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We use Monte Carlo simulations to evaluate the feasibility of detecting thermal order by disorder in real
antiferromagnetic Ising pyrochlores, frustrated by a magnetic field applied in the [110] direction. Building on
an ideal system with only nearest-neighbor exchange interactions and a perfectly oriented field, we consider
the effects of dipolar interactions and field misalignment. Our approach is special in that it relies more in the
possibility to switch on and off the entropic drive towards order than in the absence of (or immunity to) a
particular perturbation. It can then be applied, in principle, to other uncontrolled interactions expected to be
naturally present in real magnetic materials. We establish the conditions under which entropic effects can be
discerned from an interaction drive towards order, show how to use neutron scattering as a means to unveil this
mechanism, and discuss possible materials where to test these ideas.
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I. INTRODUCTION

In magnetism, the geometry of the spin lattice can be just
an unimportant detail (as when considering critical fluctua-
tions in a ferromagnet [1]) or a crucial one, deciding whether
magnetic order actually takes place or not. The latter case
applies to geometrically frustrated magnetic systems, charac-
terized by the absence of spin order at low temperatures even
without any quenched structural disorder [2,3]. Prominent
examples among these disordered systems are the magnetic
equivalents of a liquid (spin liquids, correlated but disordered)
[4,5] and of ice (spin ices) [6,7]. They are home to very
exotic quasiparticles [4,8] and to the magnetic analog of
electric charges or “monopoles,” respectively. The monopoles
interact through a Coulomb law and respond to a magnetic
field like charges to an electric one [9]. In further analogy
to systems of electric charges, different states of monopole
matter have been suggested or detected: monopole fluids
[10–12], ionic-like crystals with staggered magnetic-charge
density [9,11–14], or much more complicated structures
[15–19]. Much of these physics can be extended into two-
dimensional artificial structures [20–22], opening also to new
possibilities.

Since strong spin correlations are operative, in principle
even very small perturbations can break the massive degen-
eracy of some of the fluidlike (or even crystalline [11,13])
ground states, forcing the appearance of long-range order
at low-enough temperature. Adding to this, the fact that
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the ground state multiplicity in these frustrated systems is
accidental opens up the possibility to other—more subtle—
mechanisms of symmetry breaking. Seemingly against ther-
modynamics, even thermal disorder can be the driving force
helping to develop an order parameter. Mirroring this apparent
contradiction, the phenomenon was baptized as classical or
thermal “order by disorder” [23–26] (OBD). It was first
shown by Villain and collaborators in the so called generalized
domino model [27], and it occurs when there is a huge dis-
proportion in the density of low-energy excitations associated
with a particular ground state.

Theoretical models where disorder (including even struc-
tural defects, see for example Ref. [28]) helps to develop a
magnetic order parameter are quite interesting by themselves
and have been studied for many years [27,29]. However, a
crucial question to ask when dealing with real systems is how
to determine that the main cause of order is related to the
entropy term (−T S) of the free energy F = U0 − T S, and not
to an uncontrolled energy perturbation affecting the internal
energy U0 (see discussion on Ref. [30]). The strongest case
in favour of actual OBD at the moment seems to be that of
the XY pyrochlore Er2Ti2O7, where the classical ground state
degeneracy is protected by symmetry [30]. The actual mech-
anism is still under discussion [31], and quantum [30,32–
34], classical [35], or composed [36] fluctuations could be the
selection mechanism behind the observed order.

In this paper, we explore in detail this crucial point of
the detection of OBD in real materials. Following Ref. [37],
we will see that antiferromagnetic Ising pyrochlores [38–42]
are a promising experimental scenario to detect OBD. While
it is never possible to switch off every term affecting the
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FIG. 1. (a) Conventional unit cell of the pyrochlore lattice (L = 1), consisting of up (colored) and down (uncolored) tetrahedra. Spins
(arrows) sit in their vertices and can be mapped into magnetic charges or monopoles (spheres, the color and size of which represent their sign
and value). The magnetic field B ‖ [110] can be inadvertently misdirected by a small angle θ around ĉ ∝ [110] to give a tilted field B′ with a
nonzero component along [001]. (b) The same configuration, which presents staggered charge order, viewed from top. While β spins (blue)
are orthogonal to the perfectly oriented magnetic field B, α spins (yellow) couple with it. (c) Disordered zero-temperature ground state for
μB = h > hinf in the ideal D = 0, θ = 0 case. Incoherent single-charge-ordered β chains (running perpendicular to B) populate the system
and produce a globally disordered state with ρs = 1 and ρs

S = 0.

unperturbed internal energy U0 in a real crystal, the physics
on these materials naturally suggest the reverse approach: the
thermally driven tendency towards magnetic charge order in
the −T S term can be detuned by means of an easily con-
trollable parameter. In this way, we manipulate the magnetic
field to change the type of excitations occurring at fixed
temperature, gauging the importance of the OBD mechanism
by its effect on the staggered charge density. Using Monte
Carlo simulations, we apply this method to the particular
case of dipolar interactions. These, aside from being expected
in real materials, allow understanding the perturbation as an
attraction among Coulomb charges and thus favoring charge
order. In principle, the same ideas could be applied to any
other perturbation terms affecting U0 (e.g., second or fur-
ther neighbors exchange interactions), or to other systems
presenting field-tuned OBD (e.g., artificial spin ices [37],
where dipolar interactions are unavoidable). We also study
the effect of a misaligned magnetic field B. This case is
special since the control parameter used to put in evidence
the OBD mechanism is (in addition to this) a force driving
the order; in other words, B changes S(T, B) in a nontrivial
way but also perturbs U0. With the intention to bridge the
gap between theory and experiment, we suggest materials
where OBD could be detected using these ideas and how
to measure the effect, concentrating in the particular case of
neutron scattering techniques.

A. System and model

The pyrochlore lattice consists of corner-sharing tetrahe-
dra, the centres of which form a diamond lattice [Fig. 1(a)].
Classical Ising magnetic moments μi = μSi = μSi ŝi sit on
the vertices of the tetrahedra, with the quantisation directions
ŝi along the local 〈111〉 directions. The pseudospins Si = ±1
indicate if the magnetic moments point outwards (+1) or
inwards (−1) of “up” tetrahedra [colored ones in Fig. 1(a)].
The Zeeman coupling with a magnetic field B, as well as
the magnetic interactions of exchange and dipolar origin, of
strengths J and D, respectively, are accounted for by the

Hamiltonian

H = − J
∑
〈i j〉

Si · S j − μ
∑

i

B · Si

+ D r3
nn

∑
i> j

[
Si · S j

|ri j |3 − 3(Si · ri j )(S j · ri j )

|ri j |5
]

, (1)

where 〈i j〉 means the sum is carried over nearest neigh-
bors, rnn is the pyrochlore nearest-neighbor distance and D =
μ0μ

2/(4πr3
nn). It can be easily seen in Fig. 1 that the N

spins may be separated into two groups according to how
they couple to a field B ‖ [110]: while β spins (blue) are
orthogonal to it, α spins (yellow) have a nonzero projection
ŝi · B = αi

√
2/3 B with αi = ±1 [43]. Using these definitions,

and referring all energy contributions to the nearest-neighbor
interactions term, the Hamiltonian can be rewritten as

H
|Jeff | = −

∑
〈i j〉

SiS j −
√

2√
3

h

|Jeff |
∑
i∈α

αiSi + D

|Jeff |H
r>rnn
dip , (2)

with Jeff = J/3 + 5D/3 (assumed <0 throughout this text),
and h = μB, with the second sum running over α spins
only. Hr>rnn

dip is unitless, and encompasses all dipolar contri-
butions beyond nearest neighbors. The ferromagnetic version
of Eq. (2) corresponds to the well-known dipolar spin-ice
model [44]. In our work, we will focus on a case in which the
antiferromagnetic nearest-neighbor term (Jeff < 0) modified
by the Zeeman energy dominates. As shown analytically and
numerically in Ref. [37], Eq. (2) with D/|Jeff | = 0 conducts
to physics similar to Villain’s domino model [27], but its
field-tuned OBD may allow for an experimental contrast of
the phenomenon. Different from this recent work, the nearest
neighbor Hamiltonian is now perturbed by dipolar interactions
Hr>rnn

dip , with a relative intensity controlled by the (assumed
small) parameter D/|Jeff |.

Within the monopole picture [9], the diverse spin con-
figurations can be mapped to arrays of magnetic charges
that live in the dual diamond lattice, with a lattice constant
rd = √

3/2 rnn. While tetrahedra with two spins pointing in
and two out are considered neutral, those with three spins in
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and one out, or viceversa, have a positive or negative single
charge Qs = 2μ/rd sitting in their centres [small spheres
in Figs. 1(a)–1(c)]. Moreover, positive or negative double
charges [big spheres in Figs. 1(a) and 1(b)], with Qd = 2Qs,
can be found in tetrahedra with all spins pointing in or all
spins pointing out, respectively. It will be useful to define
the density of single monopoles ρs, which has a value of 1
when there is exactly one single monopole per tetrahedron;
analogously, one can define the density of double monopoles
ρd and neutral sites ρn.1 Having transformed a configuration
of spins into one of monopoles, dipolar interactions can in turn
be approximately described as Coulombian forces between
monopoles, as was shown by Castelnovo and collaborators
[9]. Since these forces promote the development of ordered
phases of charges of alternating sign with the zinc-blende
structure [11–13], we define here two order parameters: the
single-monopole (double-monopole) staggered charge den-
sity ρs

S (ρd
S ) as the thermal average of the modulus of the

total magnetic charge due to single (double) charges in up
tetrahedra, normalized so that full order corresponds to a value
of 1. Mathematically, the single-monopole staggered density
can be written

ρs
S =

〈
1

Nup

∣∣∣∣∣
∑

ν

as
ν

∣∣∣∣∣
〉

, (3)

where the Greek index ν denotes a sum carried over the
diamond-lattice sites corresponding to the centres of up tetra-
hedra (the total number of which is Nup = N/4), and as

ν

is equal to 1 (−1) if there is a positive (negative) single
monopole in site ν, and equal to 0 otherwise. Analogously,
the double monopole staggered density is defined as

ρd
S =

〈
1

Nup

∣∣∣∣∣
∑

ν

ad
ν

∣∣∣∣∣
〉

, (4)

with ad
ν equal to 1 (−1) if a positive (negative) double

monopole sits in site ν of the up tetrahedra sublattice, and
equal to 0 otherwise. According to these definitions, having
for example ρs

S < 1 can imply both a lattice full of partially
disordered single charges, as well as one with a low density
of single charges but with a perfect staggered order. The
measurement of the density of single and double charges
erases any ambiguity.

B. Simulation details

We performed Monte Carlo simulations with the
Metropolis algorithm and single-spin-flip dynamics. In
order to implement Eq. (2) in the algorithm, we used Ewald
summations to take into account long-range interactions.
Different materials were explored by changing the
adimensional parameters in the Hamiltonian. In practice,
we varied the value of D (for example, increasing it to
consider a material with a big μ) modifying J accordingly

1Note that differently from the staggered charge density defined
below, these are number densities, irrespective of the monopole
charges (which always average to zero).

so as to keep Jeff constant. B was always varied freely, from
which we obtained the product h = μB.

The conventional unit cell of the pyrochlore lattice
[Fig. 1(a)] consists of 16 spins, and we simulated cubic
systems of L3 cells with periodic boundary conditions. As an
example, a system with L = 6 and dipolar interactions took
5 × 104 Monte Carlo steps to reach the equilibrium, and then
2.5 × 104 steps were needed to calculate the averages at each
value of temperature and applied magnetic field. In turn, the
results were averaged over 30 independent runs.

We used spin configurations obtained from Monte Carlo
runs to simulate the spin structure factor given by

ISS (k) = 1

N

N∑
i=1

N∑
j=1

〈SiS j〉(ŝ⊥
i · ŝ⊥

j )eik·ri j , (5)

where N is the number of sites in the pyrochlore lattice, 〈SiS j〉
is the thermal average of the correlation between pseudospins
at sites i and j, and ŝ⊥

i is the component of the quantisation
direction at site i perpendicular to the scattering wave vector
k, calculated as

ŝ⊥
i = ŝi −

(
ŝi · k

|k|
)

k
|k| . (6)

We also simulated the charge-charge correlation function by
following the expression:

IQQ(k) = 2

N

N/2∑
η=1

N/2∑
ν=1

〈QηQν〉 eik·rην , (7)

where N/2 is the number of tetrahedra, Qη represents the topo-
logical charge at site η of the diamond lattice, and rην is the
distance between monopoles. Both the spin structure factor
and the charge-charge correlation function were obtained by
averaging over sets composed of 150–200 configurations for
L = 8.

II. EFFECT OF DIPOLAR INTERACTIONS

A. Ground state and low-energy excitations

While the phenomenon we want to investigate necessarily
happens at finite temperature, we first need to study the system
at the lowest temperatures in order to determine the magnetic-
field region where it would be observable. The unperturbed
situation, where Eq. (2) is limited to nearest-neighbor inter-
actions (D/|Jeff | = 0), has been studied before in Ref. [37].
In the absence of magnetic field, the ground state is a crystal
of double charges alternating in sign, making a zinc-blende
structure with ρd

S = 1 [12]. Having no magnetic moment,
double monopoles are unstable under any sufficiently strong
magnetic field. Figure 2(b) shows this for the relevant situa-
tion were the field is along the [110] direction. We computed
the change in energy e(h) of a single tetrahedron in the
nearest-neighbor approximation due to the increasing field
h in the Zeeman term. We classified spin configurations as
neutral (n) sites, and double (d) and single (s) monopoles.
Above an inferior field hinf the α-spin chains result completely
polarized, and two particular single monopoles (one of each
sign) are the stable configurations in each tetrahedron. Con-
struction constraints involving the underlying spins impose

174404-3



PAMELA C. GURUCIAGA AND RODOLFO A. BORZI PHYSICAL REVIEW B 100, 174404 (2019)

-20

-16

-12

-8

-4

 0

 0  2  4  6  8  10  12

(b)

D=0

e/
|J

ef
f|

h/|Jeff|

d
s
n

 0

 0.3

 0.6

 0.9

       

(a)

D
/|J

ef
f|

 0

 0.3

 0.6

 0.9

       

hinf
hsup

FIG. 2. (a) Diagram showing the two phases of the antiferromag-
netic Ising pyrochlore with dipolar interactions of strength D under
a magnetic field h in the [110] direction. The yellow sector marks
the double-monopole (d) ground state. The sectors painted orange =
red + yellow (where OBD can take place) and purple = red + blue
correspond to the same thermodynamic phase: a single-monopole (s)
ground state, with double charges or neutral sites (n) as the lowest-
energy excitations, respectively. The two ground states are separated
by hinf (full line), while the change in the type of favoured excitations
at low temperature is indicated by hsup (dashed line). Both fields
were obtained by simulating spin systems (full squares and circles)
in the T → 0 limit (see end of Sec. II A for details); hinf is also
compared to the values calculated within the monopole picture (open
triangles). (b) Nearest-neighbor (D = 0) energy of the different spin
configurations of a single tetrahedron as a function of the field. The
colors used for the different types of charge are in correlation with
the panel above. During this work we will be interested only in the
lowest-energy configurations of each kind (full lines). In this panel,
the region where OBD can occur is marked by vertical dashed lines.

antiferromagnetic order within β-spin chains, and they in
turn form charge-ordered chains running perpendicular to the
field [see Fig. 1(c)]. The polarized α spins decouple each of
these ordered β chains from the rest. The ground state turns
then into a ρs = 1 disordered array with subextensive residual
entropy [37], characterized by ρd

S = 0 (there are no double
charges) and ρs

S = 0 (with D = 0 there is no driving force
at T = 0 to impose coherence between the charge-alternating
single-monopole β chains).

Although there are no further changes in the ground state
on increasing field, it is important for the study of OBD to
establish the field range where double monopoles are the
lowest-lying energy excitations out of the single-monopole
ground state. It has been shown before that, due to construc-
tion constraints involving the spins that make the magnetic
charges, these double monopoles favour pair monopole cor-
relations even in the absence of dipolar interactions [10,12],
while neutral sites disfavour them. Applied to the present
situation, this general argument has important consequences.
Imagine neutral sites are so energetically costly compared

with double charges that their density is negligible at low
temperatures. It is then easy to check that the only way to
promote low-energy excitations—i.e., double monopoles—is
by turning an α spin linking plus and minus single charges in
consecutive charge-ordered chains [see Figs. 1(b) and 1(c)].
As shown numerically and analytically in Ref. [37], the pro-
liferation of these double charges at finite temperature drives
the appearance of long-range charge order by the coherent
assembly of adjacent β chains [37]. Figure 2(b) allows us to
extract the field range [hinf , hsup] (black dotted lines) where
OBD was shown to be possible for the particular case D = 0.

The inclusion of dipolar interactions (D �= 0) is made con-
ceptually and even quantitatively simple within the monopole
picture. We expect the zinc-blende crystal of double charges
to become more stable (through an extra term proportional
to −4DQ 2

s ) and thus to extend to higher fields. In turn, the
disordered ground state of single monopoles should now be
ordered, stabilized by a term proportional to −DQ 2

s . This
is why—if dipolar energy was the main ordering force—we
would expect the charge-ordered state of single monopoles
to be destroyed at a critical temperature scaling with D (i.e.,
comparatively small within the context of this study). This
way of reasoning is what will allow us to observe indirectly
OBD effects even in the presence of such perturbations: we
will choose to work at a “high” temperature T ≈ |Jeff |/kB

such that the effect of perturbations is small, with OBD as
the dominating driving force towards order. As we will see in
Sec. II B, the need to work at a relatively high temperature will
make the upper limit hsup much less significant than hinf .

In yet another example of its simplicity and beauty, we
estimate now the field hinf using the monopole picture. The
Madelung energy per pair of particles of a crystal of magnetic
charges Q and −Q in the zinc-blende structure is given by

M = − μ0

4π

α Q2

rd
, (8)

with α = 1.6381 [45] and Q a function of D through its
link to the magnetic moment μ = √

(4π/μ0)r3
nn D. Their self-

interaction energy [9], in turn, is

E self =
[

Jeff − 5

3
D + 4

5

(
1 +

√
2

3

)
5

3
D

](
rd

μ
Q

)2

. (9)

The factor on the right is a constant taking the value 4 or 8
(depending on whether the crystal is made of single or double
charges, respectively), rendering E self a function of D and Jeff

only. Taking this into account, hinf can be calculated by simply
considering the Zeeman energy of the configurations favoured
by the field and solving

Ed = Es − 4√
6

hinf , (10)

where the energy Es = Ms + E self
s related to the single-

monopole crystal is equal to the sum of Eqs. (8) and (9)
evaluated at Qs. Similarly, Ed = Md + E self

d is the energy of
the double monopole crystal. We show the analytical pre-
dictions of the monopole picture for different values of D
in Fig. 2(a). We include also the results for hinf and hsup

obtained by simulating small spin systems (L = 2) at very low
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FIG. 3. Densities of single monopoles, double monopoles, and
neutral sites vs magnetic field at kBT/|Jeff | = 0.9, and L = 6. Colour
identifies different values of the dipolar strength D (note that |Jeff |
was kept constant throughout this work), while dashed vertical lines
(with the same color code) highlight the approximate field where
charge disorder occurs for each value of D. Throughout the text,
the color black corresponds to the ideal case with D = 0 and field
exactly parallel to [110] (θ = 0). The dotted vertical lines indicate the
range of fields where the ground state consists of single charges, with
double charges acting as the lowest-lying excitations. The horizontal
grey gradient illustrates how the frontiers of this region move to
higher values of h when D > 0, as shown in Fig. 2(a). As explained in
the text, the transition field hinf from a ground state of double charges
to one of single charges can be approximately read from the point
where ρs and ρd intersect.

temperatures [down to kBT/|Jeff | = 0.18]2 and extrapolating
to T = 0 the fields where the number densities of the different
tetrahedron configurations of interest cross. More explicitly,
we looked for the condition ρs = ρd to estimate hinf (see
Sec. II B 1), and ρn = ρd for hsup.3 Figure 2(a) shows that,
in spite of the approximations involved, both estimations for
hinf give very similar results.

B. Finite temperature

1. Nearest-neighbors interactions (D = 0)

The monopole picture implies that there is no energetic
drive towards charge order for D = 0. In spite of this, at
low fields and temperatures we expect to find a crystal of
double charges with the zinc-blende structure. This “all-spins-
in–all-spins-out” structure is stabilized not by charge-charge
interactions, but due to the constraints imposed by the spins
that make these charges [12]. For h � hinf (which stabilizes

2Although the lowest-possible temperatures are desirable in order
to determine the ground-state transition field hinf , compromises have
to be made not only to ensure equilibrium but also to resolve hsup,
which involves excitations and is thus extremely subtle.

3We will see in the next section that the density of double
monopoles could be affected in a non-trivial way by very peculiar
finite-size effects that induce disorder at very low temperatures for
D = 0 [37]. However, the system remains ordered even at T = 0 for
D �= 0, which is the important case here.
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FIG. 4. (a) Single (ρs
S) and (b) double (ρd

S ) monopole staggered
densities as functions of the magnetic field for kBT/|Jeff | = 0.9 and
L = 6. The color coding marks the different values of the dipolar
strength D/|Jeff |. The dotted vertical lines highlight hinf and hsup for
the ideal D = 0 case, while the gradient represents that this region
moves to higher values of h when D > 0. The shape of ρs

S (h) changes
drastically for D > 0.13, saturating at non-zero values at high fields
even for big lattice sizes.

a disordered ground state of single monopoles), the situation
differs from what it would be trivially expected. As first shown
in Ref. [37], charge disorder should occur for T strictly zero as
predicted but, as we explained before and will see below, the
proliferation of double charges favours an array of staggered
magnetic charges at finite temperature. This array transitions
to a disordered state only for kBT/|Jeff | > 1.

Figures 3–5 show the results of Monte Carlo simulations
for a field parallel to [110] and D = 0 (black symbols and
lines), in a system with L = 6. We can see in Fig. 3 that the
number density of the different monopoles in a tetrahedron
evolves with increasing magnetic field at kBT/|Jeff | = 0.9
from a majority of double monopoles to one of single charges,
as expected. At the highest fields, neutral sites are the main
excitation. Due to the energy scales involved we expect to
have at these temperatures only: (1) positive and negative
double monopoles, (2) the two types of single monopoles with
magnetic moment direction favoured by the magnetic field,
and (3) the same for neutral sites [see continuous lines in
Fig. 2(b)]. This considerably helps the analysis; for example,
to understand that at the transition field hinf the density of
double and single charges is ρd ≈ ρs ≈ 0.5 (curves crossing
in Fig. 3). In the same terms, it may be expected that the
curves for the double-monopole and neutral-sites densities
cross very near hsup. However, against intuition, we can see
them in this last case crossing at much smaller fields than
that. While we will be able to explain this when analyzing
the order parameter behavior, we can advance now that this
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FIG. 5. (a) Single and double-monopole staggered densities vs
temperature. (b) Number densities of single, double charges, and
neutral sites vs temperature (L = 6). The curves were measured for
the ideal D = 0 case and D/|Jeff | = 0.06. The magnetic field in the
[110] direction was h/|Jeff | = 7.86 and 8.16, respectively, where the
corresponding ρs

S is maximum for kBT/|Jeff | = 0.9 [see Fig. 4(a)]. In
close relation with the OBD effect, the density of double monopoles
has a non-monotonic behavior as a function of T .

rapid proliferation of neutral sites at low fields implies the
destruction of OBD at h much smaller than hsup.

The relevant order parameters (the staggered charge den-
sity of double and single monopoles) are plotted in Figs. 4(a)
and 4(b) as functions of field at the same working temperature
kBT/|Jeff | = 0.9. The relatively big value of ρd

S in Fig. 4(b)
at low fields reflects the zinc-blende structure of double
monopoles, gradually fading with increasing h. The fact that
ρd

S �= 0 for h � hinf reveals that a considerable number of
ordered double monopoles (created by thermal fluctuations)
remain even above this threshold. The persistence of double-
monopole order above hinf and the continuous aspect of the
curves on traversing the field threshold makes it tempting
to think that these measurements—performed on increasing
field—are affected by the past history, retaining at high fields
some of the zinc-blende structure which characterizes order at
lower ones. This is not the case: the same results are obtained
in field-decreasing runs at fixed T (not shown), and at fixed
field and decreasing temperature [Fig. 5(a)]. As mentioned
before and made clear in this same figure, although the system
should be disordered at zero temperature, charge order exists
at finite temperature below the scale of |Jeff |/kB.

The behavior of ρs
S seems to be complementary to that of

ρd
S , with an increasing amount of single monopole order at

fields above hinf . The establishment of staggered single-charge
order at this finite T above hinf has been analytically and
numerically studied as a textbook case of field-tuned OBD,
triggered by a diverging peak in the density of states (see
Fig. 3 in Ref. [37]) associated with this particular monopole

array. Regarding the single charge order at fields below hinf ,
it can be naturally interpreted in terms of the underlying “all-
in–all-out” double-monopole crystal lattice, to which single
charges are the lowest energy excitations [Fig. 2(b)]. The
converse is true for the observed finite value of ρd

S for h � hinf .
In relation to this, we owe an explanation for the reduced

value of ρd with respect to ρn at moderate fields h � hsup,
observed in Fig. 3. At very low temperatures, neutral sites are
almost banned by their high energy cost, while the excitation
of the allowed quasiparticles (double monopoles) imply the
existence of staggered single-charge order [37]. At higher
temperatures, the arousal of neutral charges help to decorre-
late the β chains, and the staggered order is lost [Fig. 5(a)].
The absence of order among consecutive β chains makes
now less probable to excite double monopoles, which are
mainly created by flipping α spins that link staggered-ordered
β chains (see Fig. 1(c) and Ref. [37])). Since neutral sites
are not so constrained (i.e., they do not need the coherent
order of consecutive β chains to appear) this explains the
crossing of their density curves at finite T below hsup observed
in Fig. 3(a). To illustrate this phenomenon, Fig. 5(b) shows
the density of monopoles, now at fixed h and as a function
of temperature (black lines and symbols). We would naively
have expected a density of double monopoles monotonously
increasing with temperature. We can see that while ρs

S de-
creases near the transition at kBT ≈ |Jeff | [Fig. 5(a)] the
number of double monopoles starts to decrease, producing
a maximum in its density within the staggered-order region.
This finite temperature phenomenon implies no contradiction
with the method we used to find hsup, performed in the limit
of zero temperature.

The abrupt fall on ρs
S (h) at fixed temperature on increasing

fields observed in Fig. 4(a) is one of the main results we
have to show in this work. It relates to the switching-off
of the entropic drive towards order (the only one present in
the current situation) produced by the proliferation of neutral
sites [10,12]. A key idea is that both the thermally induced
single-charge correlations produced by double monopoles at
low fields, and the decorrelating effect of neutral sites that
causes a drop in ρs

S at higher ones, will still be operative if
dipolar interactions or other perturbations are present. As will
be shown in the next section, this fact can be used to mark the
presence of OBD effects.

2. Dipolar interactions (finite D)

Figures 4(a) and 4(b) present ρs
S and ρd

S as functions of the
field when long-range dipolar interactions are included. These
curves were measured in the same conditions as the nearest-
neighbor case. It can be seen that as D grows, an increasing
field h is needed to destabilize the staggered order of double
monopoles in favour of an order of single monopoles, as
predicted by Fig. 2(a). The shape of the curves ρs

S (h) allows
us to separate them (at this particular working temperature)
in two distinct sets: values of D smaller and bigger than
D/|Jeff | = 0.13.

The group of smaller D is the relevant one concerning the
main objective of this paper. Within this set, the tempera-
ture T = 0.9|Jeff |/kB is so high that Coulomb forces among
monopoles cannot hold the staggered charge array. The curves
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FIG. 6. Evolution of the single-monopole staggered density with
system size for D/|Jeff | = 0.06 at kBT/|Jeff | = 0.9. The behavior of
the order parameter persists with increasing system size.

resemble then those obtained without dipolar long-range in-
teractions, showing that the main effect of a finite D is to
shift hinf , but preserving the same physics at this temperature.
The abrupt fall of the order parameter down to ρs

S = 0 on in-
creasing h, which persists in the thermodynamic limit (Fig. 6),
mirrors the switching-off of the OBD mechanism and serves
as an indication of its relevance in the stabilisation of order.

A non-trivial behaviour associated with OBD is exempli-
fied by Fig. 5(a). There, the order parameter ρs

S is compared
for D = 0 (black curves) and D/|Jeff | = 0.06 (blue), now
as a function of temperature at h/|Jeff | = 7.86 and 8.16,
respectively, where the corresponding ρs

S (h) in Fig. 4(a) has
a maximum. Diverting from the blue curve, ρs

S for D = 0
tends to zero at very low temperatures (and, evidently, for a
constant lattice size L). This has been shown in Ref. [37] to be
a very peculiar finite-size effect characterising this system (on
increasing the size of the lattice the ordering trend continues
on decreasing temperature, with disorder prevailing only at
T = 0) that could be used as a method to identify OBD
in artificial two-dimensional materials. On the other hand,
ρs

S continues growing when the system is cooled down at
finite D: on reducing thermal fluctuations such that kBT/D →
0, dipolar interactions are able to promote monopole order.
Regarding this usual measure of the relative value of thermal
fluctuations compared with the tendency towards order (here,
kBT/D), there is a further aspect to note. Near the order-
disorder transition (kBT/|Jeff | ≈ 1 for both cases in Fig. 5(a))
this measure is quite big, kBT/D ≈ 20 for D/|Jeff | = 0.06 (of
the order of 100 for D/|Jeff | = 0.01), while it diverges for
D = 0. This makes us wonder once again about how much
against intuition it is that charge order could be sustained in
the ideal case in spite of the total absence of charge attraction
and repulsion.

For the second group (D/|Jeff | � 0.13), the shape of the
curves in Fig. 4(a) starts to distort considerably. Their most
salient feature is that there is no drop in the order parameter ρs

S
at high fields (where the corresponding single-charge densities
are essentially saturated, as observed for the orange curve
in Fig. 3). This indicates that the Coulomb forces can now
maintain the order of charges at this temperature. It can also
be noted that ρs ≈ 1 at high fields: the concentration of double
monopoles is made unstable by the Zeeman energy, while

neutral sites are disfavoured by the Coulomb term hidden in
Eq. (2).

Being ρs
S and ρd

S quantities generally inaccessible to most
laboratory-based experiments,4 an interesting probe to search
for classical OBD in these magnetic systems would be neutron
scattering. Figures 7(a)–7(c) show the simulated spin structure
factor [Eq. (5)] for a system with D/|Jeff | = 0.06 and L = 8
at the working temperature kBT/|Jeff | = 0.9. We have chosen
three values of the field, representative of the three types of
order (or lack thereof) in the system. The patterns reflect the
changes in magnetic order as the field turns the “all-in–all-
out” structure [Fig. 7(a)] into a polarized crystal of single
monopoles [Fig. 7(b)], and then into a disordered array of
ordered β-spin chains [Fig. 7(c)]. The evolution of the (220)
peak can be used to give a quantitative measure of three-
dimensional order (i.e., between different β chains). Support-
ing this, Figs. 7(d)–7(f) show the charge-charge correlation
function defined in Eq. (7) (which cannot be directly measured
using neutrons, but illustrates well the parallel situation in
the monopole framework). We can see that the sharp Bragg
peaks associated with a crystal of monopoles change their
intensity when passing from double to single charge order, and
finally vanish for h ≈ hsup, where the proliferation of neutral
excitations promotes the disordering of the system.

There exist many “all-in–all-out” materials in nature, some
of which could be used for an experimental contrast against
these ideas [38–42]. However, it is important to bear in mind
that each compound has its singularities, differing from the
ideal case we study in its own way. Nd2Hf2O7 and Nd2Zr2O7,
for example, are pyrochlores with a big Ising anisotropy. They
have relatively small Néel temperatures (TN � 0.5 K) and big
magnetic moments on the Nd ion (≈2.5 μB), reduced by quan-
tum fluctuations [39–41,46]. While Nd2Zr2O7 is a good can-
didate to test the behavior of our system on the high D/|Jeff |
side [40], Nd2Hf2O7 has D/|Jeff | ≈ 0.11 [41], slightly into the
region where a decrease in order with increasing field would
be expected. Finding an “all-in–all-out” compound with very
small D/|Jeff | ratio to conclusively detect thermal OBD is, to
our knowledge, much harder. The compound Cd2Os2O7, with
quite a big ordering temperature (above 220 K) [47], could be
a starting point, although it is clear that the physics implied
(which has been studied since 1974 [38]) transcends that of a
simple system with localized Ising moments.

III. EFFECT OF FIELD MISALIGNMENT

While it is pretty easy in a numerical simulation, applying
a field perfectly oriented in a particular crystallographic axis
is something practically impossible in the experimental realm.
This fact strongly impacts on the possibility of detecting the
OBD phenomenon in the way we propose here. A deviation
of the field within the x-y plane facilitates the formation of
neutral tetrahedra without breaking the symmetry between the
two FCC sublattices making the diamond structure. Therefore
it preserves spontaneous OBD but lowers the disordering

4The measurement of magnetocapacitance may be an interesting
exception to this statement, allowing an indirect approach to the
formation of staggered monopole order (see Refs. [52–54]).
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FIG. 7. [(a)–(c)] Spin structure factor and [(d)–(f)] charge-charge correlation function in the (kkl ) plane. The different values of the field h
in the [110] direction characterize the three types of order: crystal of double monopoles, crystal of single monopoles, and disorder. In all cases,
D/|Jeff | = 0.06, kBT/|Jeff | = 0.9 and L = 8. We can see that the intense Bragg peak at (220) first diminishes its intensity and then disappears
on increasing field [(a)–(c)], while the double-charge order gives way to a single-charge crystal, and then to a disordered-charge phase with no
Bragg peaks [(d)–(f)].

temperature. On the other hand, a nonzero component of B
in the [001] direction explicitly breaks the relevant symmetry,
and thus favours the occurrence of single-charge order. It is
easy to understand this by noting that now the field has a
larger component parallel to [111], which stabilizes the order
of positive single charges in up tetrahedra and negative in
down tetrahedra5 [48].

As mentioned in the introduction, this case is different from
other perturbation terms, since the perturbation coupled with
the order parameter grows in parallel with the magnetic field
h, which is the instrument we use to detect the entropic drive
towards order. To assess the significance of this effect at finite
T , we consider the nearest-neighbor model [Eq. (1) with D =
0] under a magnetic field B of strength h/μ tilted an angle θ

from the [110] direction towards [001] (i.e., θ represents an
anticlockwise rotation of that magnitude around ĉ ∝ [110] =
[110] × [001], see Figs. 1(a) and 1(b)). As shown in Fig. 8,
the presence of h001 = h sin θ �= 0 splits the low-lying single-
charge energy levels associated to each type of tetrahedron (up

5The [110] direction has the special feature of being just midway
between [111] and [111]; the latter promotes the opposite order.

or down), opening a gap proportional to h001. For any value of
θ �= 0, the single-charge ground state is strictly composed of
one particular configuration and thus ordered. However, for
small-enough values of θ , the gap is effectively nonexistent in
the range of h and T in which we are interested throughout this
work, and the misaligned system can still show a signature of
OBD.

Figure 9 shows the relevant order parameter ρs
S as a

function of the modulus of the field, for different values of
the tilting angle θ . This figure is analogous to Fig. 4(a).
It was measured at the same temperature and for the same
system size, but with a different perturbation term. In black,
we include as a reference the curve with a perfectly aligned
field; given that D = 0, it is the same black curve as the one
in Fig. 4(a). The general shapes of the curves are similar
to those encountered before. However, for all finite values
of θ , we observe at high h a finite (and indeed, slightly
increasing with field) value of ρs

S . As cautioned before, this
marks an important difference with the previous perturbation:
the system remains charge-ordered at high fields in any real
situation.

Striking the main target we have fixed for this paper, the
sudden drop observed in ρs

S at very small angles (well below
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FIG. 8. Energy vs field for the different low-lying spin config-
urations in an up tetrahedron with nearest-neighbors interactions
(D = 0). The magnetic field vector B of intensity h/μ is tilted
anticlockwise an angle θ from the [110] direction, around ĉ ∝ [110]
(see Fig. 1). The introduction of a nonzero component along [001]
produces a splitting of the single-charge energy levels, but the s1

and s2 curves are effectively indistinguishable in the temperature and
field range of interest for θ < 1◦. The dotted vertical lines highlight
the region where the ground state is composed of single charges with
double charges as the low-energy excitations, for the ideal θ = 0
case.

1◦) can only be explained by the weakening of the OBD effect
that holds the order of single monopoles at intermediate fields
even for θ = 0. Again, the observation of this drop is an
indirect proof of the OBD mechanism being operative. The
need of such an accuracy in the field angle control certainly
complicates the observation of the effect, but it should not
be considered as an experimental impediment: triple-axis
vector magnets (as, for example, in Ref. [49]), high-precision
goniometers (like in Ref. [50]), or in situ sample rotators
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FIG. 9. Single-monopole staggered density vs magnetic field for
kBT/|Jeff | = 0.9, D = 0, and L = 6. The colors refer to the diverse
values of the small tilting angle θ . Aside from θ = 0 (black curve)
and differently from the case of dipolar interactions, any finite
perturbation (i.e., any finite tilting angle) leads to a nonzero order
parameter ρs

S at high fields, even in the infinite size limit. Although
a nonzero component of the field in the [001] direction explicitly
favours the occurrence of single-charge order, it is still possible to
detect OBD for values of θ < 1◦, associated to the decrease in ρs

S .
The vertical lines correspond to the ideal case (θ = 0).

[51] can be used to correct misalignments below the needed
accuracy in a neutron scattering experiment.

IV. DISCUSSION

As advertised before, in our system the dipolar perturbation
term that favours order remains constant when h increases;
this allows to recognize the effect in the order parameter
of the field-tuned entropic contribution. However, it may be
important to consider that bigger fields favour the introduc-
tion of neutral sites at the expense of double monopoles,
not only weakening the thermal drive towards order, but
also slightly diminishing the effectiveness of the Coulomb
interactions. For small values of D (D/|Jeff | < 0.03), the
differences observed in monopole densities with respect to
D = 0 (not shown) are negligible, making evident that the
OBD effect is the main driving force. For D/|Jeff | = 0.06,
the field at which charge disorder occurs is somewhat big-
ger to that of D = 0 (dashed lines in Fig. 3). Although
the density of neutral sites at the transition fields is quite
comparable, the density of double monopoles for D/|Jeff | =
0.06 is about half of the value it takes at the transition for
D = 0. This signals that, although dipolar interactions are not
enough to hold the single-monopole crystal together at high
fields, they are helping to sustain it near the order-disorder
transition.

In a final note, we will refer to the energy scales of
the relevant perturbations needed to sustain order, measured
with respect to the thermal energy. Naively speaking, it may
result quite surprising that angular deviations from perfect
alignment as small as those mentioned before can have such
big effects. Take θ = 0.25◦ as an example: how can a pertur-
bation of h001 = 9|Jeff | sin(0.25◦) ≈ 0.05 kBT create an order
parameter as big as ρs

S ≈ 0.25 for h/|Jeff | = 9? We think that
the answer to this question relies on the fact that this is not
the only energy scale in the system. Indeed, Jeff is the most
relevant energy value here. It guarantees that partial single-
charge order is retained within β chains at this T , so that spins
do not respond to the misaligned magnetic field on their own,
but as part of finite β chains (see, for example, Ref. [15]).
Something similar happens when dipolar interactions act as
a perturbation, explaining that Coulomb forces can sustain
single-charge order at big fields when D/|Jeff | ≈ D/kBT ≈
0.13.

V. CONCLUSIONS

Order by thermal disorder is a very peculiar effect that has
been studied for almost forty years in the context of frustrated
magnetic systems. In spite of this, it has associated very few
validated examples in nature. In this work, we proposed a
scenario (the Ising pyrochlore with antiferromagnetic “all-in–
all-out” order in zero field) where it may be detected. An
easily controllable external parameter (a magnetic field in
the [110] crystallographic direction) can be used to turn on
and off the entropic drive towards order, unmasking thus the
effect even in the presence of perturbations coupling to the
order parameter. Following a protocol that in principle can
be applied to any other uncontrolled energy interactions, we
showed that OBD can still be found when dipolar interactions

174404-9



PAMELA C. GURUCIAGA AND RODOLFO A. BORZI PHYSICAL REVIEW B 100, 174404 (2019)

are present, provided that they are weak with respect to the
nearest-neighbor exchange interaction (D < 0.13 |Jeff | for a
working temperature T ≈ |Jeff |/kB). However, special care
needs to be taken in order to ensure a field-misalignment
angle from the [110] direction well below 1◦. This could
be attainable in neutron scattering measurements, one of
the techniques we propose to identify order due to thermal
fluctuations. Although we know of no ideal material where
these experiment could be performed, the measurement of a
fast decrease in intensity of the (220) peak in the spin structure
factor with increasing field in “all-in–all-out” materials like
Nd2Hf2O7 or Cd2Os2O7 would be a clear signature of the
OBD mechanism being operative.
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