B1)

The minimum, saddle, and maximum energy densities are
Emin = −MHK/2, Es = 0, and Emax = 4πM2/2, correspond-
ing to the magnetization states of m = ±ey, ±ex, and ±ez,
respectively. Here, we focus on the auto-oscillation around the
easy axis, where the corresponding energy density E is in the
range of Emin < E < Es. The auto-oscillation is excited when
the current density is in the range of Jc < J < J∗ [47–49],
where Jc and J∗ are the critical and switching current densities
given by

Jc = 2αeMd

h̄η
(HK + 2πM ), (B2)

J∗ = 4αeMd

π h̄η

√
4πM(HK + 4πM ). (B3)

2. Averaged LLG equation in the absence of feedback current

The LLG equation averaged over the constant energy curve
of E in the in-plane magnetized ferromagnet without the

feedback current is given by [47]∮
dt

dE

dt
= Ws + Wα, (B4)

where Ws and Wα are the work done by the spin-transfer
torque and the energy dissipation by the damping torque
during a precession on a constant energy curve,

Ws = γ M
∮

dt Hs
[
p · H − (m · p)(m · H)

]
= 2πMHs

2E/M + HK√
HK(HK + 4πM )

, (B5)

Wα = −αγ M
∮

dt
[
H2 − (m · H)2

]

= −4αM

√
4πM − 2E/M

HK

[
2E

M
K(k) + HKE(k)

]
, (B6)

where K(k) = ∫ 1
0 dx/

√
(1 − x2)(1 − k2x2) and E(k) =∫ 1

0 dx
√

(1 − k2x2)/(1 − x2) are the first and second kinds of
complete elliptic integral with the modulus k:

k =
√

4πM(HK + 2E/M )

HK(4πM − 2E/M )
. (B7)

The precession period T (E ) on a constant energy curve of E
is

T (E ) = 4K(k)

γ
√

HK(4πM − 2E/M )
. (B8)

Figure 6(a) shows an example of dE ≡ ∮
dt (dE/dt ) in the

absence of the feedback current, where the current density is
chosen to be J = (Jc + J∗)/2. The energy density E satisfying
dE = 0 and d (dE )/dE < 0 corresponds to a stable attractor.
As in the case of the STO in the main text, there is only one
attractor in this system.

3. Work done by feedback current

Now, let us consider the role of the feedback current. In
the presence of the feedback current, the spin-transfer torque

E/(MHK/2)

dE
/(M

H
K

/2
)

-1.0 -0.9 -0.8 -0.6-0.7 -0.5 -0.4 -0.3 -0.2 -0.1 0
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(a)
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(b)

FIG. 6. The averaged energy change, dE ≡ ∮
dt (dE/dt ), an in-plane magnetized ferromagnet as a function of the energy density E . The

vertical and horizontal axes are renormalized by MHK/2. The feedback current is (a) zero and (b) χ = 0.10 with τ = 3 ns.
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performs an additional work given by

W χ
s ≡ γ M

∮
dt Hsχm(t − τ ) · p[p · H − (m · p)(m · H)], (B9)

where we assume that the feedback current density is given by χJm(t − τ ) · p. The averaged LLG equation in the presence of
the feedback current becomes ∮

dt
dE

dt
= Ws + W χ

s + Wα. (B10)

To evaluate W χ
s , it is useful to note that the solution of the magnetization oscillating around the easy axis on a constant energy

curve of E is given by [47]

mx(t ) =
√

1 + 2E

MHK
sn

[
4K(k)

T (E )
t, k

]
, (B11)

my(t ) =
√

4πM − 2E/M

HK + 4πM
dn

[
4K(k)

T (E )
t, k

]
, (B12)

mz(t ) =
√

HK + 2E/M

HK + 4πM
cn

[
4K(k)

T (E )
t, k

]
, (B13)

where sn(u, k), dn(u, k), and cn(u, k) are the Jacobi elliptic functions with u = 4K(k)t/T (E ). Introducing a new variable x =
sn(u, k), Eq. (B9) becomes

W χ
s = 4χMHs√

HK(4πM − 2E/M )

∫ 1

0
dx

[
HKmy − my

(
HKm2

y − 4πMm2
z

)]
√

(1 − x2)(1 − k2x2)
my(t − τ ), (B14)

where dn(u, k) and cn(u, k) in my(t ) and mz(t ) are replaced by
√

1 − k2x2 and
√

1 − x2, respectively. On the other hand, my(t −
τ ) in Eq. (B14) is given by [50]

my(t − τ ) =
√

4πM − 2E/M

HK + 4πM

dn(u, k)dn(v, k) + k2sn(u, k)sn(v, k)cn(u, k)cn(v, k)

1 − k2sn2(u, k)sn2(v, k)

=
√

4πM − 2E/M

HK + 4πM

dn(v, k)
√

1 − k2x2 + k2sn(v, k)cn(v, k)x
√

1 − x2

1 − k2sn2(v, k)x2
, (B15)

where v = 4K(k)τ/T (E ). Equation (B15) indicates that the multiple attractors originate from the periodicity of the elliptic
function. In contrast with Eqs. (B5) and (B6), the analytical expression of Eq. (B14) is complex; see next section. Therefore, we
evaluate Eq. (B14) numerically.

Figure 6(b) shows
∮

dt (dE/dt ) in the presence of the feedback current, where χ = 0.10 and τ = 3 ns. As shown, the multiple
attractors appear, as in the STO studied in the main text. Therefore, we consider that the chaotic dynamics studied in Ref. [36]
might be also related to the multiple attractors.

4. Analytical expression of W χ
s

Substituting Eq. (B15) into (B14), W χ
s is rewritten as

W χ
s = 4χMHs√

HK(4πM − 2E/M )

5∑
�=1

I�, (B16)

where we introduce I� as

I1 = c2
yHKdn(v, k)

∫ 1

0
dx

√
1 − k2x2

√
1 − x2[1 − k2sn2(v, k)x2]

≡ c2
yHKdn(v, k)Ĩ1, (B17)

I2 = −c4
yHKdn(v, k)

∫ 1

0
dx

(1 − k2x2)3/2

√
1 − x2[1 − k2sn2(v, k)x2]

≡ −c4
yHKdn(v, k)Ĩ2, (B18)
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I3 = c2
yc2

z 4πMdn(v, k)
∫ 1

0
dx

√
(1 − x2)(1 − k2x2)

1 − k2sn2(v, k)x2

≡ c2
yc2

z 4πMdn(v, k)Ĩ3, (B19)

I4 = c2
y

[(
1 − c2

y

)
HK + c2

z 4πM
]
k2sn(v, k)cn(v, k)

∫ 1

0
dx

x

1 − k2sn2(v, k)x2

≡ c2
y

[(
1 − c2

y

)
HK + c2

z 4πM
]
k2sn(v, k)cn(v, k)Ĩ4, (B20)

I5 = c2
y

(
c2

yHKk2 − c2
z 4πM

)
k2sn(v, k)cn(v, k)

∫ 1

0
dx

x3

1 − k2sn2(v, k)x2

≡ c2
y

(
c2

yHKk2 − c2
z 4πM

)
k2sn(v, k)cn(v, k)Ĩ5. (B21)

Here, we introduce the following notations for simplicity:

cy =
√

4πM − 2E/M

HK + 4πM
, cz =

√
HK + 2E/M

HK + 4πM
. (B22)

The integrals Ĩ� (� = 1 − 5) can be performed as

Ĩ1 =
∫ 1

0
dx

√
1 − k2x2

√
1 − x2[1 − k2sn2(v, k)x2]

= 1

sn2(v, k)

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

− 1 − sn2(v, k)

sn2(v, k)

∫ 1

0

dx√
(1 − x2)(1 − k2x2)[1 − k2sn2(v, k)x2]

= K(k)

sn2(v, k)
− cn2(v, k)

sn2(v, k)
�[k2sn2(v, k), k], (B23)

Ĩ2 =
∫ 1

0
dx

(1 − k2x2)3/2

√
1 − x2[1 − k2sn2(v, k)x2]

= 1

sn2(v, k)

∫ 1

0
dx

√
1 − k2x2

1 − x2
− cn2(v, k)

sn2(v, k)

∫ 1

0
dx

√
1 − k2x2

√
1 − x2[1 − k2sn2(v, k)x2]

= E(k)

sn2(v, k)
− cn2(v, k)

sn2(v, k)
Ĩ1, (B24)

Ĩ3 =
∫ 1

0
dx

√
(1 − x2)(1 − k2x2)

1 − k2sn2(v, k)x2

= 1

k2sn2(v, k)

∫ 1

0
dx

√
1 − k2x2

1 − x2
− dn2(v, k)

k2sn2(v, k)

∫ 1

0
dx

√
1 − k2x2

√
1 − x2[1 − k2sn2(v, k)x2]

= E(k)

k2sn2(v, k)
− dn2(v, k)

k2sn2(v, k)
Ĩ1, (B25)

Ĩ4 =
∫ 1

0
dx

x

1 − k2sn2(v, k)x2

= − log[1 − k2sn2(v, k)]

2k2sn2(v, k)

= − log dn(v, k)

k2sn2(v, k)
, (B26)

Ĩ5 =
∫ 1

0
dx

x3

1 − k2sn2(v, k)x2

= − 1

k2sn2(v, k)

∫ 1

0
dx x + 1

k2sn2(v, k)

∫ 1

0
dx

x

1 − k2sn2(v, k)x2

= − 1

2k2sn2(v, k)
+ Ĩ4

k2sn2(v, k)
, (B27)

where �(a2, k) = ∫ 1
0 dx/[(1 − a2x2)

√
(1 − x2)(1 − k2x2)] is the third kind of complete elliptic integral.
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