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Spin-orbit-coupled quantum memory of a double quantum dot
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The concept of quantum memory plays an incisive role in the quantum information theory. As confirmed
by the several recent rigorous mathematical studies, the quantum memory inmate in the bipartite system ρAB

can reduce the uncertainty about part B, after measurements done on part A. In the present work, we extend
this concept to systems with a spin-orbit coupling and introduce the notion of spin-orbit quantum memory.
We self-consistently explore the Uhlmann fidelity, the pre- and the post-measurement entanglement entropy,
and the post-measurement conditional quantum entropy of the system with spin-orbit coupling and show that
measurement performed on the spin subsystem decreases the uncertainty of the orbital part. The uncovered
effect enhances with the strength of the spin-orbit coupling. We study the concept of macroscopic realism
introduced by Leggett and Garg [Phys. Rev. Lett. 54, 857 (1985)] and observe that POVM measurements done
on the system under the particular protocol are noninvasive. For the extended system, we perform quantum
Monte Carlo calculations and consider the reshuffling of the electron densities due to an external electric field.
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I. INTRODUCTION

Let us consider a typical setting of a bipartite quantum
system [1], described by the density matrix ρ̂AB shared by
two parties Alice (A) and Bob (B). Suppose A performs two
consecutive measurements of Hermitian observables X and
Y . The uncertainty relation in the Robertson’s form [2,3]
states that the product of the standard deviations is larger
or equal to the expectation value of commutator �X�Y �
1
2 |〈ψ |[X,Y ]|ψ〉| with respect to the shared quantum state |ψ〉.
From Bob’s perspective, the uncertainty in Alice measurement
results depends, however, on the nature of the quantum state
|ψ〉, meaning on whether |ψ〉 is entangled or separable. Berta
et al. [4] showed that, for Bob, entanglement may decrease
the lower bound for the uncertainty in Alice measurements
outcome. That means Bob may become more certain about
the results of Alice measurements done on her part A, if
Bob subsystem B is entangled with A. More specifically, Bob
uncertainty concerning Alice measurements is determined by
the quantum conditional entropy defined as follows S(A|B) =
S(�̂AB) − S[trA(�̂AB)]. Here �̂AB is the post-measurement den-
sity matrix of the bipartite system and S(�̂AB) is the von
Neumann entropy S(�̂AB) = −tr[�̂AB ln (�̂AB)]. The entropy
of the classical system is an extensive quantity. Therefore
the entropy of the whole system is larger than the entropy
of the subsystem. In quantum case, the entropy of the pure
entangled state of the entire system is zero, while the entropy
of the subsystem is not zero. Therefore, a negative quantum
conditional entropy is a sign of quantumness of the system.

Physical realizations of the subsystems A and B are diverse
[1]. For instance, A and B could be two electrons in a double
quantum dot, each hosting spin and orbital degrees of free-
dom. The spin and orbital degrees of freedom of electrons
may be entangled. However, due to the SO interaction, spin

degrees of freedom may be entangled with orbital degrees as
well. Thus, in a double quantum dot the quantum state of the
system may hold spin, orbital and spin-orbit entanglement.
Such solid-state-based systems are very attractive due to their
scalability and the various tools at hand to control, read and
write information. When the two dots are in close proximity
tunneling sets in, as well as orbital correlation mediated by
the Coulomb interaction. In the presence of a spin-orbital
(SO) interaction, of the Rashba type [5] for instance, the spin
becomes affected by the orbital motion. Our interest in this
work is devoted to the information obtainable on the orbital
subsystem through a measurement done on the spin subsystem
and how the quality of this information is affected by the SO
interaction. We note in this context, that the strength of SO
interaction in a semiconductor-based quantum structures can
be tuned to certain extent by a static electric field. The orbital
part can be assessed for example by exploiting the different
relaxation times of the electron pair to a reservoir depending
on their spin state [6,7].

In what follows, we show that measurement done on
the spin subsystem reduces the uncertainty about the orbital
part, meaning that information about one subsystem can be
extracted indirectly through the measurement done on another
subsystem. We also study the uncertainty of two incompatible
measurements done on the spin subsystem and explore the
properties of quantum memory. Specifically, we prove that
when the system is in a pure state, the quantum memory re-
duces the uncertainty of two incompatible spin measurements.

Our focus here is on the case when Alice does two in-
compatible quantum measurements on one of the parts of
the bipartite system. Say, Alice measures two noncommuting
spin components of the qubit at her hand. The concept of
quantum memory states that the entanglement between qubits
of Alice and Bob permits Bob to reduce the upper limit of
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the uncertainty bound of the measurements done by Alice. In
what follows we highlight and illustrate by direct numerical
examples the subtle effects of spin-orbital coupling on quan-
tum memory. In particular, spin-orbit-coupled systems may
store three different types of entanglements related to spin-
spin, spin-orbit, and orbit-orbit parts. We prove that only the
entire entanglement allows for a reduction of the upper bound
for the uncertainty. After the elimination of the spin-orbit and
the orbit-orbit parts, the residual spin-spin entanglement is not
enough to reduce the uncertainty. Our result is generic and
is expected to apply to a class of systems with spin-orbital
coupling.

The paper is structured as follows: In Sec. II we review the
experimental studies relevant to our work. Section III presents
the theoretical model; in Sec. IV we describe the measure-
ment procedures and explore the post-measurement states;
in Sec. V we study the Uhlmann fidelity between pre- and
post-measurement states of the spin subsystem and evaluate
post-measurement quantum conditional entropy; in Sec. VI
we study effect of the SO interaction on the quantum discord;
in Sec. VII we study noninvasive measurements; in Sec. VIII
we explore the impact of Coulomb interaction; in Sec. IX we
present results of quantum Monte Carlo calculations for the
electron density obtained for extended systems; in Sec. X we
discuss the problem of quantum memory and conclude.

II. EXPERIMENTALLY FEASIBLE POVM
PROTOCOLS IN QUANTUM DOTS

Quantum dots are an experimental realization of the theory
below, similar to the first quantum computing scheme based
on spins in isolated quantum dots which was proposed by
Loss and DiVincenzo [8]; see also Refs. [9–11] and references
therein. An ultimate goal of a quantum gate and a quantum
information protocol is to read out and record the outcome
state. Several types of local spin measurements were realized
experimentally [12–15]. In quantum dots, the spin can be
measured selectively through the spin-to-charge conversion
[16–19]. Our focus is on the experimentally feasible spin
POVM (positive operator-valued measure) measurements see
Ref. [20], the only measurement considered throughout the
present work. Fundamental limits for nondestructive measure-
ment of a single spin in a quantum dot was studied recently
[21]. A spin-resolved filter (barrier) permits to pass through
the gate only electrons with particular spin orientation, i.e.,
transmits |1〉 and bans the |0〉. Thus, if a particle passes, we
know the projection of its spin. However, what is detected in
the experiment is not a spin projection but a charge. Through
the change in the electric charge recognized by an electrom-
eter, we infer the information that an electron has passed
through the filter. The beauty of this scheme is its simpleness
that allows introducing the POVM projectors �A

0 = |0〉〈0|A,
�A

1 = |1〉〈1|A for a quantum dot.
Of interest is also the single-shot measurement scheme that

can selectively access the singlet or the triplet two-electron
states in a quantum dot [7]. The scheme exploits the different
coupling strengths of the triplet and singlet states to the
reservoir. Therefore, charge relaxation times are different,
too, 1/�T < 1/�S . A nondestructive measurement is achieved

by an electric pulse of duration τ that shifts temporally the
chemical potential of the dot with respect to the Fermi level
of the reservoir, where 1/�T < τ < 1/�S is chosen. For the
dot in the singlet electron state, the time is too short for
tunneling, but the triplet state may tunnel. If two consecutive
measurements are done within a time interval shorter than the
relaxation time T1, then the measurement procedure is inva-
sive, meaning that the outcome of the second measurement de-
pends on the first measurement. The measurement procedure
is noninvasive if the time interval between the measurements
exceeds �τ1,2 > T1. In the experiment of Ref. [7], the values
of the parameters for GaAs/AlxGa1−x heterostructure read
1/�T = 5μs, τ = 20μs, and 1/�S = 100μs.

III. MODEL OF THE SYSTEM

The issue of quantum memory has already been addressed
for a number of model systems [22–29]. Here, we focus
particularly on the interacting two-electron double quantum
dots [5,30–40]. We self-consistently explore the Uhlmann
fidelity, pre- and post-measurement entanglement entropy,
and post-measurement conditional quantum entropy of the
system and show that a measurement performed on the spin
subsystem decreases the uncertainty of the orbital part. This
effect becomes more prominent with increasing the strength
of SO coupling.

We consider a double quantum dot characterized by
a rather strong quantum confinement potential in the
y and z directions, see Fig. 1. For single particle we
use the orbitals 	nx,ny,nz (x, y, z) = Nφnx (x)Yny (y)Znz (z) where
〈φnx |φn′

x
〉 = δnx,n′

x
, 〈Yny |Yn′

y
〉 = δny,n′

y
and 〈Znz |Zn′

z
〉 = δnz,n′

z
. We

consider a situation with a strong confinement in y and z
directions such that only the lowest subbands with ny = 0 and
nz = 0 are occupied. The relevant dynamics takes place in
the x direction only, subject to the effective one-dimensional

FIG. 1. Schematic representation of the considered double quan-
tum dot system in the presence of an external electric field and
spin-orbit coupling. In a quasi-one-dimensional conductive channel,
two quantum dots are created and controlled by two local gates: “gate
1” and “gate 2.” The quantum confinement in y direction is strong
enough such that the only lowest subband state ny = 0 is occupied.
The “gate 0” is used to control tunnel junction between the dots (that
mimics the changing of the interdot distance). The applied constant
electric field, polarized in x direction, is represented by the blue
arrow.
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potential V (x). The Hamiltonian of confined electrons reads

Ĥ0 = − h̄2

2m∗

N∑
n=1

∂2

∂x2
n

+
N∑

n<m

VC (rrrn, rrrm) + ĤSO

+
N∑

n=1

(V (xn) + eExn). (1)

Here, V (x) = m∗ω2min[(x − �/2)2, (x + �/2)2]/2 is the
double-dot confinement potential,

ĤSO = −iα
N∑

n=1

∂

∂xn
σ̂ y

n + B
N∑

n=1

σ̂ z
n , (2)

is the Rashba SO term with the magnetic field, � = �d0 is the
interdot distance with the dimensionless scaling factor �, m∗
is the electron effective mass, e is the absolute value of the
electron charge, and the strength of the constant static electric
field is E . The trial magnetic field B applied along the z axis
has no particular effect on the phase of the wave function
in 1D case but specifies the quantization axis and shifts the
energy levels. Note that the Coulomb potential VC (rrr1, rrr2) =
e2/κ|rrr1 − rrr2|, where κ is the dielectric constant, still depends
on the six coordinates rrr1 = (x1, y1, z1) and rrr2 = (x2, y2, z2)
and will be reduced to the (x1, x2) variables later in the text.
In what follows we introduce dimensionless units by set-
ting x1,2 → x1,2/d0, β = m∗ωd2

0 /h̄, Ĥ0 → Ĥ0/(h̄2/(m∗d2
0 )),

E0 = m∗ed3
0 E/h̄2. We adopt parameters appropriate for the

semiconductor material GaAs. β = 1 in this case corresponds
to a confinement energy h̄ω = 11.4 meV, d0 = 10 nm. Di-
mensionless electric field E0 = 1 is equivalent to the applied
external field of the strength E = 1.1 V/μm. The single parti-
cle energy levels of a single dot (� = 0) are given then by εn =
β(n + 1/2). At first we neglect the Coulomb term and treat
SO coupling perturbatively. The antisymmetric total wave
functions are presented as direct products of the orbital and
spin parts 	 (1)

n = ψS
n ⊗ χA(1, 2) and 	 (2)

n = ψA
n ⊗ χS (1, 2),

where |χT+
S (1, 2)〉 = |1 ↑ 〉|2 ↑ 〉, |χT−

S (1, 2)〉 = |1 ↓ 〉|2 ↓ 〉,
|χT0

S (1, 2)〉 = 1√
2
(|1 ↑〉|2 ↓〉 + |1 ↓〉|2 ↑〉) and the asym-

metric spin function read |χA(1, 2)〉 = 1√
2
(|1 ↑〉|2 ↓〉 −

|1 ↓〉|2 ↑〉). We define the two-electron symmetric and an-
tisymmetric coordinate wave functions of a double quantum
well as follows:∣∣ψS,A

n,n′
〉 = 1√

2(1 ± S2)
[ψL,n(x1)ψR,n′ (x2)

±ψL,n(x2)ψR,n′ (x1)], (3)

where ψL,n(x) is the single particle wave function correspond-
ing to the left dot and quantum state n, while ψR,n′ (x) is
associated with the right dot and quantum state n′ and S =
〈ψL,n|ψR,n′ 〉 is the overlap integral. The results of the exact
numerical calculations (not shown) have confirmed that for
the large values of the parameter β � 1 the overlap integral
is zero S = 0 and tunneling processes are not activated. As
will be shown below, effect of the Coulomb term in this
case is less relevant and can be neglected safely. In the
double quantum dot, the equilibrium positions of electrons
shifts along the x axis by the distance ±d0/2. The har-
monic oscillator eigenfunctions are written as Heitler-London

ansatz [41,42] ψL(R),n(x) = φL(R),n(x), where φL(R),n(x) =
1√
2nn!

( β

π
)
1/4

× exp (− β(x±1/2−d )2

2 )Hn(x
√

β ), Hn(x
√

β ) is Her-

mite polynomial and d = eE/d0m∗ω2.
The energy spectrum of the unperturbed system is de-

scribed by the sum of energies of noninteracting oscillators
EN = β(n + 1/2) + β(n′ + 1/2), N = (n, n′) and we intro-
duced the following notations for brevity: |�N 〉 = |ψS,A

n,n′ 〉 ⊗
|χA,S〉; see Eq. (3).

The presence of the SO term mixes different spin sectors
and spin and orbital states. Considering |	M〉 = |ψA

0,1〉 ⊗
|χT+

S 〉 as an unperturbed wave function, we obtain

|�M〉 = ∣∣ψA
0,1

〉 ⊗ ∣∣χT+
S

〉 + α

2
√

β

(
1

2

∣∣ψS
1,1

〉 − ∣∣ψS
0,0

〉) ⊗ |χA〉.

(4)

Using Eq. (4) and tracing out orbital (spin) parts
we construct the reduced density matrix of the spin
(orbital) subsystem respectively: ρ̂S = 1

Z {|χT+
S 〉〈χT+

S | +
5α2

16β
|χA〉〈χA|}, ρ̂or = 1

Z (|ψA
0,1〉〈ψA

0,1| + α2

16β
|ψS

1,1〉〈ψS
1,1| +

α2

4β
|ψS

0,0〉〈ψS
0,0|), where Z = 1 + 5α2

16β
.

IV. POVM MEASUREMENTS AND
POST-MEASUREMENT STATES

The generic state of two noninteracting particles is a prod-
uct state. Therefore, a density matrix of a system can be
factorized as a direct product of density matrices of individual
particles. After tracing out states of one particle, product
state leaves a system in a pure state with a zero entropy.
However, in the case of fermions, the Pauli principle imposes
quantum correlation even in the absence of interaction. As for
an interacting bipartite system in most of the cases, the state
is entangled [43–50]. Tracing out part of bipartite entangled
state results in a mixed state and finite entropy. Quantum
correlation is manifested in continuous variables systems as
well [51–58]. Therefore, under certain conditions, we expect
the orbital part to be entangled. After setting theoretical
machinery of the problem, we proceed with the information
measures of uncertainty and quantum correlations in the
system. In particular, we specify premeasurement von Neu-
mann entropy of the orbital and spin subsystems: S(ρ̂or ) =
−tr[ρ̂or ln (ρ̂or )] = − α2

16β
ln ( α2

16β
) − α2

4β
ln ( α2

4β
) and S(ρ̂s) =

−tr(ρ̂s ln (ρ̂s)) = − 5α2

16β
ln ( 5α2

16β
), respectively, where we as-

sumed that Z ≈ 1. Spin and orbital von Neumann entropies
increase with the Rashba SO coupling constant β. Let us
assume that Alice performs POVM measurement [59] on the
first qubit at her hand (in what follows we use the notations
A = 1 and B = 2 for the first and second qubit).

After measurement, the initial sate collapses either to the
post-measurement state,

|	 (1)
AB

〉 =
(
�A

0

⊗
IB

)|�M〉√
〈�M |(�A

0

⊗
IB

)|�M〉
, (5)
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with probability

�A
0 = 〈�M |(�A

0

⊗
IB

)|�M〉
〈�M |�M〉 , (6)

or to the post-measurement state,

|	 (2)
AB

〉 =
(
�A

1

⊗
IB

)|�M〉√
〈�M |(�A

1

⊗
IB

)|�M〉
, (7)

with probability

�A
1 = 〈�M |(�A

1

⊗
IB

)|�M〉
〈�M |�M〉 . (8)

POVM operators have the form: �A
0 = |0〉〈0|A, �A

1 = |1〉〈1|A,
IB is the identity operator acting on the qubit B. Note,
�A

0 = 5α2/(10α2 + 32β ); �A
1 = (5α2 + 32β )/(10α2 + 32β )

and �A
1 > �A

0 . After involved calculations we derive explicit
expressions for the post-measurement reduced orbital �̂

(1,2)
AB =

trs(|	 (1,2)
AB 〉〈	 (1,2)

AB |) and spin σ̂
(1,2)
AB = tror (|	 (1,2)

AB 〉〈	 (1,2)
AB |)

density matrices:

σ̂
(1)
AB = ∣∣1 ↓〉|2 ↑〉〈2 ↑ |〈1 ↓ |,

σ̂
(2)
AB = 1

1 + 5α2/32β

(
|1 ↑〉|2 ↑〉〈2 ↑ |〈1 ↑ |

+ 5α2

32β
|1 ↑〉|2 ↓〉〈2 ↓ |〈1 ↑ |

)
, (9)

and

�̂
(1)
AB = 4

5

(
1

4

∣∣ψ s
1,1

〉〈
ψ s

1,1

∣∣ + ∣∣ψ s
0,0

〉〈
ψ s

0,0

∣∣
−1

2

∣∣ψ s
1,1

〉〈
ψ s

0,0

∣∣ − 1

2

∣∣ψ s
0,0

〉〈
ψ s

1,1

∣∣),

�̂
(2)
AB = 1

1 + 5α2/32β

[∣∣ψA
0,1

〉〈
ψA

0,1

∣∣ + α2

8β

(
1

4

∣∣ψ s
1,1

〉〈
ψ s

1,1

∣∣
+∣∣ψ s

0,0

〉〈
ψ s

0,0

∣∣ − 1

2

∣∣ψ s
1,1

〉〈
ψ s

0,0

∣∣ − 1

2

∣∣ψ s
0,0

〉〈
ψ s

1,1

∣∣)]
.

(10)

Since α/
√

β is a small parameter, with high accuracy we set
1 + 5α2/32β ≈ 1.

V. THE UHLMANN FIDELITY AND THE
POST-MEASUREMENT QUANTUM

CONDITIONAL ENTROPY

Before studying the entropy of the system we ex-
plore the fidelity between pre and post-measurement states
of the spin subsystem. In its most general form, the
fidelity problem was formulated by Uhlmann. For de-
tails about the Uhlmann fidelity, we refer to Ref. [59].
At first, let us perform the standard purification pro-
cedure of the pre ρ̂s and post-measurement spin den-
sity matrices σ̂AB. We adopt the spectral decompositions
ρ̂s = ∑

x PX (x)|x〉〈x|AB, σ̂AB = ∑
x QY (y)|y〉〈y|AB, associated

with the ensembles {PX , |x〉}, {QY , |Y 〉}, where the ran-
dom variables x, y belong to the different alphabets. A
purification with respect to the reference system R we

define as follows: |φρ〉R,AB = ∑
x

√
PX (x)|x〉R|x〉AB, |φσ 〉R,B =

trA(
∑

y

√
QY (y)|y〉R|y〉AB). The Uhlmann fidelity between

two mixed states reads

F (trA(σ̂AB), ρ̂s)=max(Uσ ,Uρ )|〈φσ |(U †
ρUσ )R ⊗ IAB|φσ 〉R,AB|2.

(11)

The Uhlmann theorem [59] facilitates the calculation of
Uhlmann fidelity and finally, we deduce

F
(
trA

(
σ̂

(2)
AB

)
, ρ̂s

) =
(

1 + 5α2

16β
√

2

)

× 1

1 + 5α2/32β
× 1

1 + 5α2/16β
. (12)

For a small SO coupling we find the asymptotic estima-
tion: F (trA(σ̂ (2)

AB ), ρ̂s) ≈ 1 − 5(3 − √
2)α2/32β. The distance

between pre and post-measurement states decays with SO
constant α.

Taking into account Eqs. (9) and (10) and probabili-
ties Eqs. (6) and (8), we deduce the expression of the
post-measurement von Neumann entropy of the spin sub-
system S(σ̂ (2)

AB ) = −�A
1

5α2

32β
ln ( 5α2

32β
). The difference between

pre and post-measurement entropies of the spin subsys-
tem S(σ̂S ) − S(σ̂AB) = − 5α2

16β
ln ( 5α2

16β
) + �A

1
5α2

32β
ln ( 5α2

32β
) is pos-

itive for any �A
1 < 1 and that means POVM measurement

decreases the entropy of the spin subsystem. The post-
measurement von Neumann entropy of the orbital subsystem
S(�̂AB) = −�A

1
5α2

32β
ln ( 5α2

32β
). The difference between pre- and

post-measurement entropies of the orbital subsystem S(ρ̂or ) −
S(�̂AB) = − α2

16β
ln ( α2

16β
) − α2

4β
ln ( α2

4β
) + �A

1
5α2

32β
ln ( 5α2

32β
). Obvi-

ously, − α2

4β
ln ( α2

4β
) > 5α2

32β
ln ( 5α2

32β
) and the entropy after mea-

surement decreases S(ρ̂or ) − S(�̂AB) > 0. An interesting
observation is that POVM measurement done on the spin
subsystem through the SO interaction decreases the von
Neumann entropy of the orbital part. The larger the SO
coupling constant α is, the larger is the decrement of the
orbital entropy. Even more surprising is that the measurement
equates post-measurement von Neumann entropies of the spin
and the orbital subsystems S(σ̂ (2)

AB ) = S(�̂AB).
The pair concurrence of the spin subsystem is de-

fined as follows: C = max(0,
√

R1 − √
R2 − √

R3 − √
R4),

with the eigenvalues Rn, n = 1, ...4 of the following ma-
trix R = ρ̂S (σ̂ y

1 ⊗ σ̂
y
2 )(ρ̂S )∗(σ̂ y

1 ⊗ σ̂
y
2 ). For the pre- and post-

measurement concurrence we obtain: C(ρ̂S ) = 5α2/16β,
C(σ̂AB) = 0. The measurement disentangles the system.

Taking into account Eq. (9), for the von Neumann
entropy of the subsystem B we deduce S(trA(σ̂ (2)

AB )) =
−�A

1
5α2

32β
ln ( 5α2

32β
). Therefore, for the post-measurement con-

ditional quantum entropy we obtain: S(A|B) = S(σ̂AB) −
S[trA(σ̂AB)] = 0.

Note that the conditional quantum entropy of the post-
measurement state quantifies the uncertainty that Bob has
about the outcome of Alice’s measurement. The zero value
of S(A|B) means that Bob has precise information about the
measurement result. The same effect we see in the post-
measurement entropy of the orbital subsystem. Due to the
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SO coupling, the measurement done on the qubit A reduces
the post-measurement entropy of the orbital subsystem. The
effect of the electric field, Coulomb interaction and tunneling
processes activated in the case of a small inter-dot distance
may modify this picture. In case of a short interdot distance
(i.e., the parameter β varies in 1 < β < 10) the effect of
the quantum tunneling processes assisted by the Coulomb
interaction becomes important. We explore this problem using
numeric methods.

VI. QUANTUM GENERALIZATION OF
CONDITIONAL ENTROPY

The quantum mutual information quantifies all correla-
tions in the quantum bipartite system, and at least part of
these correlations can be classical. Vedral, Zurek, and others
contemplated more subtle notion of quantum correlations
rather than the entanglement [46,60–62]. For pure states, the
quantum discord is equivalent to the quantum entanglement
but is distinct when the state is mixed. The central issue for the
quantum discord is a quantum generalization of conditional
entropy (the quantity that is distinct from the conditional
quantum entropy). Quantum discord is quantified as follows:

DA(ρ̂s) = min
{�B

j }

(
S(A)−S(A, B)−S

{∑
j

p j tr
[(

�B
j ρ̂s�B

j

)
/pj

]

× ln
[(

�B
j ρ̂

s�B
j

)
/p j

]})
. (13)

We omit details of calculations and present the result for the
difference between pre and post-measurement quantum dis-
cords DA(ρ̂s) − DA(σ̂AB) = 5α2

32β
ln 4. From this result we see

that similar to the pre and post-measurement von Neumann
entropy, quantum discord decreases after measurement.

VII. QUANTUM WITNESS AND
NONINVASIVE MEASUREMENTS

The concept of macroscopic realism introduced by Leggett
and Garg [63] postulates criteria of noninvasive measurability.
In the sequence of two measurements, the first blind mea-
surement has no consequences on the outcome of the second
measurement if a system is classical. However, in the case
of quantum systems, any measurement alters the state of the
system irrespective of whether the first measurement was
blind (i.e., the measurement result is not recorded) or not.
Similar to the Bell’s inequalities, quantumness (i.e., entan-
glement) may violate the macroscopic realism and Leggett-
Garg inequalities. This effect is widely discussed in the lit-
erature [64–66]. Quantum witness introduced in [67] is the
central characteristic of invasive measurements. In this section
we discuss a particular type of noninvasive measurement
protocol.

The directly measured probability we define in terms of
the following expression PB(1) = tr{�B

1 N(ρ̂s)}. Here �B
1 =

|1〉〈1|B is the operator of the projective measurement done
on the second qubit, N (ρ̂s) = ∑

i=1,2 L̂iρ̂
sL̂†

i is the trace pre-
serving quantum channel with Kraus operators L1 = |0〉〈1|A,
L2 = |1〉〈0|A. The blind-measurement probability we define
as follows: GB(1) = tr{�B

1 N(�̂s)}, where the density ma-
trix of the system after the blind measurement is given by

�̂s = ∑
i=0,1 �A

i ρ̂s�A
i . The quantum witness that quantifies

invasiveness of the quantum measurements is given by the
formula

W = ∣∣tr{�B
1 [N(ρ̂s) − N(�̂s)]

}∣∣. (14)

Direct calculations for our system shows that

GB(1) = PB(1) = 1

Z
(1 + 5α2/32β ). (15)

The quantum witness is zero W = 0 indicating that measure-
ments done on the system within this particular procedure are
noninvasive.

VIII. THE EFFECT OF THE COULOMB INTERACTION

We study the case of a short interdot distance and the
effect of the Coulomb interaction. We utilize the configura-
tion interaction (CI) ansatz and perform extensive numerical
calculations. Utilizing the single particle orbitals we solve the
stationary one-dimensional Schrödinger equation in absence
of the Coulomb term. By means of numerical diagonalization
of the single particle Hamiltonian ĤSP = −∂2

x /2 + V (x) +
xE0 discretized on a fine space grid we obtain the single-
particle orbitals φi(x) = ci,Lφi,L(x) + ci,Rφi,R(x) and energies
εi. We construct the symmetric and anti-symmetric two-
electron wave functions labeled as (+,−) and evaluate the
matrix elements of Ĥ0 including the Coulomb term,〈

ϒn′
0

∣∣Ĥ0

∣∣ϒn
0

〉 = ε0
nδn,n′ + 〈

ϒn′
0

∣∣VC

∣∣ϒn
0

〉
δb,b′ , (16)

where b is a part of the index n = {i, j, b = (+,−)}. Note,
that the two-electron wave functions |ϒn

0 〉 accounts for doubly
occupied states as well. We diagonalize the matrix Eq. (16)
and obtain the fully correlated two-electron eigenstates and
eigenvalues {|	n〉, εn}. For a good convergence and reliability
of the spectrum, we used 80 single-particle orbitals |φi〉. In the
last step we add the Rashba SOC term to Eq. (1). The matrix
elements of the total Hamiltonian including the SO term read

〈	n′χ ′ |Ĥ0 + ĤSO|	nχ 〉 = εnδn,n′δχχ ′

− iα
2∑

i=1

〈	 ′
n|∂xi |	n〉〈χ ′|σ y

i |χ〉.

(17)

Here the last term corresponds to the Rashba SO interaction
in the matrix form. The spin-resolved two-electron eigenstates
|�n〉 and the corresponding energies En we obtain by means
of numerical diagonalization of Eq. (17).

In Fig. 2(a), pre- and post-measurement von Neumann
entropies are plotted for the fixed interdot distance � =
0.8d0. The values of the applied electric field and SO cou-
pling are in the range of 0 < E0 < 8 and 0 < α < 1, i.e.,
E0 = 1 corresponds to a static electric field ≈1.1V/μm,
β = 1 is equivalent to the realistic parameters adopted for
GaAs h̄ω = 11, 4 meV, m∗ = 0, 067me, d0 = 10 nm. The
post-measurement von Neumann entropy S(ρ̂AB) is always
smaller than the premeasurement entropy S(ρ̂or ). Electric field
enhances both pre- and post-measurement entropies and for
E0 > 2 we see the saturation effect. The difference between
pre and post-measurement entropies of the orbital subsystem
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FIG. 2. Dependence of the von Neumann entropy on the system’s and field parameters: (a) Planes describe the pre- (green) and post-
measurement (orange) entropies as a function of the spin-orbit coupling strength α and the applied external electric field E0. The effective
interdot distance is � = 0.8d0. (b) The difference between pre- and post-measurement entropies of the orbital subsystem S(ρ̂or ) − S(�̂AB ) as a
function of the spin-orbit coupling α, plotted for different interdot distances.

S(ρ̂or ) − S(ρ̂AB) at different interdot distances is plotted in
Fig. 2(b). The measurement done on the spin subsystem
reduces the entropy of the orbital part. Reduction of the
entropy increases with the strength of SO coupling term α.
However, at small interdot distances the differences between
pre- and post-measurement entropies of the orbital subsystem
S(ρ̂or ) − S(ρ̂AB) is smaller due to the Coulomb term. We
note that when SO coupling is zero, the reduced density
matrix of the orbital subsystem corresponds to the pure state,
and therefore von Neumann entropy is zero; see Figs. 2(a)
and 2(b). The maximum value of the von Neumann entropy
depends on the number of the quantum states involved in the
process and peaks for the maximally mixed state. A strong
electric field increases the amount of the involved quantum
states, and von Neumann entropy reaches its saturation value.
Numerical calculations confirm the validity and correctness of
analytical results.

IX. QUANTUM MONTE CARLO CALCULATIONS

We consider Eq. (1) for four electrons in the four-dot
confinement potential:

V (x) = m∗ω2

2
min

[(
x − 3�

2

)2

,

(
x − �

2

)2

,

(
x + �

2

)2

,

(
x + 3�

2

)2]
, (18)

and perform numerical simulations with the modified con-
tinuous spin variational Monte Carlo (CSVMC) algorithm
[68,69]. Introducing the auxiliary spinor vector

χ†(s) =
N∏

n=1

⊗[eisn , e−isn ], (19)

where sn are auxiliary variables defined on [0, 2π ) with
the periodic boundary conditions, we construct the effective
scalar wave function as a scalar product of the wave functions
and vectors χ†(s)

ψ (x, s) = χ†(s)	(x). (20)

The inverse transformation is done through the integration
over the auxiliary variables

	(x) = 1

(2π )N

∫ N∏
n=1

dsnψ (x, s)χ (s). (21)

The effective Schrödinger equation for the scalar wave func-
tion is

ih̄
∂

∂t
ψ (x, s) = Ĥeffψ (x, s), (22)

where Ĥeff is the effective Hamiltonian. We construct the
effective Hamiltonian replacing the spinor operators by the
following operators:

σ̂x = cos(2s) − sin(2s)
∂

∂s
, (23a)

σ̂y = sin(2s) + cos(2s)
∂

∂s
, (23b)

σ̂z = −i
∂

∂s
. (23c)

This transformation expands the Hilbert space of the problem
from the particular spin sector s = 1

2 to arbitrary spin. To
select the desired solution from the set of all possible solutions
we introduce the equality constraints s2 = 3

4 and s2
z = 1

4 . The
former of these constraints is full-filled automatically, while
the second one is introduced directly into the Lagrange func-
tion L = 〈Ĥ〉 + λ(〈σ̂ 2

z 〉 − 1). The Lagrange function is con-
structed through minimization of the effective Hamiltonian
with the additional spin-variable kinetic energy term doing an
importance sampling with a guiding wave function ψT . A trial
wave function in the Slater-Jastrow form

ψT = DeJ (24)

is used. J is the Jastrow factor which accounts for correlations
introduced through many-body interactions [70]. The nonin-
teracting part is chosen to be a Slater determinant spanned
in the lowest lying single-particle orbitals. Single-particle
orbitals are approximated with a product of Heitler-London
functions [41,42], and the phase is calculated from the homo-
geneous system.
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FIG. 3. The pair distribution function ρ(x1, x2) at zero magnetic and electric fields for various values of the trapping parameter β. The
Rashba constant α = 0.4. The parameter β defines the inverse localization length of wave function. When the localization length exceeds
the distance between minima of the trapping potential V (x) the electronic wave function is delocalized. (a, b) Delocalized pair distribution
function for β = 1 and β = 3. With the increase of β the potential barrier between the minima of the potential increases and the electrons
become localized in the minima of the potential. (c) Localized pair distribution function for β = 10.

In Fig. 3 the pair distribution function is shown for differ-
ent values of the trapping parameter β = 1, 3, and 10. The
Rashba constant is equal to α = 0.4. In the regime, β � 1
the electronic density is localized in the vicinity of minima of
the trapping potential and the overlap between neighboring
trapping gaps is small [Fig. 3(c)]. Decreasing the trapping
barrier the electrons delocalize [Figs. 3(a) and 3(b)]. The
effect of the electric field is presented in Fig. 4. The pair
distribution function for β = 1, 3 and 10 and E0 = 1 is plotted
in Fig. 4. The coordinate x1 and x2 are centered at the minima
of the V (x) + eEx. At the finite electric field the minima in
the direction of the field are energetically preferable and the
total density shifts toward the direction of the applied field.

X. QUANTUM MEMORY

We already showed that a measurement done on the spin
subsystem reduces the orbital entanglement. Now we dis-
cuss a different scheme when Alice does two incompatible
quantum measurements on one of the parts of the bipartite
system, and we try to answer the question of whether the
spin-orbit interaction can reduce Bob’s total uncertainty about
the measurements done by Alice.

We consider two cases: in the first case, Alice and Bob
share the total density matrix of a bipartite SO system

Eq. (4),

ρ̂AB = 1

Z

{∣∣ψA
0,1

〉〈
ψA

0,1

∣∣ ⊗ ∣∣χT+
S

〉〈
χ

T+
S

∣∣ + 5α2

16β

(
1√
5

∣∣ψS
1,1

〉
− 2√

5

∣∣ψS
0,0

〉)(
1√
5

〈
ψS

1,1

∣∣ − 2√
5

〈
ψS

0,0

∣∣) ⊗ |χA〉〈χA|

+
√

5α

4
√

β

(∣∣ψA
0,1

〉( 1√
5

〈
ψS

1,1

∣∣ − 2√
5

〈
ψS

0,0

∣∣) ⊗ ∣∣χT+
S

〉〈χA|

+
(

1√
5

∣∣ψS
1,1

〉− 2√
5

∣∣ψS
0,0

〉)〈
ψA

0,1

∣∣ ⊗ |χA〉〈χT+
S

∣∣)}
, (25)

or they share the mixed state formed after tracing the orbital
subsystem ρ̂S

AB = 1
Z {|χT+

S 〉〈χT+
S | + 5α2

16β
|χA〉〈χA|}, where

|χT+
S (1, 2)〉 = |1 ↑ 〉|2 ↑ 〉, |χA(1, 2)〉 = 1√

2
(|1 ↑〉|2 ↓〉 −

|1 ↓ 〉|2 ↑ 〉), Z = 1 + 5α2

16β
and the functions |ψA

0,1〉,
|ψS

1,1〉, |ψS
0,0〉 are defined in Sec. III. Bob sends Alice

subsystem A and Alice does two incompatible measurements
(she measures σ z

A and σ x
A). The post-measurement states are

given by [4]

ρ̂RB =
∑

n

|ψn〉〈ψn| ⊗ IBρ̂S
AB|ψn〉〈ψn| ⊗ IB,

ρ̂QB =
∑

n

|φn〉〈φn| ⊗ IBρ̂S
AB|φn〉〈φn| ⊗ IB. (26)

FIG. 4. The pair distribution function. The applied electric field steers the electronic density to the edge of the sample in the direction of
the field. The pair distribution function of the first two particles ρ(x1, x2) is centered at the minima of V (x) + eEx for E0 = 1. Various values
of the trapping parameter are considered β = 1, 3, 10. The Rashba constant is equal to α = 0.4.
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Here IB is the identity operator acting on the subsystem B,
and |ψ1〉 = |1〉, |ψ2〉 = |0〉, |φ1,2〉 = 1√

2
(|0〉 ± |1〉) are the

eigenfunctions of σ z
A, σ x

A . Bob has no precise information
about the measurements of Alice. The uncertainty about the
outcomes of measurements is quantified through the entropy
measure:

S(R|B) + S(Q|B) � ln

(
1

c

)
+ S(A|B). (27)

Here c = maxn,m|〈ψm|φn〉|2, S(R|B) = −ρ̂RB ln ρ̂RB+trR(ρ̂RB)
ln trR(ρ̂RB) is the conditional quantum information, and the
last term S(A|B) describes the effect of the quantum memory,
meaning that for a negative S(A|B) < 0 quantum memory re-
duces the uncertainty. Note, the negative conditional quantum
entropy points to entanglement in the system. The inverse
statement is not always true, i.e., not for all entangled states,
the conditional quantum entropy is negative. Nevertheless,

for a pure state Eq. (25) shared by Alice and Bob ρ̂AB, the
conditional quantum entropy can be calculated explicitly, and
it reads

S(A|B)ρ̂AB = 5α2

32βZ
ln

(
5α2

32βZ

)

+ 5α2 + 32β

32βZ
ln

(
5α2 + 32β

32βZ

)
. (28)

It is easy to see that for any 0 < α <
√

β the conditional
quantum entropy is negative for a pure state S(A|B)ρ̂AB

< 0.
This means that correlations stored in the spin-orbit system act
as quantum memory and reduce the uncertainties of measure-
ments. However, in case of the mixed state ρ̂S

AB the situation is
different. All entropy measures can be calculated analytically,
and we deduce the following:

S(A|B)ρ̂S
AB

= − 1

Z
ln

(
1

Z

)
+ 5α2

32βZ
ln

(
5α2

32βZ

)
− 5α2

16βZ
ln

(
5α2

16βZ

)
+ 5α2 + 32β

32βZ
ln

(
5α2 + 32β

32βZ

)
, (29)

S(R|B) = − 1

Z
ln

(
1

Z

)
− 5α2

32βZ
ln

(
5α2

32βZ

)
+ 5α2 + 32β

32βZ
ln

(
5α2 + 32β

32βZ

)
, (30)

S(Q|B) = 5α2

32βZ
ln

(
5α2

32βZ

)
+ 5α2 + 32β

32βZ
ln

(
5α2 + 32β

32βZ

)

−5α2 + 16β +
√

25α4 + 256β2

32βZ
ln

(
5α2 + 16β +

√
25α4 + 256β2

32βZ

)

−5α2 + 16β −
√

25α4 + 256β2

32βZ
ln

(
5α2 + 16β −

√
25α4 + 256β2

32βZ

)
. (31)

For a strong confinement potential and realistic SO coupling α/
√

β < 1, Z = 1 + 5α2

16β
≈ 1. Obviously, S(A|B)ρ̂S

AB
> 0 meaning

that spin-orbit coupling in the case of mixed states enhances the uncertainties of measurements. The reason for this nontrivial
effect is the following. The total entanglement between the subsystems A and B stored in the state ρ̂AB consists of spin-spin,
spin-orbit, and orbit-orbit contributions. Averaging over the orbital states eliminates part of entanglement. The residual spin-spin
entanglement is not enough to reduce the uncertainty of measurements done by Alice. To support this statement, we compare
the entanglement stored in the states ρ̂AB and ρ̂S

AB. The reduced density matrix ρ̂A = trB(ρ̂AB) has the form

ρ̂A =
(

1

2Z

α2

32β
|ψL,1〉〈ψL,1| + 1

2Z

α2

32β
|ψR,1〉〈ψR,1| + 1

2Z

4α2

32β
|ψL,0〉〈ψL,0| + 1

2Z

4α2

32β
|ψR,0〉〈ψR,0|

)
⊗ |1 ↓〉〈1 ↓ |

+
(

1

2Z

α2

32β
|ψL,1〉〈ψL,1| + 1

2Z

(
1 + α2

32β

)
|ψR,1〉〈ψR,1| + 1

2Z

(
1 + 4α2

32β

)
|ψL,0〉〈ψL,0| + 1

2Z

4α2

32β
|ψR,0〉〈ψR,0|

)
⊗|1 ↑〉〈1 ↑ |. (32)

The corresponding von Neumann entropy is

S(ρ̂A) = − 3

2Z

α2

32β
ln

(
1

2Z

α2

32β

)
− 3

2Z

4α2

32β
ln

(
1

2Z

4α2

32β

)
− 1

2Z

(
1 + α2

32β

)
ln

[
1

2Z

(
1 + α2

32β

)]

− 1

2Z

(
1 + 4α2

32β

)
ln

[
1

2Z

(
1 + 4α2

32β

)]
. (33)

The von Neumann entropy for the state ρ̂s
A = trB(ρ̂s

AB) is

S
(
ρ̂S

A

) = − 1

Z

(
1 + 5α2

32β

)
ln

[
1

Z

(
1 + 5α2

32β

)]
− 5α2

32βZ
ln

(
5α2

32βZ

)
. (34)
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S(ρ̂A) > S(ρ̂s
A) and part of the entanglement is lost after

averaging over the orbital states.

XI. CONCLUSIONS

Combining analytical methods with extensive numeric
calculations we studied the influence of the spin-orbit in-
teraction on the effect of quantum memory. Measurement
done on the spin subsystem through the spin-orbit channel
allows to extract information about the orbital subsystem and
reduces the entropy of the orbital part. The result of two

incompatible measurements done on the spin subsystem de-
pends on whether the density matrix of the system is pure or
mixed. In the case of pure states the spin-orbit coupling acts
as a quantum memory and reduces the uncertainty about the
measurement results, whereas in the case of mixed states, the
spin-orbit coupling enhances the uncertainty.
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