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Electron spin resonance in spiral antiferromagnet linarite: Theory and experiment
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We present a combined experimental and theoretical investigation of the low-frequency ESR dynamics in
the ordered phases of magnetic mineral linarite. This material consists of weakly coupled spin-1/2 chains of
copper ions with frustrated ferro- and antiferromagnetic interactions. In zero magnetic field, linarite orders
into a spiral structure and exhibits a peculiar magnetic phase diagram sensitive to the field orientation.
The resonance frequencies and their field dependence are analyzed combining microscopic and macroscopic
theoretical approaches and precise values of magnetic anisotropy constants are obtained. We conclude that
possible realization of exotic multipolar quantum states in this material is greatly influenced by the biaxial
anisotropy.

DOI: 10.1103/PhysRevB.100.174412

I. INTRODUCTION

The frustrated spin-1/2 chain model with nearest neighbor
ferromagnetic J1 < 0 and next-nearest neighbor antiferromag-
netic J2 > 0 exchanges has recently attracted a great deal
of interest owing to its exotic quantum properties. In strong
magnetic fields the model can exhibit the longitudinal spin-
density wave, the spin nematic, and even higher-order multi-
polar phases [1–9]. Frustrated ferromagnetic chains are real-
ized in a family of copper-oxide materials with edge-sharing
CuO2 plaquettes represented, for instance, by LiCuVO4

[10,11], Rb2Cu2Mo3O12 [12], LiCu2O2 [13], NaCu2O2 [14],
Li2ZrCuO4 [15], and PbCuSO4(OH)2 (linarite) [16]. Among
these the natural mineral linarite PbCuSO4(OH)2 [16–26]
combines a moderate saturation field of about 10 T with close
proximity to the quantum critical point |J2/J1|c = 1/4, which
may provide direct access to the most exotic multipolar states
[4]. Besides that, linarite exhibits a unique phase diagram for
magnetic fields applied along the chain direction with up to
five commensurate and incommensurate phases [18,21,25].

There is an ongoing debate on the role of anisotropy for the
observed properties of linarite [24–26]. Indeed, the phase dia-
gram changes dramatically once magnetic field is tilted away
from the chain direction. Cemal et al. [24] have suggested the
minimal anisotropic model with orthorhombic symmetry and
estimated corresponding microscopic parameters for linarite
on the basis of the inelastic neutron scattering measurements
in the high-field polarized phase. Here we present our ex-
perimental results on the low-frequency dynamics in linar-
ite studied by the electron spin resonance (ESR) technique
together with theoretical analysis based on the microscopic
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model as well as on the phenomenological hydrodynamic
theory. The main advantage of the ESR method for studying
the anisotropy effects is its high frequency/energy resolution,
which allows us to obtain much more reliable values of the
anisotropy constants. In the remaining part of the Introduction
we review the basic crystallographic and magnetic properties
of linarite that are important for our subsequent analysis.

The crystal lattice of linarite belongs to the monoclinic
space group P21/m with lattice parameters a = 9.70 Å, b =
5.65 Å, c = 4.69 Å, and β = 102.7◦ [27]. Figure 1 shows
a schematic crystal structure including only Cu2+ ions. The
CuO2 plaquettes form weakly pleated ribbons and the crys-
tal unit cell contains two adjacent copper ions along the
b axis. Still, from the point of view of isotropic exchange
interactions, the copper chains remain uniform with the same
exchange coupling J1 in all spin pairs at distance b/2 and J2

for second nearest neighbors at distance b. In zero field, linar-
ite magnetically orders at TN ≈ 2.8 K into an elliptic spiral
structure with the propagation vector kic = (0, 0.189, 1/2) in
the reciprocal lattice units [18]. The spin spiral rotates in the
xy plane, where the y axis is parallel to the crystallographic b
axis and the x axis lies in the ac plane making an angle 27◦
with the a axis. Two components of the order parameter in this
elliptic spiral state are μx ≈ 0.64 μB and μy ≈ 0.83 μB [18].

In applied field, linarite exhibits a variety of magnetic
structures depending on field strength and orientation, see
Fig. 1. Magnetic phases and transition fields presented in
Fig. 1 are given in accordance with Refs. [22,24]. For a
magnetic field applied parallel to the spiral plane along the
easy x axis, the observed phase sequence, spin helix–spin
cone–spin fan, conforms to the one expected for magnetic
spirals in the presence of anisotropy [28]. For the orthogonal
in-plane direction H ‖ b, an additional commensurate phase
characterized by kc = (0, 0, 1/2) appears instead of the con-
ical state in a wide range of fields. Its presence has been
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FIG. 1. Upper panel: Schematic crystal structure of linarite
showing the positions of magnetic copper ions (small red circles).
The spiral magnetic structure in zero field is illustrated by gray
ellipses. The orthogonal triad x̂, ŷ, ẑ marks the principal axes of
the anisotropy tensor. The hard axis ẑ is perpendicular to the spiral
plane, whereas the intermediate axis ŷ ‖ b. Bottom panel: Magnetic
structures appearing for different orientations of an external field for
T = 1.3 K.

attributed to the biaxial anisotropy, which competes with an
incommensurate tendency set by competing exchanges [24].
Common to all field directions is the fan phase stabilized in the
vicinity of the transition into the polarized state as expected
on general symmetry arguments [28]. An alternative scenario
put forward in [21] identifies the high-field phase with the
longitudinal spin-density wave (SDW) characteristic to one-
dimensional J1-J2 chains. Such a suggestion is motivated
by observation of a peculiar field/temperature dependence
of the ordering wave vector in high fields. However, Cemal
et al. [24] have subsequently shown that the nontrivial field
dependence kic(H ) at the lowest temperature T = 60 mK
is at least partially accounted for by the effect of magnetic
anisotropy in the fan phase. In any case, at the transition to
the saturated phase the ordering wave vector kic remains finite

in linarite [21,24] in contradiction to the SDW scenario, which
predicts kic → 0.

The recent high-field NMR measurements for H ‖ b leave
a narrow window of fields 9.35 � H � 9.64 T, where a spin
nematic phase may be present in linarite [26]. A rather small
field region for the exotic quantum phase is not entirely sur-
prising in view of relatively large ordered moments in this ma-
terial in zero magnetic field and, consequently, small quantum
fluctuations. In contrast, LiCuVO4, another candidate material
for the high-field nematic phase [29,30], has notably smaller
moments ∼0.3 μB [10] making it a more feasible venue for
observing exotic quantum physics albeit in higher magnetic
fields. Note that even in the absence of the multipolar quantum
states the phase diagram of linarite provides an interesting
example of an incommensurate magnet under combined effect
of anisotropy and magnetic field [28].

The paper is organized as follows. In Sec. II we provide
the theoretical basis for interpreting the low-frequency ESR
dynamics using both the microscopic spin-wave approach
(Sec. II A) and the macroscopic field-theoretical treatment
(Sec. II B). Section III describes experimental results that are
compared to the theoretical predictions. In Sec. IV we con-
clude by emphasizing the main consequences to the physics
of linarite.

II. THEORY

A. Spin model

In accordance with the monoclinic symmetry of linarite
crystals, we base our theoretical consideration on a general
anisotropic exchange Hamiltonian for spins S = 1/2 written
in the global coordinate frame as

Ĥ =
∑
〈i j〉

[
Jxx

i j Sx
i Sx

j + Jyy
i j Sy

i Sy
j + Jzz

i j Sz
i Sz

j

]
, (1)

where ŷ is chosen along the twofold b axis and x̂ and ẑ are
oriented in the ac plane. The Hamiltonian (1) provides the
minimal anisotropic spin model for linarite. In particular, we
assume that principal axes of the symmetric exchange tensor
are the same for each bond, which is generally not true.
However, as we shall see below, the exchange anisotropies
contribute additively to the ESR gaps. Therefore, in the case
of a large difference between exchange bonds, one can take
into account the anisotropy of the strongest bond only. Also,
the pleated structure of the CuO2 ribbons in linarite allows for
the antisymmetric Dzyaloshinskii-Moriya (DM) interaction
on the nearest-neighbor bonds. We omit this interaction in the
minimal model since (i) due to staggering of the DM vectors
it does not affect the pitch angle of the spin spiral and (ii)
the inelastic neutron scattering (INS) measurements [23,24]
successfully fit the magnon dispersion data without the DM
term.

There is an emergent consensus in literature that magnetic
properties of linarite are determined by competing ferro-
magnetic nearest-neighbor J1 and antiferromagnetic second-
neighbor J2 exchanges inside the spin chains as well as by an
interchain coupling Jic. Still, different authors proposed quite
different values of the microscopic parameters, see Table I,
where we also indicated the experimental techniques used in
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TABLE I. Microscopic exchange constants of linarite from dif-
ferent works together with the computed ratio of magnetic suscep-
tibilities using Eqs. (24) and (28). The last two rows give χ⊥/χ‖
measured experimentally [17] or directly derived from our ESR data.

Method J1 (K) J2 (K) Jic (K) χ⊥/χ‖

χ (T ) [17] −13 ± 3 21 ± 5 – 2.7
M(H ), χ (T ) [19] −100 36 – 6.7
INS (H = 0) [23]
LSWT −114 ± 2 37 ± 1 4 ± 0.5 2.2
DMRG −78 28 7 1.7
INS (H > Hsat) [24] −168 46 8 2.2

M(H ), T = 2 K [17] 1.6 ± 0.1
ESR, T = 1.3 K 1.85 ± 0.1
(this study)

each study. An accurate estimate of the exchange parameters
of linarite was obtained by the INS measurements in high
magnetic fields [24], which suppress quantum fluctuations. In
the same work, the dominant interchain coupling was iden-
tified as Jc, exchange between nearest neighbors in the c di-
rection. In contrast, the zero-field neutron measurements [23]
suggested a dominant diagonal interchain coupling J ′

c (quoted
in Table I). This conclusion was based on the spin-wave fits of
the low-energy part of the spectrum, where according to the
dynamical DMRG simulations [31] quantum renormalization
effects are significant and the harmonic spin-wave theory is
poorly applicable.

In the rest of the article, both J2 and Jc are assumed to be
isotropic, whereas the biaxial anisotropy of the ferromagnetic
nearest-neighbor bonds is represented as

Ĥ = J1

∑
〈i j〉

[
(1 + ε)Sx

i Sx
j + (1 − ε)Sy

i Sy
j + (1 − δ)Sz

i Sz
j

]
,

(2)
with 0 < ε < δ such that x and z are the easy and the hard axis,
respectively. The same choice of axes was adopted by Cemal
et al. [24], though our definitions of δ and ε are somewhat
different.

B. Microscopic theory

The spin-wave theory of incommensurate helical magnetic
structures was developed by various authors in the 1960s
[28,32–35], see also recent works [36–38]. The motivation for
the early studies was chiefly from the experimental investi-
gation of rare-earth compounds dominated by the single-ion
anisotropy. In this section we extend the previous analysis to
the case of the symmetric exchange anisotropy relevant for
Kramers ions with an effective spin S = 1/2 and provide a
few additional results.

1. Zero magnetic field

We assume that competing exchange interactions produce
a spiral spin structure in the xy plane. The first standard
step consists in transformation from the fixed global frame
to the rotating local coordinate axes (xi, yi, zi ) such that ẑi

is always oriented along the equilibrium spin direction on a
given site i and ŷi is orthogonal to the plane of the spiral.

Spin components in the global frame (denoted below by 0
subscripts) are related to those in the rotating local frame by

Sx0
i = Sz

i cos θi − Sx
i sin θi,

Sy0
i = Sz

i sin θi + Sx
i cos θi, Sz0

i = Sy
i , (3)

where θi is the rotation angle to be determined later. It is
convenient to introduce

Ji j = 1
2

(
Jxx

i j + Jyy
i j

)
, εi j = 1

2

(
Jxx

i j − Jyy
i j

)
. (4)

The Hamiltonian (1) written in the local frame becomes

Ĥ =
∑
〈i j〉

[
Ji j cos(θi − θ j )

(
Sz

i Sz
j + Sx

i Sx
j

) + Jzz
i j Sy

i Sy
j

+ εi j cos(θi + θ j )
(
Sz

i Sz
j − Sx

i Sx
j

) + · · · ]. (5)

In the above expression we dropped mixed terms like Sz
i Sx

j
since those play no role in the following calculations.

Zero-temperature classical energy is obtained from Eq. (5)
by neglecting all fluctuations, Sz

i → S, Sx,y
i → 0,

Ecl = S2
∑
〈i j〉

[Ji j cos(θi − θ j ) + εi j cos(θi + θ j )]. (6)

For uniaxial planar anisotropy (εi j = 0), spins rotate uni-
formly in space by θi = Q · ri, where Q corresponds to the
minimum of the Fourier transform

Jq =
∑

j

Ji j eiq(ri−r j ). (7)

For the microscopic model of linarite we have

Jq = −2|J1| cos qy + 2J2 cos 2qy + 2Jc cos qz, (8)

where we set all nearest-neighbor distances to 1. The mini-
mum is achieved for Q = (0, Q, π ) with

cos Q = |J1|
4J2

. (9)

A sizable second-neighbor exchange J2 ∼ 0.3|J1| produces
the incommensurate spin spiral along the copper chains,
whereas Jc > 0 is responsible for antiferromagnetic spin ar-
rangement between chains in the c direction.

The in-plane anisotropy εi j �= 0 distorts uniform rotation
of spins in space [28,36]

θi = Q · ri + ϕi, ϕi = ϕ sin(2Qri ). (10)

Minimization of (6) with respect to ϕ yields to the leading
order in small εi j :

ϕ = 2εQ

J3Q − JQ
, (11)

where εQ = ∑
j εi j eiQri j . Spins bunch towards the easy di-

rection in the xy plane producing satellite Bragg peaks at
q = ±3Q alongside with the principal peaks at q = ±Q. The
spin bunching also results in an elliptical distortion of the
spiral: 〈

Sx0
Q

〉
〈
Sy0

Q

〉 = 1 − d

1 + d
, d = εQ

J3Q − JQ
. (12)

The experimental value d ≈ 0.13 for linarite [18] can be
straightforwardly related to the parameters of the model (2).
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Using εQ = −2ε|J1| cos Q and J3Q − JQ = 8|J1| sin3Q sin 2Q
with the exchange parameters derived by Cemal et al. [24] we
obtain d ≈ 5.6ε that gives an estimate ε ∼ 0.02. This value of
ε is about 3 times larger than a more precise estimate derived
from the ESR measurements in Sec. III B. For more accurate
determination of ε from ellipticity of the magnetic structure
one may resort to numerical real-space simulations described
in [24,39].

The excitation spectra are computed in the harmonic ap-
proximation neglecting quantum corrections. For that we
use the truncated Holstein-Primakoff transformation for
spin components in the local frame: Sz

i = S − a†
i ai, Sx

i ≈√
S/2 (a†

i + ai ), and Sy
i ≈ i

√
S/2 (a†

i − ai ). Substituting it into
Eq. (5) and keeping only quadratic terms in boson operators
we obtain the harmonic spin-wave Hamiltonian Ĥ2. After the
Fourier transformation and expansion in small ϕi, Ĥ2 takes
the following form:

Ĥ2 =
∑

k

[
Aka†

kak − 1

2
Bk(aka−k + a†

−ka†
k )

+Ck(a†
k+Qak−Q + a†

k−Qak+Q)

+ 1
2 Dk(ak+Qa−k+Q + ak−Qa−k−Q + H.c.)

]
, (13)

where

Ak = S

2
Jzz

k + S

4
(Jk+Q + Jk−Q) − SJQ,

Bk = S

2
Jzz

k − S

4
(Jk+Q + Jk−Q), Ck = Dk − εQS, (14)

Dk = −S

4

{
εk + ϕ

[
Jk − 1

2
(Jk+2Q + Jk−2Q)

]}
.

The last two terms in (13) vanish for the uniaxial symmetry
εi j ≡ 0. In this case, Ĥ2 is diagonalized by the standard
Bogolyubov transformation, which eliminates the anomalous
terms. The magnon energy is then expressed as

εk =
√

A2
k − B2

k, (15)

with Ak, Bk taken from (14).
Using the ESR technique, one can measure magnetic exci-

tations for only a few selected momenta. The oscillating radio-
frequency (rf) field in ESR experiments is uniform within a
sample:

V̂ (t ) = −
∑

i

h(t ) · Si. (16)

Rewritten in the rotating frame (3), V̂ (t ) becomes

V̂ = −
∑

i

{
hy(t )Sy

i + [hx(t ) cos Qri− hz(t ) sin Qri]S
x
i

}
,

(17)

where we keep only transverse spin components and set
ϕi = 0 (10) for simplicity. Equation (17) shows that an rf
field couples to magnetic excitations with k = 0 and ±Q
and its polarization determines relative intensity of absorption
lines. For a uniform spin spiral, magnon with k = 0 has
vanishing energy and the resonance spectrum in zero field

consists of two degenerate frequencies corresponding to k =
±Q magnons


0 = S
√

(Jzz
Q − JQ)

[
1
2 (J0 + J2Q) − JQ

]
. (18)

Considering now a general case, we note that the additional
terms determined by the in-plane anisotropy mix a spin wave
propagating with momentum k with two other magnons at
momenta k ± 2Q, which in turn are coupled to excitations
with k ± 4Q and so on. Calculation of normal modes re-
quires in the case diagonalization of infinite matrices for
incommensurate Q. Following [36], we adopt an approximate
method for determining the ESR frequencies. First, for an
incommensurate spiral the k = 0 magnon has zero energy
even in the presence of mixing terms. The gapless nature of
this mode follows from an arbitrary choice of the phase of the
incommensurate spiral [34]. Second, we aim to compute the
ESR gaps or, more precisely, 
2 including O(ε) contributions.
In this case, the coupling between k = ±Q magnons and
excitations with k = ±3Q can be neglected. The remaining
bosonic terms in (13) are

Ĥ′
2 = AQ(a†

QaQ + a†
−Qa−Q) − BQ(aQa−Q + a†

−Qa†
Q)

+ C0(a†
Qa−Q + a†

−QaQ) + 1
2 D0

(
a2

Q + a2
−Q + H.c.

)
.

(19)

This quadratic form is diagonalized by introducing
symmetric/antisymmetric combinations a1,2 = (aQ ±
a−Q)/

√
2, which decouple from each other, and the

subsequent Bogolyubov transformation. The obtained
energies are


2
1,2 = (AQ ± C0)2 − (BQ ∓ D0)2. (20)

Substituting now expressions (14) and keeping only O(ε)
terms we can express the ESR frequencies as


1 = S
√(

Jzz
Q − Jxx

Q

)[
1
2 (J0 + J2Q) − JQ

]
,


2 = S
√(

Jzz
Q − Jyy

Q

)[
1
2 (J0 + J2Q) − JQ

]
. (21)

The splitting between two ESR modes provides a direct
measure of the in-plane anisotropy. In the case of linarite we
have


1


2
=

√
Jxx

1 − Jzz
1

Jyy
1 − Jzz

1

=
√

δ + ε

δ − ε
, (22)

which is directly used in Sec. III B for determining δ/ε from
the experimental data.

2. Finite magnetic fields

We write the Zeeman energy in the form

ĤZ = −H ·
∑

i

Si (23)

rescaling magnetic field components with the principal values
of the anisotropic g tensor. By doing that we neglect a possible
staggered component of the g tensors of copper ions, which is
compatible with the pleated structure of CuO4 ribbons. Let us
begin with the case of magnetic field oriented perpendicular
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to the helical plane. Spins form a conical structure, which is
especially simple for vanishing in-plane anisotropy: spins tilt
towards the field direction preserving uniform rotation inside
the plane. The details of corresponding calculations can be
found, for example, in [36]. Here we present only the final
results. The magnetic susceptibility per spin is given by

χ⊥ = 1

(J0 − JQ)
. (24)

Diagonalizing the harmonic spin-wave Hamiltonian one can
obtain an analytic expression for the magnon energy in the en-
tire Brillouin zone. One of the ESR frequencies corresponding
to the k = 0 magnon remains equal to zero, whereas two other
gaps are


1,2 =
√


2
0 + H2

[
1
2 (J0+J2Q) − JQ

]2

(J0 − JQ)2
± H

2

J0 − J2Q

J0 − JQ
,

(25)
where 
0 is given by (18).

Magnetic field applied parallel to the helix plane distorts
uniform rotation of spins in space:

θi = Q · ri − αi. (26)

To the first order in small H , the spiral distortion is expressed
as [33,36]

αi = α sin(Qri ), α = H

S
[

1
2 (J0 + J2Q) − JQ

] . (27)

Accordingly, the magnetic susceptibility is

χ‖ = 1

(J0 + J2Q − 2JQ)
. (28)

An important characteristic of a spin helix is anisotropy of the
susceptibility tensor χ⊥/χ‖ or

η = χ⊥ − χ‖
χ‖

= J2Q − JQ

J0 − JQ
. (29)

Generally, one has η > 0 or χ⊥/χ‖ > 1, since Q corresponds
to the minimum of the Fourier transform Jq (7). In particular,
this means that in the absence of anisotropy, the helical
plane is oriented perpendicular to the applied magnetic field.
Values of χ⊥/χ‖ computed for different sets of the exchange
parameters are shown in Table I [40].

Calculation of the ESR frequencies from the spin-wave
theory becomes rather cumbersome for a magnetic field ap-
plied in the plane of spin helix [33]. Instead, in the next
subsection we present a simple derivation of the correspond-
ing ESR spectra within the framework of the macroscopic
field-theoretical approach.

The special feature of the phase diagram of linarite is the
presence of a commensurate canted antiferromagnetic state
for a magnetic field applied parallel to the intermediate y
axis [21]. This two-sublattice state is described by the prop-
agation vector Q0 = (0, 0, π ) and appears due competition
between incommensuration and the in-plane anisotropy [24].
Computation of the excitation spectra within the harmonic
spin-wave theory is straightforward for this state. The two
ESR frequencies corresponding to magnons with k = 0 and

k = Q0 are


1 = 2|J1|S
√

(2 jc + δ + ε)(2 jc sin2 β + δ cos2 β ),


2 = 2|J1|S
√

(δ + ε)(2 jc + δ) cos β, (30)

where jc = Jc/|J1| and β is the canting angle:

sin β = H

2S|J1|(δ + 2 jc)
.

Comparison of the experimental values of the ESR gap in
the commensurate state to the theoretical expressions (30)
provides another consistency check for different sets of mi-
croscopic parameters for linarite.

C. Macroscopic theory

An alternative prospective on the ESR spectra of ordered
and disordered magnets is provided by the macroscopic
or hydrodynamic theory of magnetization dynamics. This
field-theoretical approach was developed by several authors
[41–44], who applied it to both ordered and disordered
magnetic phases. The main idea is to “integrate out” the
high-energy excitations and focus exclusively on the long-
wavelength, low-energy modes. The long-wavelength oscil-
lations only weakly perturb an underlying magnetic structure.
Therefore, one can introduce a local antiferromagnetic order
parameter and investigate its dynamics using the gradient
expansion. For dominant exchange interactions, the emergent
energy functional or Lagrangian has a universal form. For a
collinear Heisenberg antiferromagnet it coincides with that
for the nonlinear σ model [43,44]. In the subsequent analysis
we follow the formulation by Andreev and Marchenko [43],
who specifically considered the ESR dynamics of ordered
antiferromagnets.

The staggered magnetization of a spiral antiferromagnet
formed by competing exchange interactions is described by
a pair of orthogonal unit vectors l1 and l2 that determine the
helix plane:

〈Si〉 � l1 cos Qri + l2 sin Qri. (31)

In addition, we define the vector l3 = l1 × l2 normal to the
spin plane. In the uniform state, the Lagrangian density satis-
fying all symmetry requirements is

L =
3∑

k=1

χk

2γ 2
[∂t lk − γ (lk × H)]2 − Ea, (32)

where γ = gμB/h̄ is the gyromagnetic ratio and Ea is the
anisotropy energy. Note that the combination of time deriva-
tives and the applied magnetic field in (32) is uniquely de-
termined by the Larmor theorem [45]. Considering the static
case, one can relate the constants χk with the components of
the susceptibility tensor:

χ1 = χ2 = 1
2χ⊥, χ3 = χ‖ − 1

2χ⊥, (33)

with χ⊥ and χ‖ given by Eqs. (24) and (28), respectively.
At the next step, oscillations of the triad lk (t ) around the
equilibrium position have to be parametrized by three angles
and the full expression (32) can be expanded to the second
order in small deviations. We skip technical details referring
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instead to the previous applications of the macroscopic theory
for planar spiral antiferromagnets, see [46–48].

In the case of linarite, the biaxial anisotropy energy can be
represented in terms of the components of the perpendicular
vector l3:

Ea = −D

2
l2
3z − E

2

(
l2
3y − l2

3x

)
, (34)

where D > 0 determines the orientation of the spiral plane
in zero field and E > 0 selects the easy axis direction inside
the plane. Note that the signs of anisotropy constants in (34)
are opposite to that of actual spins. For an incommensurate
spiral the anisotropy energy Ea does not contain locking terms
that describe preferable orientation of the pair (l1, l2) inside
the helix plane. However, such pinning potential emerges for
commensurate structures, see an example of the six-sublattice
triangular antiferromagnet discussed in [47]. Thus, we con-
clude that for linarite one of the ESR modes always has zero
frequency irrespective of the applied magnetic field.

In zero field, the two nonzero ESR frequencies are

ω2
1,2

γ 2
= D ± E

χ‖
. (35)

Comparing these with Eq. (21) we relate the phenomenologi-
cal constants with the microscopic parameters:

D = S2
[
Jzz

Q − 1
2

(
Jxx

Q + Jyy
Q

)]
, E = S2

2

(
Jyy

Q − Jxx
Q

)
. (36)

For the uniaxial anisotropy (E = 0) and magnetic field
oriented perpendicular to the helix plane one finds

ω1,2

γ
=

√
D

χ‖
+ (1 + η)2

4
H2 ± 1 − η

2
H, (37)

where, as before, η = (χ⊥ − χ‖)/χ‖. The above expres-
sion fully agrees with the spin-wave result (25) confirming
the equivalence between microscopic and macroscopic ap-
proaches.

For a magnetic field applied parallel to the helix plane, the
macroscopic theory gives a simple result

ω2
1

γ 2
= D

χ‖
,

ω2
2

γ 2
= D

χ‖
+ H2. (38)

Note that the corresponding spin-wave expressions are ob-
tained only after a lengthy and much more involved calcu-
lation [33]. The above expression is valid for magnetic fields
that do not exceed the spin-flop field

Hsf =
√

D

χ⊥ − χ‖
. (39)

Above Hsf the spiral plane changes its orientation to orthogo-
nal with respect to the field.

For the biaxial magnetic anisotropy the resonance frequen-
cies in the orthogonal geometry H ‖ ẑ are given by

ω2
1,2

γ 2
= 1 + η2

2
H2 + D

χ‖

±
√

E2

χ2
‖

+ D

χ‖
H2(1 − η)2 + (1 − η2)2

4
H4. (40)

For fields parallel to the spiral plane, the spin-flop transition
becomes orientation dependent. For the two principal direc-
tions one finds

Hx,y
sf =

√
D ± E

χ⊥ − χ‖
. (41)

The ESR frequencies are described by expressions that are
similar to Eq. (38):

ω2
1

γ 2
= D ∓ E

χ‖
,

ω2
2

γ 2
= D ± E

χ‖
+ H2, (42)

where the upper and the lower signs correspond to H ‖ x̂ and
H ‖ ŷ, respectively.

III. EXPERIMENT

A. Technical details

In our experiments we have measured a naturally grown
single crystal of linarite from the Grand Reef Mine, Arizona,
USA. The crystal is from the same batch as the one used in the
previous studies of dielectric and thermodynamic properties
[22,25]. The crystal has a shape of a prism with dimensions
2.7 × 0.8 × 0.8 mm3. The extended edge is parallel the b
axis, allowing straightforward orientation with respect to this
crystallographic direction.

Our ESR setup is equipped with a multiple mode resonator
of the transmission type in the frequency range 18 < ν <

140 GHz and magnetic field up to 9 T. The sample was
glued on a rotating holder. During the experiment, temper-
ature was varied between 0.5 and 25 K. Measurements in
the high-frequency range 150–250 GHz have been conducted
using the quasioptical terahertz spectroscopy, see, e.g., [49],
in magnetic fields up to 7 T at T = 1.8 K. All temperature
values were stabilized with precision better than 0.05 K.

The orientation of the x and z axes have been identified
in the ESR angular dependence measurements using the fact
that the static magnetic field applied along the x axis causes
the spin-flop reorientation at μ0Hx

sf = 3 T [24]. This anomaly
is easily detectable by a steplike anomaly in the field scans of
transmitted power in ESR experiments. This feature allows us
to identify the x axis with precision better than 5◦.

B. ESR results

Our main results are summarized in the frequency-field
(ν-H) diagrams, Figs. 2, 3, and 5, which show the frequency
dependence of resonance fields for the three principal field
orientations. Two excitation branches with distinct zero field
gaps are observed in each case providing clear evidence
for a substantial biaxial anisotropy in the system. The field
behavior of the ESR gaps allows us to distinguish differ-
ent magnetic structure identified for linarite in the neutron
diffraction experiments, see Fig. 1. Detailed comparison with
theoretical predictions is performed for the cycloidal and the
conical spirals as well as for the field-induced commensurate
antiferromagnetic state. In the narrow field region occupied by
the fan phase, the resonance lines substantially broaden and do
not allow for a meaningful comparison with the theory.
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FIG. 2. The frequency-field diagram for H ‖ z measured at T =
1.3 K. The ESR resonances are marked by solid symbols, empty
squares correspond to phase transitions observed as anomalies on
Ptr (H ) scans. The dotted line shows the transition field into the fan
state. Solid lines are theoretical curves ν(H ) computed for the spiral
state. Dash-dotted line is the paramagnetic ν(H ). Bottom panel:
Examples of Ptr(H ) scans measured at T = 1.3 K.

1. Magnetic field parallel to the z axis

Figure 2 shows the frequency-field diagram together with
examples of the field scans of transmitted through the res-
onator high-frequency power [Ptr(H )] measured at T = 1.3 K
for an applied field oriented perpendicular to the spiral plane:
H ‖ z. In this orientation, a conical or an umbrella state is
realized in a wide range of fields up to the transition (HF )
into the fan phase in the close vicinity of the uniformly
magnetized “saturated” phase (see bottom panel of Fig. 1).
Transition to the fan phase is detected on Ptr(H ) scans as a
steplike deflection. The singularity fields measured at different
frequencies are shown in the frequency-field diagram with
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FIG. 3. Upper panel: The frequency-field diagram for H ‖ y.
Resonances corresponding to absorption lines measured at different
temperatures are shown by symbols of different colors (blue squares
T = 0.5 K, red squares T = 1.3 K, green rectangles T = 1.8 K).
Empty squares are measured transition fields. The vertical dotted
lines show transition fields from the bulk measurements [22] ob-
tained for T = 0.5 K (μ0HC = 2, 7 T, μ0HF = 8 T), T = 1.3 K
(μ0HC = 2, 7 T, μ0HF = 6.7 T), and T = 1.8 K (μ0HC = 2.8 T,
μ0HF = 6 T). Solid black and purple lines show theoretical curves
ν(H ) computed for spiral and canted antiferromagnetic phases.
Solid line is the paramagnetic mode. Bottom panel: Examples of
Ptr(H ). Upper mode was measured at T = 1.8 K, other modes at
T = 1.3 K.

open symbols. The obtained value of HF is in full agreement
with the values reported in Ref. [24].

The resonance fields measured at different frequencies
are shown by solid symbols. The diagram features two ESR
gaps in the spiral phase denoted as “I” and “II,” which rise
with increasing magnetic field. The error bars for some of
the points illustrate the characteristic values for the width at
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FIG. 4. Upper panel: The temperature evolution of the power
absorption scans Ptr(H ) measured at ν = 77.72 GHz for H ‖ y. The
roman numbers correspond to the notations of branches in Figs. 1 and
3. Bottom panel: Temperature dependence of the lowest zero-field
gap 
1.

the half-height of the absorption lines. The asymptotic slope
of low-frequency branch I, ν1 → γ ηH , determined by the
susceptibility anisotropy of the spin spiral is smaller than the
inclination of the paramagnetic resonance ν/H = γ shown
by the dash-dotted line. Fitting the experimental data with
the theoretical formula Eq. (40) is shown by solid lines. The
parameters obtained from these fits are ν10 = 73 ± 1 GHz,
ν20 = 114 ± 2 GHz, and χ⊥/χ‖ = 1.85 ± 0.1. The g-factor
values used in our computations, gy = 2.1, gx ≈ gz = 2.3,
are taken from [19]. The same parameters are also used
for theoretical fits in other field geometries, Figs. 3–7. The
value of χ⊥/χ‖ = 1.85 ± 0.1 agrees with the result from
static magnetization measurements χ⊥/χ‖ = 1.6 ± 0.1 [17],
which were performed at somewhat higher T = 2 K and,
thus, are further away from the zero temperature limit. A
brief comparison of the obtained result and theoretical values
derived for several sets of microscopic exchange parameters
is deferred to Sec. IV.

2. Magnetic field parallel to the y axis

The upper panel of Fig. 3 presents the ν-H diagram for H ‖
y combining the data from several temperatures: T = 0.5 K,
T = 1.3 K, and T = 1.8 K. For illustration we show on the
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FIG. 5. Upper panel: The frequency-field diagram for H ‖ x. The
solid lines show theoretical ν(H ) computed for the spiral phase
before and after the spin-flop transition. Dashed lines indicate the
transition fields. Dash-dotted line gives the paramagnetic ν(H ).
Bottom panel: Examples of Ptr (H ) recorded at T = 1.3 K.

lower panel examples of the power absorption scans Ptr(H ).
Anomalies corresponding to the phase transitions from the
spiral to the commensurate antiferromagnetic phase and from
the antiferromagnetic phase to the fan phase are well detected
on Ptr(H ) scans. The anomaly fields measured at different
frequencies are shown by empty symbols. The transition fields
exhibit significant temperature dependence. Summarizing the
data observed at different frequencies and temperatures,
the field ranges of transitions are marked by vertical lines. The
transition from the fan to saturated phase shows no deflections
on the Ptr(H ) scans. The values of the saturation field shown
in the Fig. 3 are taken from Ref. [22].

The resonance fields obtained at different frequencies are
shown on the diagram with solid squares. The error bars for
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FIG. 6. Angular dependence in the xz plane of the resonance
field for ν = 80.6 GHz, solid squares, and the phase transition
fields, empty symbols, measured at T = 1.3 K. The solid line is a
theoretical curve computed for the spiral magnetic structure. Dotted
lines are guides for the eye.

selected points indicate the characteristic width at the half-
height of the absorption lines. The resonance lines measured
with the quasioptical technique have complicated shapes be-
cause the transmission of high-frequency (HF) power through
a small diaphragm with the linarite sample of a nonregular
shape depends not only on the real part of the HF susceptibil-
ity but also on the imaginary part. Elongated shaded rectangles
on the ν-H diagram corresponding to this frequency range
mark the full area of peculiarities on Ptr(H ) scans.

In the low-field region H < HC linarite has the incommen-
surate spiral magnetic structure [21]. For H ‖ y only one field-
increasing branch was detected marked as I on the diagram.
This branch has the energy gap ν10 = 73 GHz. Branch II
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FIG. 7. Angular dependence in the yz plane of the resonance
field for ν = 80.6 GHz, solid squares, and the phase transition
fields, empty symbols, measured at T = 1.3 K. The solid lines are
theoretical curves computed for the spiral magnetic structure. Dotted
lines are guides for the eye.

corresponding to ν20 = 114 GHz is field independent for this
orientation, which precludes its observation in the field-scan
measurements. Nevertheless, this branch can be detected for
the two other field directions H ‖ x, z.

In the field region HC < H < HF with the canted antifer-
romagnetic structure the two intensive resonance absorption
lines have been detected: the field increasing branch “IV”
and the declining branch “V.” We ascribe these branches to
oscillations with the wave vectors k = (0, 0, 0) and (0, 0, π ),
specific to the commensurate two-sublattice structure. The
solid red lines show the theoretical spectra Eq. (30) computed
using J1 = −14.5 meV and Jc = 0.7 meV, δ/ε = 2.4 obtained
previously from the ESR gaps in zero field and adjusting the
remaining parameter as ε = 0.006. For these fits we have
chosen the set of exchange parameters obtained from the
INS measurements in the saturated phase [24], since these
parameters are not affected by quantum fluctuations.

In addition to these resonances, a narrow low-intensity
absorption line (branch “III”) was also detected for H > HC .
Its intensity decreases with the increasing field (frequency)
and vanishes at μ0H ∼ 4 T. The additional branch can be
ascribed to oscillations of spiral spin-flopped structure. We
suggest that the branch III corresponds to the absorption in
the part of our sample which continues to be in the spiral
phase after the spin plane reorientation. Indeed, the computed
value of the spin-flop transition field for H ‖ y is equal
to μ0Hy

sf = 2.8 ± 0.2 T, see Eqs. (35) and (41), which is
somewhat larger but close to the transition into the canted
commensurate phase μ0HC = 2.7 T realized experimentally.
Theoretical dependence ν(H ) for the spiral phase above the
spin-flop transition H > Hy

sf is shown in Fig. 3 with the dashed
line. The angular dependence of the resonance field of the
line III is also satisfactorily explained by oscillations of spiral
spin structure (see Fig. 7). For this reason we suppose that the
transition to the canted antiferromagnetic phase is broad and
in the field range 2.5 < μ0H < 4.5 T the commensurate and
spin-flopped spiral phases coexist. Coexistence of the low-
field incommensurate spiral and the high-field commensurate
antiferromagnetic phase was also found in several previous
studies and was assigned to the region II on the phase diagram
of Ref. [21].

The field-decreasing branch V detected in the canted com-
mensurate phase continues smoothly into a much broader
line “VI” in the high-field region. The similarity of the ESR
spectra in the two phases yields further support to the presence
of the fan phase near Hsat [24]. The other suggestion for the
high-field region advocated in literature is the longitudinal
spin-density wave (SDW) state [21,26]. Indeed, the SDW
state was found in another J1-J2 chain material LiCuVO4 at
intermediate fields. However, it exhibits quite different ESR
spectra from what we observe in linarite [50]. Resonance
frequencies measured at T = 0.5 K (blue squares at the ν-H
diagram) extrapolate to zero at the saturation field Hsat.

Figure 4 shows the temperature evolution of Ptr(H ) scans
measured at H ‖ y, ν = 77.72 GHz. The Ptr(H ) scans are
normalized to unity at H = 0 and shifted along the ordinate
axis for visibility. The shift of singularities with temperature
is in good agreement with transition lines between spiral,
canted commensurate, and fan phases of the H-T diagram
obtained from the bulk measurements in [22]. The shift of
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the resonance line I to higher fields with temperature can be
explained by temperature decrease of the energy gap ν10. The
bottom panel of Fig. 4 illustrates the temperature dependence
of the energy gap ν10. The gap vanishes in a close vicinity of
the transition temperature TN = 2.8 K.

3. Magnetic field parallel to the x axis

The upper panel of Fig. 5 shows the frequency-field di-
agram measured at T = 1.3 K for H ‖ x. The power trans-
mission field scans Ptr(H ) allow us to observe anomalies
corresponding to the spin-flop reorientation as well as to the
phase transitions between the spiral and the fan phases and
between the fan phase and the saturated state. The two ESR
branches, marked as I and II, are distinguished in the spiral
phase for fields below the spin-flop transition. The lower
branch I corresponds to oscillations of the spiral plane around
the x axis and is expected to be independent of the applied
field, see Sec. II. Nevertheless, a weak decrease of the corre-
sponding ESR gap with magnetic field is clearly seen in the
experimental data. We exclude a small field misorientation as
a possible reason for that since the spin-flop transition remains
quite sharp.

The discrepancy with the theory may be caused either by
strong distortions of the spin structure induced by the field
applied in the spiral plane or by deviations from the minimal
spin model. In particular, our spin model does not include a
staggered component of the g tensors of copper ions and the
Dzyaloshinskii-Moriya interaction on the nearest-neighbor
bonds. These may be also the reason for the discrepancy
between the calculated μ0Hx

sf = 4 T and the experimental
μ0Hx

sf = 3 T values of the spin-flop transition field into the
conical state. In the region of the fan phase a broad resonance
absorption line is observed that is marked as IV in the ν-H
diagram.

4. Magnetic field within xz and yz planes

The angular variations of the resonance field for ν =
80.6 GHz and the phase transition fields are presented in
Figs. 6 and 7 for magnetic fields rotated in the xz and the
yz planes, respectively. The data have been collected at T =
1.3 K. The transition from the fan to the saturated phase is
added to the figure from the ν-H diagram measured at H ‖ x
(Fig. 5). Transition fields Hsat for H ‖ y and z marked in
the figures by diamonds, are taken from Refs. [22,24]. The
solid lines in the angular dependencies show the computed
dependencies of resonances corresponding to branches I and
III in spiral phase. The theoretical curves are in agreement
with experimental points in low field range. At higher fields
the discrepancy increases, probably due to essential distortion
of the spin structure. Note here that the additional branch
III is satisfactorily fitted by the spectrum of oscillations of
the spin-flopped spiral state inside the field region, where
the canted antiferromagnetic state is stable. As we already
remarked before, this observation fully agrees with the con-
clusion reached in the previous works about a coexistence
of commensurate and spin-flopped spiral structures at fields
above HC at H ‖ y [21,22].

IV. SUMMARY AND DISCUSSION

We begin by summarizing the magnetic parameters of
linarite extracted from theoretical fits of the ESR spectra. The
spiral magnetic structure is characterized in zero field by two
susceptibilities: parallel χ‖ and perpendicular χ⊥ to the spiral
plane with χ⊥/χ‖ = 1.85 ± 0.1. This value is compared
in Table I to the classical theory result (29) computed for
various sets of the exchange parameters and with the DC
magnetization measurements of Yasui et al. [17]. Note that our
experiments were performed at T = 1.3 K, whereas results
reported in [17] correspond to higher T = 2 K, which explains
the difference between the two values. Comparison with the-
oretical results clearly shows the significance of interchain
coupling for linarite and inadequacy of modeling its properties
with the purely one-dimensional spin Hamiltonians. Apart
from that, the three sets of microscopic couplings predict
χ⊥/χ‖ fairly close to our value. The most precise values of
the exchange constants are expected to be determined by the
INS measurements in the saturated phase [24], see Table I.
We ascribe the remaining 15%–20% difference between the
experimental and theoretical results for χ⊥/χ‖ to the quantum
renormalization effect. Indeed, quantum fluctuations in linar-
ite are non-negligible due to the dominant intrachain interac-
tions and the discussed effect for χ⊥/χ‖ roughly matches the
observed reduction of ordered moments in zero field [18].

Based on the experimental values of zero-field ESR
gaps and using χ⊥ = 0.068 ± 0.004 μB/Cu/T = 4900 ±
300 J/T2/m3 [24] we have obtained for the macroscopic
anisotropy parameters of linarite as defined in Eq. (34):
D = 30 ± 2 kJ/m3 and E = 12.6 ± 1 kJ/m3. The biax-
ial anisotropy is significant and, as a result, the spin-flop
transition depends on the field orientation inside the helix
plane. Furthermore, using the minimal microscopic model
of the biaxial anisotropy (2) with the exchange constants of
Cemal et al. [24] we have determined the exchange anisotropy
parameters δ ≈ 0.014 and ε ≈ 0.006. These values agree
with the general result that symmetric anisotropic interactions
constitute (
g/g)2 fraction of the isotropic exchange with

g being the anisotropic part of the g factor of a magnetic
ion [51]. The obtained values for δ and ε are more accurate
than the previous estimates δ ∼ 0.03 and ε � 0.003 [24],
since our results have been derived by directly measuring the
small excitation gaps. The anisotropy parameters found in our
study provide a reference point for future theoretical work on
linarite.

Despite good overall agreement, there is one inconsistency
between the ESR theory of a spiral antiferromagnet and the
experimental behavior of resonance frequencies for H ‖ x, see
Sec. III B 3 and Fig. 5. The disagreement is probably due to
extra anisotropic terms besides those included in Eq. (34). At
the microscopic level extra terms can be generated either by
the staggered DM interaction on the J1 bonds or by staggered
component of the g tensors of copper ions both excluded
in the minimal model (2). The latter interaction is probably
more important since the disagreement between theory and
experiments builds on with increasing magnetic field. This
problem needs to be addressed in future studies on linarite.

Another point deserving special comment is why the semi-
classical theory of incommensurate magnetic spirals works

174412-10



ELECTRON SPIN RESONANCE IN SPIRAL … PHYSICAL REVIEW B 100, 174412 (2019)

so well for linarite, though the material is obviously quasi-
one-dimensional, see Table I. We attribute this fact to well
developed ordered moments as found in the neutron diffrac-
tion experiments [18]. The related suppression of quantum
fluctuations is a combined effect of magnetic anisotropy and
interchain exchange coupling. Still, according to the published
zero-field data [23], the high-energy dynamics of linarite
appears to be quite unusual. In particular, no excitations have
been detected above 1.5 meV despite the fact that the magnon
band computed within the harmonic spin-wave theory extends
up to ∼20 meV. Hence, the spin dynamics of linarite is far
from being trivial and deserves additional experimental and
theoretical investigation.

Regarding exotic multipolar quantum states argued to be
realized in linarite [21], our measurements do not allow for
direct verification of their presence or absence. We refer to the
recent NMR work [26], which leaves only a narrow window
of fields 9.35 < μ0H < 9.64 T for a possible multipolar state
in the H ‖ b geometry. If continuous spin rotations about the
field direction are present, a multipolar state is formed by
condensate of bound complexes formed by m spin flips. Since
the total spin projection Sz

tot is a good quantum number in
the saturated phase, each m sector appears to be independent
and the one with the highest critical field determines the
equilibrium multipolar state. The multipolar states considered
for linarite include quadrupolar or spin-nematic states with
m = 2, octupolar states with m = 3 and other states up to
m = 6 [21]. However, the above classification of multipolar
states fails if continuous symmetry is replaced with only

discrete p-fold rotations about the external field direction. In
this case one can characterize the magnon condensates by
mod (m, p) only. The observed biaxial anisotropy in linarite
leaves two possibilities: a multipolar state can be described
either by m = 1 and, thus, have the trivial dipolar symmetry
or by m = 2 corresponding to a nontrivial quadrupolar state.
The quadrupolar state can additionally break the translation
symmetry producing spontaneous dimerization [52]. Whether
such a state is realized in linarite in the narrow high-field
region with H ‖ b remains to be seen.
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