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We develop an approach of calculating the many-body path integral based on the linked cluster expansion
method. First, we derive a linked cluster expansion and we give the diagrammatic rules for calculating the free
energy and the pair distribution function g(r) as a systematic power-series expansion in the particle density. We
also present a structured Padé approximation scheme in the momentum space to determine g(r). The calculated
g(r) for distinguishable particles interacting with Lennard-Jones and hard-sphere potential in various attempted
schemes of approximation of the diagrammatic series compares very well with the results of path-integral Monte
Carlo simulation. Our method is applicable to a wide range of problems of current general interest and may be
extended to the case of identical particles and, in particular, to the case of the many-fermion problem.
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I. INTRODUCTION

The established analytical and semianalytical tools of
many-body perturbation theory [1–3] and quantum statistical
mechanics [4,5] cannot be applied in a straightforward manner
in strongly correlated many-body systems. Using the non-
interacting Hamiltonian as the unperturbed part, the matrix
elements of the perturbation interaction in the noninteracting
basis reduce to the Fourier transform of the interaction poten-
tial which is infinite in the case of a hard-core potential or
Lennard-Jones–type potential. As a result, one has to replace
the repulsive short-range core by some type of effective inter-
action (or the scattering length) [6,7] by summing an infinite
set of selected diagrams. However, in such a scheme the
subsequent perturbative expansion to include other diagrams
can no longer be consistent; namely, there would be diagrams
which are included more than once (double counting) or
diagrams of the original expansion which are not included at
all. A systematic diagrammatic expansion technique would be
welcomed which can manage the effects of the short-range
hard-core part of these interactions which bring in so many
interesting phenomena arising from short-range correlations.
Usually, such problems are approached in one of the fol-
lowing ways: (a) we provide a qualitative description of the
many-body physics involved in these systems by using simple
models where the application of these standard tools [1–3]
becomes possible; or (b) we use an approximate scheme,
such as the variational approach, without a clear path to
add systematic corrections; or (c) we apply purely numerical
approaches such as the Monte Carlo method.

The purpose of this paper is to develop a systematic
expansion technique where the most important effects of the
short-range part of the interaction are accurately included even
at the zeroth-order (or low-order) level using an expansion
parameter that controls the rate of convergence even in the
presence of strong short-range correlations. For completeness,
we mention here that a semiclassical expansion in powers
of h̄ which was originated by Wigner [8] and subsequently

developed by others [9–14] is different from the approach
discussed in this paper. The latter consists of the following
two parts.

Part A. We begin from the many-body Feynman [15] path
integral at finite temperature [4] and then we extend the cluster
expansion [16,17] known for classical statistical mechanics
to cast the imaginary-time (finite-temperature) path integral
into a systematic expansion up to n-body connected diagrams
which corresponds to a density expansion up to nth order.
Roughly speaking, our approach is the quantum version of the
virial expansion for classical systems. The cluster expansion
for classical system in conjunction with the hypernetted-chain
approach (HNC) [18–24] is very accurate. Ours is a quantum
version of the cluster expansion method and the short-range
correlations are intrinsically present from the very inception
of the series. We derive a diagrammatic series expansion
for the free energy and the pair distribution function, and
we show how fully disconnected diagrams generated by our
expansion do not contribute. Just like the well-known many-
body perturbation theory approach [1–3] provides the dia-
grammatic rules which enable us to carry out a systematic
order-by-order expansion, our approach also yields its own
“diagrammar” which allows the treatment of interactions with
even a singular short-range part. This part of our work has
very general applicability and it is the counterpart of many-
body perturbation theory, however, appropriate for systems
with strong short-range correlations.

Part B. Next, just as in the case of the standard many-body
perturbation theory one can carry out systematic order-by-
order expansion, the technique presented here allows us to
do that. We chose to benchmark the present technique by
applying it to problems where one can obtain essentially exact
results by the path-integral Monte Carlo (PIMC) method.
Namely, we applied it to systems of distinguishable particles
interacting with (a) a Lennard-Jones interaction and (b) a
hard-sphere type pair interaction. First, we show that there
is a systematic improvement by increasing the order of the
expansion. Beyond that, we constructed a scheme using Padé
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approximants which (i) reproduces the results of the order-by-
order expansion up the calculated order, (ii) yields the exact
high-temperature limit of the pair distribution function, and
(iii) yields its exact low-density limit. The results for the pair
distribution function obtained with this extrapolation scheme
are in very good agreement with the results of PIMC down to
moderately low temperature.

The method of Padé approximants is a standard tool and
has already been proved to be effective when studying physi-
cal systems like a system of interacting spins [25–27]. Part A
of our approach is a semianalytical tool which yields a new ex-
pansion scheme which converges relatively fast for hard-core
potentials and stands alone. Part B of our approach outlines
a particular way to sum the important contribution and it is
not expected to be the only way to include the contribution
of the most significant diagrams. It can be extended further
in the future by implementing other techniques and ideas. For
example, there is the diagrammatic Monte Carlo method and
we can imagine that it may be adopted to provide a sampling
of this new diagrammatic space. This is what we imply with
the statement that part A of this work “stands alone.” Part
B is only used here to demonstrate the efficiency of the
approach, not as the only way to go forward. As it is shown
in this paper, part A is general and can be also applied to
fermions.

Part A of our paper, i.e., the cluster expansion, our derived
diagrammatic rules, etc., are directly applicable to the case of
identical particles. Our summation method presented in the
part B of this paper is generalizable to the case of identical
particles and, therefore, it has the potential to be useful as an
alternative approach to the treatment of bosonic and fermionic
systems. This part is more extensively discussed in Secs. VII
and IX of this paper. Lastly, we would like to note that
the approach developed in this work is a general method to
treat the quantum many-particle problem. Therefore, it can be
applied to other systems in diverse areas of physics, such as
systems of trapped ultracold atoms, and possibly to the many-
nucleon problem [28], i.e., the hypothetical infinite nuclear
matter and neutron stars.

The paper is organized as follows. In Sec. II we discuss
the many-body path integral and we cast it in a form useful
for the application of our method. In Sec. III we develop
the cluster expansion of the path integral that describes the
quantum mechanical partition function for a system of distin-
guishable particles. We discuss some generalizations needed
to extend the method to systems of identical particles. We
give the diagrammatic rules for a systematic inclusion of all
the diagrams order by order in the density. In Sec. IV we
discuss the cluster expansion of the free energy and in Sec. V
that of the pair distribution function. In Sec. VI we present
our results of the method viewed as a systematic power
series expansion in the density for both the Lennard-Jones
system and hard-sphere systems. In addition, we also propose
a Padé-approximation scheme which yields very accurate
results for the Lennard-Jones system for densities near the
equilibrium density of liquid 4He. In Sec. VII we provide
some future directions. The implementation of the method has
been summarized in Sec. VIII. Last, in Sec. IX we present our
conclusions.

II. MANY-BODY PATH INTEGRAL

To build the path-integral cluster expansion formalism we
will follow the same procedure that is used in the case of
classical cluster expansion. While our goal in this paper is
to study the simpler case of distinguishable particles, we first
begin by writing the partition function [4] for a system of N
interacting identical particles:

Z = 1

N!

∑
P

(±1)[P]
∫

d3�r1d3�r2 . . . d3�rN

×〈�r1, �r2, . . . , �rN | e−βĤ | �rP1, �rP2, . . . , �rPN 〉. (1)

Here, the summation over P means a summation over all
permutations of particles and the notation [P] denotes the
order of the permutation [4]. In the case of bosons, all permu-
tations contribute with a positive sign. In the case of fermions,
(−1)[P] is +1 or −1 depending on whether the permutation is
even or odd. In the positions (�rP1, �rP2, . . . , �rPN ) the indices
P1, P2, . . . , PN are the particle indices after permutation
P. In this paper we will deal with the general case of an
interacting Hamiltonian Ĥ of the following form:

Ĥ = − h̄2

2m

N∑
i

∇2
i +

∑
i< j

v(ri j ). (2)

Next, we divide the imaginary-time interval [0, θ ] (θ ≡
h̄β) into M slices of size δτ = h̄β/M to write e−βĤ =
e−δτ Ĥ/h̄e−δτ Ĥ/h̄ . . . e−δτ Ĥ/h̄. As usual we insert in-between
each pair of these operators the unit operator expressed as a
sum over the complete set of many-body position eigenstates
and by using the Trotter approximation we can write the
partition function as

Z =
∑

P

(±1)[P]

N!

∫
�ri (θ )=�rPi (0)

N∏
n=1

M−1∏
k=0

d3�r (k)
n

λ3
δτ

e−SE , (3)

where

SE = δτ

h̄

M−1∑
k=0

⎡
⎣∑

i

m

2(δτ )2 r2
i (kk + 1) +

∑
i< j

v
(
r (k)

i j

)⎤⎦, (4)

λτ ≡ (2π h̄τ/m)1/2, (5)

and r (k)
i j = |�r (k)

i − �r (k)
j | and ri(kl ) = |�r (k)

i − �r (l )
i |. The con-

straint �ri(θ ) = �rPi(0) on the path integral (where θ = h̄β)
means that the sum is over all possible N-particle paths
which start at positions (�r1(0), �r2(0), . . . , �rN (0)) at imaginary
time τ = 0 and after the “lapse” of an imaginary-time inter-
val of β h̄ they end up at positions (�r1(θ ) = �rP1(0), �r2(θ ) =
�rP2(0), . . . , �rN (θ ) = �rPN (0)) where P1, P2, . . . , PN are the
particle indices after permutation P.

By taking the limit M → ∞, one can obtain the well-
known Feynman’s path-integral expression

Z = 1

N!

∑
P

(−1)[P]
∫

�ri (θ )=�rPi (0)
D�r1D�r2 . . .D�rN e−SE . (6)
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The Euclidean action in the above path integral is given by

SE =
∫ h̄β

0

⎛
⎝ N∑

i=1

1

2
m�̇r2

i +
∑
i< j

v(ri j (τ ))

⎞
⎠dτ, (7)

where ri j (τ ) = |�ri(τ ) − �r j (τ )|.
However, the Feynman’s path-integral expression is only

symbolic and, for all practical purposes, we make use of the
expression given by Eq. (3). As discussed in the Abstract and
in the Introduction of this paper, in this paper we concentrate
our attention to the simpler case of distinguishable particles,
which corresponds to considering the identity permutation
only.

III. CLUSTER EXPANSION OF PARTITION FUNCTION

In this paper we concentrate only on the identity permu-
tation which corresponds to a system of interacting distin-
guishable particles. This will allow us to test the method
by comparison of our results to PIMC which is accurate in
this case because of the absence of the sign problem. Since
our method is diagrammatic in nature, it can be extended to
include diagrams which correspond to particle permutations
[29,30]. Therefore, if we can demonstrate that the method
works for distinguishable particles, it would be a promising
sign for the applicability of the method to the more complex
problem of identical particles and in particular the problem of
fermions where quantum Monte Carlo (QMC) fails to address
it in an exact way. While we consider the case of distinguish-
able particles, as we describe our method in this paper, when
appropriate, we address the generalizations needed in order to
include the permutations.

Now, we concentrate on the dimensionless ratio Z
Z0

where
Z0 is the noninteracting partition function, which can be
obtained from Eq. (3) by using the free action, obtained
from Eq. (4) with v(r (k)

i j ) = 0, and carrying out the Gaussian
integrals

Z0 = 1

N!

(
V

Vθ

)N

, Vθ = λ3
θ , (8)

and since λθ is the de Broglie thermal wavelength, Vθ is the de
Broglie thermal volume. Thus,

Z

Z0
=

(
Vθ

V

)N

Z. (9)

Next, we start the cluster expansion by defining the func-
tion h(k)

i j as follows:

e− δτ
h̄ v(r(k)

i j ) ≡ 1 + h(k)
i j , (10)

and the function Li(kl ) as follows:

Li(kl ) = 1

λ3
τkl

e
−π

r2
i (kl )

λ2
τkl , (11)

τkl = |k − l|δτ. (12)

Using these definitions the partition function can be written as

Z

Z0
=

(
Vθ

V

)N ∫ N∏
n=1

M−1∏
k=0

d3r (k)
n Ln(kk + 1)

M−1∏
l=0

∏
i< j

(
1 + h(l )

i j

)
.

(13)

r
(0)
2

r
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2

r
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2

r
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r
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FIG. 1. Few diagrams that appear in the expression for Z when
N = 3 and M = 3.

The expression in Eq. (13) consists of products of (1 +
h(l ))

i j ), which can be written out as follows:

M−1∏
l=0

∏
i< j

(
1 + h(l )

i j

) = 1 +
M−1∑
l=0

∑
i< j

h(l )
i j + · · · , (14)

where we have omitted terms containing two or more h
factors. After substituting the expanded product in Eq. (13)
we obtain a sum of integrals. We can keep track of terms by
representing each of these integral terms by diagrams. As an
example, consider the case of 3 (N = 3) particles with 3 time
instants (M = 3). In this case, the first few terms have been
diagrammatically represented in Fig. 1.

We use the following convention for representing such
terms:

(1) The positions of the particles at the instants of time
which enter in the integral are denoted by solid circles. An
integration over these positions is implied.

(2) h(k)
i j is denoted by a dashed line labeled by the index

(k) (which represents interaction between particles at the same
instant of time k) connecting points i and j.

(3) The L function defined by Eq. (11) is denoted by a
solid line connecting points �r (k)

i and �r (l )
i .

(4) Every particle is associated with its own world line,
which is made up of products of L functions. The world lines
of a pair of particles at a given instant of time can be either
disconnected (i.e., there is a factor of unity) or they can be
connected by a dashed line.
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(5) The world line starts at �r (0)
1 and connects back to �r (0)

1

because of the boundary condition �r (0)
i = �r (M )

i . Therefore, a
world line forms a loop formed by the particle positions at all
instants of time.

In the case of identical particles, there are diagrams in
which �r (M )

i = �r (0)
Pi , i.e., the particle positions are exchanged at

imaginary-time slice M. In this paper, we do not deal with the
contribution of such diagrams.

If the world line of a given particle has solid points which
are not connected to any other point through dashed lines, then
it is possible to perform the integration over those variables
exactly by using the following identity:

Li(kl ) =
∫

d3�r (m)
i Li(km)Li(ml ). (15)

This result can be interpreted such that the world line now
makes a straight connection of the particle coordinate at the
initial instant of time, i.e., �r (k)

i with the particle coordinate at
the instant of time 1. This explicit integration removes such
intermediate points in our diagrams which are not connected
by any dashed line. As an example, consider the diagram in
Fig. 1(a). Because of the absence of dashed lines it is possible
to perform the integration over all three variables and the
diagram equals to unity; similarly, the term in Fig. 1(b) is
obtained when the product is such that we have only one
dashed line (in this case h(1)

12 ); here, particles 1 and 2 are
connected but particle 3 is disconnected. Such a term has the
following integral form:

(
Vθ

V

)3 ∫ 3∏
i=1

2∏
k=0

d3�r (k)
i Li(kk + 1)h(2)

12 . (16)

The coordinates of particle 3 at all instants of time can
be integrated out and, thus, the diagram corresponds to the
following expression:

(
Vθ

V

)2 ∫ 2∏
i=1

2∏
k=0

d3�r (k)
i Li(kk + 1)h(2)

12 . (17)

We can further simplify the above expression by noting that
the integration over �r (0)

1 , �r (0)
2 , �r (1)

1 , and �r (1)
2 can be performed

as these are not connected through a dashed line. The simpli-
fication leads to the following term:(

Vθ

V

)2 ∫
d3�r (2)

1 d3�r (2)
2 L1(0M )L2(0M )h(2)

12

= 1

V 2

∫
d3�r (2)

1 d3�r (2)
2 h(2)

12 . (18)

Such a term has been represented in Fig. 2(a). Each of the two
L functions corresponding to the world lines of particles 1 and
2 which begin and go back to the same position at zeroth time
slice (because �r (M )

i = �r (0)
i ) yield the constant factor Li(0M ) =

1/Vθ . In a similar way, the diagram in Fig. 1(c), which is an
example of a connected cluster, can be represented as shown
in Fig. 2(b) with a contribution given by

Vθ

V 3

∫
d3�r (2)

1 d3�r (2)
2 d3�r (0)

2 d3�r (0)
3 L2(02)L2(20)h(2)

12 h(0)
23 . (19)

r
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1 r
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(a)
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r
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(0)

r
(2)
1

(b)

FIG. 2. (a), (b) Show, respectively, simplified versions of the
diagrams shown in Figs. 1(b) and in 1(c) after integration over the
coordinates of those points which are not connected through h lines
to any other point.

A. Diagrammatic rules

Now, let us consider the expansion of Z/Z0 for a very large
number of particles N . In such an expansion we can still have
terms which have the same expression as, for example, the
diagram of Fig. 2(a) [Eq. (18)], in which the coordinates of
all the other particles except 1 and 2 have been integrated
out because they were not connected to any other particle by
an h line. In addition, the exact same two-body contribution
arises when the labels of particles 1 and 2 are interchanged
with any of the other N − 2 particles. Therefore, when we
draw a diagram such as the diagram of Fig. 2(a) we imply that
we include all the N (N − 1)/2 diagrams which correspond to
those obtained from replacing 1 and 2 with any other pair of
particles. Therefore, the contribution of this diagram is going
to be

1

2
(Vθρ)2

∫
d3�r (2)

1 d3�r (2)
2 L1(0M )L2(0M )h(2)

12 , (20)

where we have used the fact that as N → ∞, N (N −
1)/V 2 → ρ2. To summarize, the expansion of Z/Z0 can be
obtained as a summation of terms which correspond to

Z

Z0
= 1 +

∞∑
n=2

∑
α

D(α)
n , (21)

when D(α)
n stands for any n-body diagram. Here, n is the

number of particles involved in the diagram and α labels the
various n-body diagrams. An n-body diagram is a diagram
with n particles connected to each other through dashed lines
and each of the remaining N − n particles are not connected
to any of the other particles. In this case, the coordinates
of the latter N − n particles drop out. To find all D(α)

n we
need to draw all topologically distinct n-particle diagrams by
following the following rules:

(1) Particle positions are denoted by solid dots labeled �r (k)
i

and they stand for an integration over the coordinate of the ith
particle at the kth instant of time.

(2) We need to select the n world lines for each one of
the n particles. Each world line starts at time τ = 0 and ends
at time τ = h̄β and it is made out of connected solid lines
which correspond to L functions [see Eq. (11)] which connect
particle coordinates at intermediate instants of time. The
integrations over particle coordinates at intermediate instants
of time are allowed unless they are connected to the world
line of at least one other particle by a dashed line at the same
instant of time.
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FIG. 3. Example of a disconnected term [see Eq. (22)].

(3) We choose to connect pairs of particle positions �r (k)
i

and �r (k)
j at the same instant of time k by dashed lines. Each

such dashed line labeled as (k) connecting particles i and j
gives rise to a factor h(k)

i j .
(4) For every world line we need to multiply the contribu-

tion of the diagram by a dimensionless factor of ρVθ .
(5) The contribution of a diagram is divided by a factor

of S, the symmetry factor of the diagram. In the case of the
diagram of Fig. 2(a) the factor 1

2 in Eq. (20) is due to a
symmetry factor of 2 due to the fact that by interchanging the
two points 1 and 2 the contribution of the diagram remains the
same.

B. Connected and disconnected diagrams

An n-body diagram is considered a connected diagram
when each of the n particles is connected to at least one of
the other n particles in the diagram. All the diagrams that
appear in Fig. 1 are examples of connected diagrams. On the
other hand, we have a disconnected n-body diagram when it
is formed out of subsets of particles which are connected in
such a way that particles of any given set are connected to
each other and they remain disconnected from any particle not
belonging to the given set. A simple example (with M = 2) of
a disconnected term is shown in Fig. 3 and it is given by(

Vθ

V

)4 ∫ 2∏
i=1

1∏
k=0

d3�r (k)
i Li(kk + 1)h(0)

12 h(1)
12

×
∫ 4∏

i=3

1∏
k=0

d3�r (k)
i Li(kk + 1)h(0)

34 h(1)
34 . (22)

C. Factorizable diagrams

There are diagrams which can be factorized into products
of two or more different diagrams. Consider, for example,
the diagram of Fig. 4(a). This diagram is factorizable at the
node �r (2)

2 at which point the world line of particle 2 connects
via a dynamical h line to the world line of particle 3. This
diagram can be written as a product of two parts as illustrated
in Fig. 4(b). In order for a diagram to be factorizable, two parts
of the diagram should be connected only at a node, namely,
a point through which one has to go through when traveling
from one part of the diagram to the other part using h lines or
L lines.

IV. FREE ENERGY

In the expansion of Z/Z0 it is possible to regroup the
various diagrams in such a way that it can be written as a
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FIG. 4. An example of a factorizable diagram.

sum of connected and disconnected clusters. We will use the
notation [i] to denote the sum of all connected clusters. It is
easy to see that any disconnected cluster can be written in
terms of product of connected clusters. We can write the sum
of all the diagrams contributing to Z/Z0 as follows [28]:

Z

Z0
= 1 + [i] + 1

2
[i][ j] + 1

3!
[i][ j][k] + · · · , (23)

where [i] denotes the ith connected piece and a summation
over i, j, k, . . . is implied. In addition, the notation [i][ j]
means a disconnected diagram made out of two parts where
no common particle exists. The second term is the sum of
all connected diagrams. The third term is the sum of all
the disconnected diagrams which are products of just two
connected pieces. The factor of 1

2 is present to avoid double
counting of terms in which [i] and [ j] are interchanged.
Similarly, we have a factor of 1

3! in the fourth term which is the
sum of all disconnected diagrams made out of three connected
pieces.

The free energy F (N, T,V ) of the system is obtained as

F (N, T,V ) = −kBT N ln(V/Vθ ) − kBT ln

(
Z

Z0

)
. (24)

Therefore, the corrections to the ideal gas free energy are
given by

−βδF (N, T,V ) = ln

(
Z

Z0

)
. (25)

Using the expression in Eq. (23) and the Taylor expansion
of ln(1 + x) with x = [i] + 1

2 [i][ j] + 1
3! [i][ j][k] + · · · , we

obtain

ln

(
Z

Z0

)
= [i] + 1

2
[i][ j] + 1

6
[i][ j][k] − 1

2
[i] × [ j]

− 1

2
[i] × [ j][k] + 1

3
[i] × [ j] × [k] + · · · , (26)

and the above expression is correct up to terms which contain
less than four disconnected clusters. Using the notation of
Ref. [28],

[i] × [ j] = [i][ j] + [

[

i][ j] + [

[[

i][ j] + · · · , (27)
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FIG. 5. Diagrams contributing to the free energy which are first
order in ρ.

where one overhead bar means that the two clusters share
one common particle and two such bars imply that they share
two particles. Each diagram in [i] is of the order of N and
the diagrams contributing to [i][ j] are of order of N2, etc.

As a result, the term [

[

i][ j] is of order N and the term [
[[

i][ j]
is of order unity. In general when there is such an overhead
bar, it reduces the order of the contribution by a factor N .
Substituting Eq. (27) in (26) we obtain the following terms
up to order N :

−βδF (N, T,V ) = [i] − 1

2
[

[
i][ j] + 1

2
[i][ j][k]

+ 1

3
[ ]

[i][ j][k] + · · · , (28)

where

[ ]

[i][ j][k] means that the three pieces share the same
particle. Also, here the ellipses stand for terms containing
products of more than three disconnected parts with common
particles. Notice that each term is of order N : a disconnected
piece is of order N and every overhead line removes a factor
of N . As long as each term has just one overhead line less than
the number of its disconnected pieces, the contribution of the
term is of order N .

We can simplify the above expression by making use of
factorizability. We use the notation [a] to denote nonfactor-
izable type diagram. With this notation [i] can be written as
a sum of connected diagrams with all possible factorizable
pieces:

[i] = [a] + 1
2 [

[

a b] + · · · , (29)

so that

−βδF (N, T,V ) = [a] + 1
2 ([

[

a b] − [

[

a][b]) + · · · . (30)

Figure 5 shows diagrams contributing to the free energy which
are first order in ρ.

V. CLUSTER EXPANSION OF DISTRIBUTION FUNCTION

We now develop a diagrammatic expansion for the pair
distribution function. We consider the distinguishable particle
case by taking only the identity permutation. The pair distribu-
tion function for an isotropic translationally invariant system

1 2

(k)

(a)

21 3

(k)

(0)

(b)

1

(k)

3

2

(k)

(c)

FIG. 6. Examples of diagrams contributing to the numerator of
g(r).

takes the following form in our notation:

g(r) = N
D , D ≡ Z

Z0
, (31)

N ≡ V

Z0

∫ N∏
i=1

M−1∏
k=0

d3r (k)
i


δτ

δ[�r21(0) − �r]e−S, (32)

where 
τ = λ3
τ and Z and Z0 are the interacting and nonin-

teracting partition functions defined in the previous section.
The denominator has been expanded and written in terms of
connected and disconnected diagrams as in Eq. (23).

In order to carry out the cluster expansion of the numerator,
we need to enrich our diagrammatic notation for the numera-
tor diagrams. Examples of numerator diagrams are shown in
Fig. 6. The two open circles labeled as �r (0)

1 and �r (0)
2 represent

the external points needed in the expression of the numerator.
There are no integrations over these external points and no ρ

factors for their world lines. All other diagrammatic elements
and rules are identical to those defined in the previous section.

Following Wiringa and Pandharipande [28], let [I] denote
the sum over all connected numerator diagrams [I], i.e.,
diagrams which include points �r (0)

1 and �r (0)
2 as external points.

When we carry out the cluster expansion of the numerator we
encounter disconnected diagrams with one or more pieces and
the total expansion of the numerator can be written as

N = [I] + [I][i] + 1
2 [I][i][ j] + · · · , (33)

where a summation over I , i, j, ... is implied. In addition, the
notation [I][i][ j] means a disconnected diagram made out of
three parts where no common particle exists.

Now, we expand the ratio of N /D and we obtain

N
D = [I] + [I][i] − [I] × [i] + 1

2
[I][i][ j] − 1

2
[I] × [i][ j]

+ [I] × [i] × [ j] − [I][i] × [ j] + · · · . (34)

The following equations yield the product of sums of dia-
grams which is contained in right-hand side of the above
equation:

[I] × [i] = [I][i] + [

[

I][i] + · · · , (35)

[I] × [i][ j] = [I][i][ j] + 2[

[

I][i][ j] + [I][i][ j]

+ 2[

[[

I][ j][i] + · · · , (36)
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[I] × [i] × [ j] = [I][i][ j] + 2[

[

I][i][ j] + [I][

[

j][i]

+ [I][i][ j] + 2[

[

I][ i

[

][ j ] + 2[

[[

I][i][ j]

+ [I][

[[

i][ j] +

[ ]

[I][i][ j] + · · · , (37)

[I][i] × [ j] = [I][i][ j] + [I][i][ j] + [I][

[

i][ j] + [I][i][ j]

+ [

]]

I][i][ j] + [I][

[ [

i][ j] + · · · , (38)

where

[ ]

[I][i][ j] means that the three pieces share the same
particle. The ellipses stand for more than three disconnected
pieces. In addition, the ellipses stand for terms in which the
number of common particles is equal to or more than the
number of disconnected pieces. These latter terms have been
neglected because their contribution relative to that of I vanish
in the N → ∞ limit. Using the above equations, we can write
the expression given by Eq. (34) as follows:

N
D = [I] − [

[

I][i] + 1

2
[

[[

I][i][ j] + [

[

I][ i
[

][ j ]

+

[ ]

[I][i][ j] + · · · . (39)

We have neglected terms which have the same or more num-
ber of overhead lines as the number of disconnected pieces.
Again, as long as each term has just one overhead line less
than the number of its disconnected pieces, the contribution
of the term is of the same order as the order of [I], which is of
the order of unity in the case of the distribution function.

We now make use of the factorizability of diagrams to
further simplify the above expression. We use the notation
[A] to denote a nonfactorizable numerator-type diagram (this
contains two external points) and use [a] to denote a nonfac-
torizable denominator-type diagram. We expand our notation
to describe this as follows. The following is an example of a
connected diagram [I3] which has three factorizable pieces

[I3] = [

[ [

A a1 a2], (40)

where the overhead lines denote the points where the diagram
[I3] is factorizable. This means that the sum of the connected
diagrams [I] and [i] can be written as follows:

[I] = [A] + [

[

A a] + [

[ [

A a b ] + 1

2
[A a b]

+ 1
2

[ ]

[A a b] + · · · , (41)

[i] = [a] + 1
2 [

[

a b] + · · · . (42)

With this, the final expression for the pair distribution function
becomes

N
D = [A] +

(
[

[

A a] − [

[

A][a]
)

+
(

[

[ [

A a b] − [

[

A a

[

][b] − [

[

A][a

[

b ] + [

[

A][a

[

][b]
)

1

(k)

2

(k)

3 4

(0)

(k)

(a)

1

(k)

2

(k)

3 4

(0)

(k)2

(b)

1

(k)

2 2 3

(0)

(k)

(c)

21 3

(k)

(0)

(k)

(d)

FIG. 7. Examples of diagrams from the families of the first line
in Eq. (43).

+
(1

2
[A a b] − [A a][b] + 1

2
[A][a][b]

)

+
(1

2

[ [

[A a b] −

[ ]
[A a][b] − 1

2

[ ]

[A][a b] + 1

2

[ ]

[A][a][b]
)

+ · · · . (43)

The terms grouped in each set of parentheses cancel ex-
actly in the classical case and we are left with just [A] the sum
of all the connected and nonfactorizable diagrams. In addition,
in our quantum case, in many cases of diagrams they also can-
cel. Figures 7(a) and 7(b) show typical examples of diagrams

from sets [

[

A a] and [

[

A][a], respectively, which cancel each
other. The reason for this cancellation is the following. First,
the world line of particle 2 in the diagram which comes from
[a] in this example is a constant factor, i.e., L2(0M ) = 1/Vθ .
If we erase this “trivial” world line and replace it by this
factor, the two pieces of the diagram of Fig. 7(b) become the
pieces of the factorizable diagram of Fig. 7(a) when factorized

at point 2. In fact, any diagram from the [

[

A a] group has a

counterpart in the [

[

A][a] group and they mutually cancel. The

reverse is not true. Namely, there are diagrams in the [

[

A][a]

group which do not have a counterpart in the [

[

A a] group and
they remain. For example, the diagram illustrated in Fig. 7(c)

has no counterpart in the [

[

A a] group, its counterpart is in
the [A] group and it is the connected nonfactorizable diagram
shown in Fig. 7(d). In the high-temperature limit the diagram
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1

(k)

2

(k)(k)4 3

(a)

1

(k)

2

(k) (k)24 3

(b)

1

(k)

2

(k)2 (k) 143

(c)

FIG. 8. Example of diagrams from the families of the third line
in Eq. (43) with three factorizable parts which cancel.

in Fig. 7(d) becomes factorizable (because the world lines
collapse as discussed in the following section) and cancels the
diagram in Fig. 7(c). Because pairs of diagrams of this type,
such as the two diagrams of Figs. 7(d) and 7(c), nearly cancel
at even intermediate temperature we need to either include
their contribution together or neglect both.

In general, consider any product of diagrams from the

[

[

A][a] group. In order to identify its corresponding “partner”

diagram in the [

[

A a] group, we join these disconnected pieces
[A] and [a] together at the common particle to create its
corresponding factorizable diagram. If the created node is a
node of two “nontrivial” world lines, the latter diagram does

not exist in the [

[
A a] group, i.e., as a factorizable diagram at

the same point. Again, by a “trivial” world line we mean those
in which the corresponding particle has no interactions at any
other time slice and, therefore, they have been integrated out,
yielding a constant factor of 1/Vθ .

In Fig. 8 we give an example of diagrams from the third
line in Eq. (43) which cancel each other out. The diagram

in Fig. 8(a) is an example from the [

] [

A a b] group, whereas
the diagram in Figs. 8(b) and in 8(c) give its two counterparts

which correspond to the families [

] [

A a][b] and [

] [

A][a][b]. These
three diagrams together cancel out when we take their prefac-
tors and their symmetry factors into account.

VI. SUMMATION METHODS

As discussed in the previous section, all disconnected
diagrams contributing to g(r), which are products of [A]
with [a], [b], ..., with common particles, have counterparts
in either [A] class or in the class of factorizable diagrams. In
addition, we discussed how we can define the partner of any
such disconnected diagram. These “paired” diagrams either
cancel exactly or they do so in the high-temperature limit.
We can neglect the contribution of all such “paired” diagrams
at high temperature because their combined contribution is

21

k

k<l

(l)

(k)

2

k<l<m

(l)

(k)

1 2

(m)

21

(k)

1

FIG. 9. Expansion of g(r) up to zeroth order in density.

very small. However, for moderately low temperatures these
diagrams (examples are shown in Fig. 7) can have finite
contribution and hence they must be included.

In the next few sections we will explain our summation
method and evaluate the distribution function for two distinct
sets of systems. One of the systems involves particles interact-
ing with the Lennard-Jones potential

v(r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
, (44)

as applied to 4He and for particles having the 4He atomic
mass (this system has been studied using PIMC simulation
[31–35]). The other system involves hard-sphere particles
described by the following Hamiltonian:

Ĥ = −1

2

N∑
i=1

∇2
i +

∑
i< j

v(ri j ), (45)

v(r) =
{∞, r � 1

0, r > 1.
(46)

The units used here are such that the distance is measured in
units of the hard-core radius σ and the energy is measured in
units of ε = h̄2/(mσ 2), where m is the particle mass. There
is no energy scale in the classical hard-sphere problem and
only the particle density controls the behavior of the pair
distribution function. In the quantum mechanical version of
the problem [36,37] the kinetic energy operator introduced in
the Hamiltonian makes the partition function take the form
Z = tre−θĤ , where θ = ε/(kbT ). Therefore, the problem is
controlled by two parameters, the temperature λ = 1/θ and
the particle density. For the case of distinguishable particles,
we can obtain exact results for the pair distribution function
using the path-integral Monte Carlo method.

A. Density expansion and effective potential

One of the simplest approaches would be to expand g(r)
and include all the diagrams up to a certain order in ρ.

(a) Zeroth order. The sum of zeroth-order diagrams is
given by the infinite series shown in Fig. 9. It is the sum
of all possible two-body diagrams which can be obtained by
considering all possible ways in which h lines connect the
coordinates of these two particles at any time slice.

The sum of these diagrams is needed for two important
reasons. We need to sum the entire series in order to obtain the
correct behavior in the low-density limit. Second, we need the
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1

(0)

(2)

2

(1) 1 2

FIG. 10. Collapse of quantum world line in the high-temperature
limit. The diagram on the left is also an example of a ladder diagram.

entire series in order to obtain the correct classical limit at high
temperature. To understand the latter, consider for simplicity
the case of fixed number of time slices and the expression for
Z given by Eq. (13). When the temperature is high, the world
line of any particle collapses to a point: this can be realized
mathematically by noticing that the world line is made up of
the product of the Gaussians of the form given by Eq. (11)
and as the temperature becomes high, δτ = h̄β/M → 0, these
Gaussians approach a delta function of the difference in the
two positions of the particle at two successive imaginary-time
slices. In this case, the integrations over �r (k)

i for all k 	= 0 in
Eq. (13) can be carried out. This eliminates all the integrals
corresponding to the coordinates �r (k)

i for k 	= 0, and sets �r (k)
i =

�r (0)
i for k 	= 0 in the integrand, thus, Z contains just N integrals

over the N-particle coordinates �r (0)
i :

Z

Z0
=

∫ N∏
n=1

d3r (0)
n

V

∏
i< j

(
1 + h(0)

i j

)M
. (47)

Notice that, using the definition of h(0)
i j [Eq. (10)], the above

factor becomes (
1 + h(0)

i j

)M = e−βv(r(0)
i j ), (48)

i.e., we recover the classical partition function. However, since
this product has been expanded to obtain the cluster expansion
in the quantum case, i.e.,

e−βv(r(0)
i j ) = (

1 + h(0)
i j

)M =
∑

k

(
M
k

)(
h(0)

i j

)k
, (49)

it implies that diagrammatically the collapse of the world line
leads to multiple h lines connecting any two particles at the
coordinates which correspond to the initial time. Figure 10
shows this diagrammatically for the case of M = 3.

In Fig. 11 we show the fate of the series of the zeroth-order
diagrams of Fig. 9 in the high-temperature limit. This explains
the importance of including all zeroth-order diagrams in our
formalism. The sum g0(r12) of the zeroth-order diagrams
contributing to g(r), i.e., those in Fig. 9, defines an effective

M
3

M
1

M
2

1 2

1 21 2

1 2

FIG. 11. The fate of the series of the zeroth-order diagrams of
Fig. 9 in the high-temperature limit.

21 3

(0)(0)

(1) (1)

(a)

2

(1)

1 3

(0)(0)

(1) (1)

(b)

FIG. 12. (a), (b) Examples of first-order (in ρ) ladder diagrams.

potential ve(r) as follows:

g0(r12) = exp(−βve(r12)). (50)

In order to justify this definition, first, notice that the bare
potential is obtained from the high-temperature (classical)
and zero-density limit of the distribution function, which is
given as

lim
β→0

g0(r12) = exp ( − βv(r12)). (51)

Also, the high-temperature limit of the sum presented in Fig. 9
is the sum given in Fig. 11. The latter sum is equal to the
result given by the above Eq. (51). This implies that in the
above definition the effective potential corresponds to the case
where instead of freezing the particles’ coordinates at their
initial values, which would lead to the classical limit, we allow
them to fluctuate in imaginary time. In the zero-density limit,
there are only the world lines of the two external particles that
matter.

The calculation of the sum of all zeroth-order diagrams can
be done easily by noting that the diagonal part of the exact
two-body density matrix is directly proportional to the sum
of all the zeroth-order diagrams in the density expansion of
g(r). This is true provided that a sufficiently large number
of time slices have been used to find the sum. This sum can
be calculated by using the matrix-squaring method [35,38]
for the two-body density matrix. The exact two-body density
matrix at any temperature can be calculated by starting from
the exact two-body density matrix at a very high temperature
and then using the matrix-squaring method to obtain the exact
density matrix at lower temperature.

(b) First order and second order. Unlike the zeroth-order
diagrams, the higher-order ladder diagrams for an arbitrary
number of time slices are harder to calculate. First-order
diagrams contain three particles. Examples of diagrams which
are first order in ρ are shown in Fig. 12. Similarly, second-
order diagrams contain four particles. In all our second-order
calculations we also included the contribution of elementary
diagrams. We expect that such an expansion up to first order
or second order in ρ will only give accurate results in the
low-density regime and also in the high-temperature regime.

We calculated the first- and second-order diagrams using
the veff (r) instead of the bare interaction and made sure
that the result had converged with respect to the number of
time slices (see Appendix E for discussion). The details of
evaluation of all the diagrams have been given in Appendix A.
In Figs. 13(a) and 13(b) we compare the g(r) using the
density expansion with the converged results of PIMC for
large enough M for the Lennard-Jones system. For this system
we used both low temperature (T = 1) and high tempera-
ture (T = 5) and the density was fixed at helium density
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FIG. 13. Comparison of the calculated g(r) within zeroth-order (red dashed line), first-order (green squares), and second-order (blue
circles) approximations with the results of our PIMC simulation (black line) for T/ε = 5 (a) and T/ε = 1 (b) for the Lennard-Jones system.
The green solid line is the result of classical Monte Carlo simulation.

ρ = 0.365 σ−3. For both temperature values we have included
the contribution of the “paired diagrams” mentioned in the be-
ginning of Sec. VI (examples are shown in Fig. 7), and found
that they have small contribution at T = 1 and negligible
contribution at T = 5. Since the contribution from first-order
“paired diagrams” was small, we ignored the second-order
“paired diagrams” in our calculations. In Fig. 14, we compare
the distribution function obtained by using the density expan-
sion with the converged results of PIMC for the hard-sphere
system. Here, we used two different temperatures, namely,
λ = 1 and 5, and the density was fixed at ρ = 0.125σ−3.
We also included the contribution of the first-order paired
diagrams and found their contribution to be negligible for
both the temperatures. This also implies that the second-order
contribution from the paired diagrams can be ignored for the
hard-sphere system. For both the Lennard-Jones and hard-
sphere systems, we have also added the results obtained for
the same density for the respective classical system.

For both systems, there is a significant difference between
the classical MC and the results of PIMC obtained for the
quantum case. We can see that the density expansion surpris-
ingly yields results for the pair distribution function which, in
general, agree with the PIMC results at smaller distances at

both low and high temperatures. As expected, the agreement
with PIMC is better when the temperature is high. We also
notice that for lower temperature the density expansion is
unable to correctly capture the long-range part of the distribu-
tion function. For cases with low density or high temperature,
including first few orders of term may be sufficient to yield
accurate results but the same is not true when temperature is
low or density is high. In the next section, we will discuss the
Padé approximation scheme, which can produce results with
improved agreement with PIMC simulation.

B. Padé approximation

In the previous sections we discussed the series expansion
of the pair distribution function up to a given order m, i.e.,

g(m)(r12) =
m∑

n=0

gn(r12), (52)

where gn(r12) = dn(r12)ρn, i.e., it is the sum of all diagrams
which include n internal particles and they are of order of ρn.

It is a common practice in various expansion techniques,
such as high-temperature series expansion, to use Padé ap-
proximants as an extrapolation tool in conjunction with

0 1 2 3 4
r (in σ)

0

0.5

1

g(
r)

PIMC
0th order 
1st order 
2nd order 
Classical MC

λ=5

(a)

0 1 2 3 4
r (in σ)

0

0.5

1

1.5

g(
r)

PIMC
0th order 
1st order 
2nd order 
Classical MC

λ=1

(b)

FIG. 14. Comparison of the calculated pair distribution function within zeroth-order (red dashed line), first-order (green squares), and
second-order (blue circles) approximations with the result of our PIMC simulation (black line) for the hard-sphere system. The green solid line
represents the result of classical Monte Carlo simulation. In (a) the value of λ is 5 and in (b) the value of λ is 1. The density used is 0.125 (in
units of σ−3).
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information obtained from calculating the observable quantity
up to a given order in the expansion parameter. As we noticed
in the calculation of g(r), the order-by-order expansion is
more accurate at small distances and progressively fails as the
distance is increased. This can be easily understood by the
fact that the n-body clusters included miss the higher-order
nodal diagrams which are convolutions of longer chains of
many particles. By working in momentum space, however,
and using Padé approximants, as shown below, captures the
contribution of these terms.

We consider the diagrammatic expansion of the Fourier
transform of g(r) − 1, i.e., of S(k) − 1, defined as

S(k) − 1 = ρ

∫
d3r[g(r) − 1]ei�k·�r ≡ ρ(k). (53)

The most general form of the Padé approximant for (k) is
given by

(k) = a0 + a1ρ + a2ρ
2 + · · ·

1 + b1ρ + b2ρ2 + · · · . (54)

The coefficients an and bn can be determined by expanding
the above expression in power of ρ and equating the coeffi-
cients of the expansion to those obtained by order-by-order
expansion in the previous section. Below we mention some
equations for the first few values of n:⎡

⎣g̃0

g̃1

g̃2

⎤
⎦ =

⎡
⎣ a0

a1 − a0b1

a2 − b2a0 − b1a1 + b2
1a0

⎤
⎦, (55)

where g̃0, g̃1, and g̃2 are the Fourier transforms of d0(r12) − 1,
d1(r12), and d2(r12), respectively. Although a0 is uniquely
determined, there is only one equation relating an and bn and,
therefore, we need another constraint to determine both un-
knowns. This additional constraint needed is obtained by re-
quiring the Padé expansion to yield the exact high-temperature
limit of the distribution function (i.e., the classical limit). This
is discussed next.

We begin by noticing that for the classical system g(r) − 1
is given by

gc(r) − 1 = N (r) + X (r), (56)

where X (r) represents the composite diagrams and N (r)
represents the nodal diagrams. The Fourier transform of the
above equation becomes

c(k) = X̃ (k) + Ñ (k). (57)

The nodal diagrams are related to the non-nodal diagrams
through a Dyson-type equation which is the so-called HNC
equation which in momentum space can be written as follows:

Ñ (k) = ρX̃ 2(k)

1 − ρX̃ (k)
. (58)

Notice that this is an exact relationship and the HNC becomes
an approximation when one neglects the contribution of the
elementary diagrams. We have no need to proceed to such an
approximation here.

Combining the above two equations we obtain

c(k) = X̃ (k)

1 − ρX̃ (k)
. (59)

Next, we write the X̃ as follows:

X̃ (k) = A0 + A1ρ + A2ρ
2 + · · · . (60)

Substituting X̃ (k) into our previous equation for c(k) we find
that

c(k) = A0 + A1ρ + A2ρ
2 + · · ·

1 − ρ(A0 + A1ρ + A2ρ2 + · · · )
. (61)

We demand that Eq. (54) in the high-temperature limit
becomes Eq. (61). This yields the following:

lim
T →∞

an = An, (62)

lim
T →∞

bn = −An−1(∀ n � 1). (63)

First, it can be easily shown that all the an coefficients in the
expression for (k) in the quantum case [Eq. (54)] in the
high-temperature limit become equal to An in Eq. (61). This
is shown in Appendix B. Furthermore, we will enforce the
constraint

bn = −an−1 (∀ n � 1) (64)

for the coefficients of our Padé approximants in Eq. (54)
for any temperature [which should be satisfied in the high-
temperature limit according to Eq. (63)]. Using this constraint
relating the coefficients of the numerator with those of the
denominator of Eqs. (54) and (55) the coefficients of the
Padé approximants of our quantum case can be determined
uniquely from the power-series expansion in density ρ dis-
cussed in the previous section.

In Fig. 15(a) we show the results of the density expansion
and the results obtained by using the Padé approximation
using the first-order calculation of the coefficients of the
expansion in ρ. As can be inferred from the figure, the density
expansion is more accurate at short distances and the Padé
is more accurate at long distances as expected. This was
discussed in the beginning of this section as the motivation
for carrying out the Padé approximation. Therefore, it seems
reasonable to use density expansion for the short-range part
of the distribution function and the Padé for its long-range
part. This means that up to some distance r0 the distribution
function will be evaluated by using the density expansion and
beyond r0 it will be determined by using Padé approximants.
A detailed description of the procedure to identify r0 and
the interpolation between the two parts is discussed in Ap-
pendix C. In Fig. 15(b) the result of joining these two parts of
the distribution function (calculated by using the coefficients
of the density in first-order density expansion) is compared
with the exact obtained by means of PIMC.

In Fig. 16 we show the full distribution function obtained
by using different orders of Padé approximation in conjunc-
tion with the density expansion for the same system. Clearly,
the results improve as we go from the first-order Padé to
the second-order Padé approximation. We also note that the
region around the first peak and beyond is more accurate when
compared against the results from the density expansion. The
improvement in the long-range part of g(r) is the reason for
using Padé in momentum space as discussed earlier.

A simple test of our method is to compare the results for the
distribution function for a classical system with those obtained
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FIG. 15. Comparison of g(r) for particles interacting with Lennard-Jones potential for density ρ = 0.365σ−3 and for temperature T/ε = 1.
In (a) the solid blue line with points is the result obtained from first-order Padé approximation [gp(r)] and the solid red line with points is the
the result obtained by summing all diagrams up to first order in density [g(1)(r)]. In (b) we present the final result (red circles) after combining
the g(1)(r) and gp(r) curves and comparing it against PIMC simulation (solid black line).

by Monte Carlo. The classical limit is obtained from the Feyn-
man path integral with no time slice in the interval [0, h̄β]
and our results, obtained using up to second-order cluster
expansion followed by Padé approximants to extrapolate to
infinite order, are discussed in Appendix D. The conclusion
of this comparison is that even by restricting ourselves to just
second order, the results are very close to the Monte Carlo
results, and they systematically improve by increasing the
order of the expansion.

In Fig. 17, we present the results using Padé approxi-
mation for the hard-sphere system. The short-range part of
the distribution function was once again obtained by the
density expansion. The results become more accurate once we
transition from the first-order Padé to the second-order Padé
approximation. In the λ = 1 case, the naive density expansion
up to second order fails to yield accurate results, whereas the
second-order Padé produces a g(r) close to PIMC simulation
[see Figs. 14(b) and 17(b)]. For the λ = 5 case, the second-
order density expansion is already in close agreement with
the PIMC simulation and the second-order Padé improves this
agreement even further [see Figs. 14(a) and 17(a)].

VII. FUTURE DIRECTIONS: INCLUDING EXCHANGES

In this paper we have successfully applied the idea of
cluster expansion to the case of interacting distinguishable
particles with significant quantum effects. We can general-
ize this approach to the case of identical particles and, in
particular, to fermions. This means including all diagrams
with exchanges contributing to our equations for the zeroth-,
first-, and second-order expansions. We would like to em-
phasize that adding exchange diagrams order by order to
the distinguishable particle distribution function is not going
to capture the Fermi-liquid behavior of the system. This is
because the full Fermi- or Bose-liquid behavior can only be
captured correctly once exchange diagrams of all orders have
been included. However, in the temperature regimes which
are only able to facilitate two or three particle exchanges,
one can safely assume that the system is predominantly in
the phase where they can be considered as distinguishable.
In such situations, the approach of adding zeroth- or first-
order exchange diagrams as corrections to the distinguishable
particle distribution function can be effective. The set of all
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FIG. 16. Comparison of g(r) for particles interacting with Lennard-Jones potential for density ρ = 0.365σ−3 and for temperature (a) T/ε =
5 and (b) T/ε = 1. The black solid line is the result obtained from our PIMC simulation extrapolated to M → ∞ and N → ∞. The green solid
line is the result from classical Monte Carlo. The red squares and blue circles represent the results obtained by first- and second-order Padé
approximation, respectively. The short-range part of the first- (second-) order Padé was obtained by the first- (second-) order density expansion
using the procedure described in Sec. VI B.
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FIG. 17. Comparison of the calculated pair distribution function with first-order Padé (red squares) and second-order Padé (blue circles)
approximations with the result of our PIMC simulation (black line) for hard-sphere system. The short-range part of the first- (second-) order
Padé was obtained by the first- (second-) order density expansion using the procedure described in Sec. VI B. In (a) the value of λ is 5 and in
(b) the value of λ is 1. The density used is 0.125 (in units of σ−3).

zeroth-order exchange diagrams are shown in Fig. 18. There
are exactly 2M distinct zeroth-order exchange diagrams when
using M time slices for the Trotter approximation, however,
all of them can be included by carrying the matrix-squaring
technique adopted in this paper. In Fig. 19 we show some
examples of three-body (first-order) and four-body (second-
order) exchange diagrams. There are 4 × 8M − 3 × 2M three-
body exchange diagrams for the case of M time slices. They
can be included and it is a part of our next project.

For the case of fermions, the terms corresponding to all
the zeroth-order diagrams shown in Fig. 18 have a negative
contribution (as only one exchange takes place). In a similar
way, the terms corresponding to Fig. 19(b) have positive
contribution (as there are two exchanges). Since our method
is not stochastic in nature it does not suffer from these
negative contributions which present a problem for QMC.
In our future work we plan to implement this method for
the case of fermions and to compare the result with those
obtained by approximate QMC methods, such as the fixed-
node approximation.

VIII. SUMMARY OF IMPLEMENTATION

The calculation of an observable is written as a series
expansion in powers of the particle density ρ. In the case
where we are interested in the pair-distribution function g(r),
which is the main subject of this paper, the series up to the m

21

k

k<l k<l<m

21

(k)

21

(k)

(l)

(m)(l)

21

(k)

FIG. 18. The sum of all zeroth-order exchange diagrams for M
time slices.

order is written as

g(m)(r12) =
m∑

n=0

gn(r12), (65)

where gn(r12) contains a factor of ρn. Any term contributing
to g(r) is represented by a diagram and the diagrammatic
rules are specified in Secs. III and V. Any such diagram
involves n + 2 particles, two of which are external points
(open circles) and the other n particles represent internal
points (solid circles) which are integration variables. For each
such internal particle there is a density factor associated with
it. Therefore, an (n + 2)-body diagram is a ρn-order term.

(i) The first step is to specify the maximum order m up
to which the distribution function is to be evaluated. The
nth-order contribution refers to including all diagrams which
contain n + 2 particles. In this paper we have included the
case where m = 2. In addition, one needs to choose the
number of time slices M that is going to be used.

(ii) Next, one should use the diagrammatic rules discussed
in Secs. III and V to find and evaluate all the diagrams up
to the specified order for the chosen number of time slices
M. The zeroth order contains all diagrams with two particles
(which would be the external particles), the first order con-
tains all diagrams with three particles, and the second order
includes all diagrams with four particles, etc. The diagrams
contributing up to the second order and how to find them are
discussed in Sec. VI in detail.

(iii) Each diagram is an integral which can be calculated
numerically or when it involves many time slices using the
Monte Carlo integration method. In Appendix A we give the
general expression to use to evaluate all the zeroth- [g0(r12)],
first- [g1(r12)], and second-order [g2(r12)] diagrams.

(iv) The previous three steps should be repeated by in-
creasing the number of time slices M keeping the maximum
order of expansion m fixed. The calculation is complete when
convergence is achieved with respect to the number of time
slices M.

This approach can provide accurate results in the low-
density and/or in the high-temperature regime. For more
accurate results we carry out the following additional steps.
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FIG. 19. (a) Example of first-order exchange diagram involving a single two-particle exchange. (b) Example of another first-order exchange
diagram with a three-particle exchange. (c) Example of second-order exchange diagram involving two two-particle exchanges.

(1) Next, we obtain an extrapolation to infinite order gp(r)
by using Padé approximants, as it is customary in other
expansion methods. As usual, the coefficients of the Padé
approximants are determined in such a way to yield the same
order-by-order expansion, as in Eq. (65), up to the calculated
order. In addition, the form of the Padé expression is required
to yield the exact high-temperature limit. How to do that is
explained in detail in Sec. VI B.

(2) The pair distribution function gp(r) obtained by using
Padé is more (less) accurate than g(m)(r) obtained by den-
sity expansion at larger (smaller) distances. As discussed in
Sec. VI B, g(m)(r) accurately captures the short-range part of
the distribution function and gp(r) is more accurate at larger
distances. Therefore, the full distribution function can be
constructed by combining the two results using the procedure
described in Sec. VI B and Appendix C.

IX. CONCLUSIONS

We have revived the old well-known method of cluster
expansion and virial expansion in classical statistical mechan-
ics [16] by extending its application to the many-body path
integral and we have derived a diagrammatic expansion for
the free energy and the pair distribution function. The series
expansion which can be written as a formal power-series
expansion in the particle density ρ can be also thought of
as an expansion where we keep all diagrams involving up to
n-body linked clusters. We provide a complete formalism and
the diagrammatic rules so one can systematically calculate the
free energy and the distribution function in a order-by-order
approach or by developing resummation techniques in the
future to include the most significant contribution of the terms
of the series.

We have also attempted to demonstrate the rather fast
convergence of the approach with respect to the order n and
we used Padé approximants to extrapolate to infinite order.
We benchmarked the method by applying it to problems of
strongly correlated distinguishable particles because in this
case we can compare our results to those we obtained by
using the PIMC technique which is exact for distinguishable
particles. We carry out calculations of g(r) by including up
to three-body diagrams (first order in ρ) and up to four-body
diagrams (second order in ρ) for both Lennard-Jones and the
hard-sphere problem for high densities and moderately low
temperature. The results are in good agreement with those
obtained by PIMC while the long-distance behavior is not
satisfactorily accurate because a finite order does not include

long-range correlations arising from multiparticle chain dia-
grams.

Working in momentum space, we introduce a standard
Padé approximation scheme, however, constrained to exactly
reproduce the nth-order expansion obtained from the clus-
ter expansion and to yield the exact results in the high-
temperature classical limit. This extension gives a good agree-
ment with the exact results obtained with PIMC both for the
Lennard-Jones and hard-sphere problem.

We have shown that our method is formally generalizable
to the case of identical particles and in particular to the case
of fermions by adding a finite number of exchange diagrams
to every order of our expansion. This is a similar situation
to the well-known perturbation theory for fermions [1]. We
hope that this method can provide useful results when applied
to practical problems of interacting Fermi systems. If so, the
results can be used to compare with the results obtained by
applying quantum Monte Carlo (QMC) methods in this latter
case. Our method is simple but tedious and time consuming
and we hope to provide results for this case in the near
future.

We would also like to add that the approach of keeping
just the n-body clusters, which works very well for the dis-
tinguishable particle case, when employed for Bose or Fermi
systems should give a reasonable account of the contribution
of particle permutations when inside the Mott phase. In our
formulation, the so-called Mott-insulator phase occurs when
particle exchanges are exponentially suppressed because of
increased localization. As long as we stay not too close to
the boundary between the Mott insulator and the Fermi-
liquid phase, the contribution of the particle exchanges can
be included in our n-body cluster calculation as outlined in
Sec. VII. However, in order to obtain the full Fermi- or Bose-
liquid behavior, one must include diagrams with long chains
of particle exchange, which is a difficult task to achieve with
our method. The method of keeping n-body clusters can also
work in the temperature regime which allows only for few
particle exchanges. Notice that for liquid 4He multiparticle
exchanges start contributing to the PIMC simulation only very
close to the superfluid transition temperature [39].
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APPENDIX A: CALCULATION OF DIAGRAMS

We first define a generalized H line given by the following
expression:

H12 =
M−1∏
k=0

(
1 + h(k)

12

) − 1. (A1)

With the assumption that the external points are at r (0)
1 and

r (0)
2 , the sum of all zeroth-order diagrams [given by g0(r (0)

12 )]
can be determined using the following expression:

g0
(
r (0)

12

) = V 2
θ

∫ 2∏
n=1

M−1∏
k=0

Ln(kk + 1)
2∏

n=1

M−1∏
k=1

d3r (k)
n (1 + H12).

(A2)

In a similar way, the sum of all first-order diagrams [denoted
by g1(r (0)

12 )] can be evaluated using the following expression:

g1
(
r (0)

12

) = ρV 3
θ

∫ 3∏
n=1

M−1∏
k=0

Ln(kk + 1)(1 + H12)H13H32

×
2∏

n=1

M−1∏
k=1

d3r (k)
n

M−1∏
k=0

d3r (k)
3 . (A3)

The expression above does not include the first-order “paired”
diagrams. In a similar way, the sum of all second-order
diagrams [denoted by g2(r (0)

12 )] can be evaluated using the
following expression:

g2
(
r (0)

12

) = ρ2V 4
θ

∫ 4∏
n=1

M−1∏
k=0

Ln(kk + 1)(1 + H12)H13H42

×
[
H34

(
1 + H14 + H32 + H14H32

2

)
+ H32H14

2

]

×
4∏

n=1

M−1∏
k=1

d3r (k)
n d3r (0)

3 d3r (0)
4 . (A4)

The expression for the second-order diagrams also includes
the elementary diagrams. The integrals mentioned above have
been calculated using Monte Carlo integration method.

APPENDIX B: HIGH-TEMPERATURE LIMIT OF THE
PADÉ APPROXIMATION

At the zeroth-order level of approximation (a0 = g̃0) the
(k) is given by

(k) = g̃0(k)

1 − ρg̃0(k)
. (B1)

As a reminder, the g̃0(k) is the Fourier transform of g0(r12) −
1 which is calculated using the zeroth-order quantum dia-
grams shown in Fig. 9. When we take the high-temperature
limit, all the world lines shown in the figure collapse and
g̃0 becomes exactly equal to the Fourier transform of the
classical h line (h̃cl ). This means that Eq. (B1) in the high-
temperature limit yields the exact same result as Eq. (59)
with X̃ substituted by h̃cl . When we move to the first-order

1 2

3

(a)

1 2

3

(b)

FIG. 20. (a), (b) Represent the first-order classical nodal and
composite diagrams, respectively. The solid line here represents the
classical h line.

approximation for Eq. (54) and use Eq. (63) we obtain

(k) = g̃0(k) + ρa1(k)

1 − ρ[g̃0(k) + ρa1(k)]
, (B2)

where the value of a1 is obtained from the equation

a1 = g̃1 − g̃0g̃0. (B3)

In the real space, the last term in the previous equation is a
convolution of g0 with itself. In the high-temperature limit,
this term should clearly approach the first-order classical
nodal diagram shown in Fig. 20(a) (as g̃0 → h̃cl ). Since g̃1

becomes the classical first-order diagram (gc
1) and g̃2

0 be-
comes the classical first-order nodal diagrams in the high-
temperature limit, a1 becomes the classical composite di-
agram [shown in Fig. 20(b)] in the high-temperature limit
thereby successfully satisfying our constraint. Using similar
reasoning, one can show that the equality between the high-
temperature limit of Eq. (54) and its classical counterpart
[Eq. (59)] is not just limited to zeroth- or first-order approxi-
mations but extends to any order of approximation.

APPENDIX C: COMBINING THE DENSITY EXPANSION
AND PADÉ APPROXIMATION

In this Appendix we have highlighted the main steps to
identify the distance r0 which serves as a connection point for
the results obtained by density expansion and Padé approxi-
mation. Once the r0 has been identified, the pair distribution
function near the region rε(r0 − δr, r0 + δr) is determined by
interpolation (this makes sure that the final distribution func-
tion is not discontinuous). Everywhere else the distribution
function is given by the following:

g(r) =
{

g(m)(r), r � r0 − δr
gp(r), r � r0 + δr.

(C1)

Here, g(m)(r) and gp(r) represent the distribution function
obtained by density expansion and Padé approximation, re-
spectively. Since we work with discretized values for dis-
tances in computer simulation, the value of δr can be chosen
to be the mesh size. For our case, the value of the distribution
function at distance r0 was chosen to be the average of
g(m)(r0) and gp(r0). It can be easily shown that using the
average is equivalent to using a quadratic polynomial [ f (r)]
for interpolation with the constraint

f (r) =
{

g(m)(r), r = r0 − δr
gp(r), r = r0 + δr.

(C2)

Below we have described the procedure that we have used to
choose the r0:
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FIG. 21. (a) Shows comparison of the calculated pair distribution function with zeroth- (green circles), first- (red circles), and second-
(blue circles) order Padé approximation with the result of our classical MC simulation (black line) for a classical Lennard-Jones system.
The short-range part of the zeroth-/first-/second-order Padé was obtained from the zeroth-/first-/second-order density expansion using the
procedure described in Sec. VI B. (b) Focuses on the region around the peak shown in (a). The value of temperature used is 2 (in units of ε)
and that of density used is 0.365 (in units of σ−3).

(i) If the two distribution functions intersect or touch each
other before the location of the first peak of the distribution
function, then that point can be designated as the r0.

(ii) If the two distribution functions do not intersect, then
we identify r0 as the x coordinate of the data points on g(m)

and gp curve that are closest to each other. The only restriction
being that the location of r0 must be before the location of the
first peak of the distribution function.

In Fig. 15 we demonstrate how one can construct the
full distribution function using the g(m) and gp curves for a
Lennard-Jones system.

APPENDIX D: PADÉ APPROXIMATION FOR
CLASSICAL SYSTEM

We applied the Padé approximation scheme to obtain
the pair distribution function for a classical Lennard-Jones
system. We begin by assuming that X0(r), X1(r), and X2(r)
represent the zeroth-, first-, and second-order composite di-
agrams for the classical system. The Padé approximation for
the classical system can be performed by using Eq. (61) where

A0, A1, and A2 are the Fourier transforms of X0(r), ρ−1X1(r),
and ρ−2X2(r), respectively. The density (ρ) used was 0.365
σ−3 and the temperature was 2 (in units of ε). The results
obtained from different orders of Padé approximations have
been compared against the result obtained from the classical
MC in Fig. 21(a). The short-range part of the distribution
function was once again obtained by using density expansion.
Both Figs. 21(a) and 21(b) show the same result with the
latter focusing around the region near the peak and clearly
demonstrating how the result improves as we include higher-
order terms.

APPENDIX E: CONVERGENCE OF DIAGRAMS WITH
RESPECT TO THE NUMBER OF TIME SLICES M

The Trotter approximation is only valid in the limit M →
∞. Since we work only with finite number of time slices,
we demonstrate that we have reached the M → ∞ limit by
showing that our results have converged with respect to the
number of time slices. In this Appendix we show the variation
of both zeroth-order and first-order diagrams with respect to
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FIG. 22. (a) Variation of different orders of diagrams with respect to number of time slices for a Lennard-Jones system at T/ε = 1 and ρ =
0.365σ−3. (a) Shows zeroth-order diagrams calculated using different time slices starting from the bare Lennard-Jones interaction. (b) Shows
first-order diagrams calculated using different time slices using the effective interaction.
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FIG. 23. Convergence of gp(r) (obtained by using first-order
Padé approximation) with the number of time slices M obtained at
ρ = 0.365σ−3 and T/ε = 1 for Lennard-Jones system using effec-
tive interaction.

the number of time slices. For the purpose of demonstra-
tion we consider the Lennard-Jones system at T/ε = 1 and

ρ = 0.365σ−3. In Fig. 22(a) we show the variation of zeroth-
order diagrams with respect to the number of time slices. It
is clear that 20 time slices are sufficient to reach the final
converged result. In a similar way, we show in Fig. 22(b)
the variation of first-order diagrams with different time slices.
It is clear from the figure that the difference between any
two first-order diagrams calculated using different number of
time slices is small compared to the pair distribution function
obtained by summing all clusters up to three-body.

In Fig. 23 we illustrate the convergence of the first-order
Padé approximation with respect to the number of time slices
for the Lennard-Jones potential. We first made sure that the
calculated zeroth-order diagrams have converged with respect
to the number of time slices. Next, we used the effective
interaction and calculated the first-order diagrams using 5,
10, 20, and 50 time slices. The results were then used along
with the converged result of zeroth-order diagrams to ob-
tain the distribution function gp(r) from the Padé approxi-
mation. In the figure we can see that the final results for
the different number of time slices are very close to each
other.
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