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Anomalous transport through algebraically localized states in one dimension
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Localization in one-dimensional disordered or quasiperiodic noninteracting systems in the presence of
power-law hopping is very different from localization in short-ranged systems. Power-law hopping leads to
algebraic localization as opposed to exponential localization in short-ranged systems. Exponential localization
is synonymous with insulating behavior in the thermodynamic limit. Here we show that the same is not
true for algebraic localization. We show, on general grounds, that depending on the strength of the algebraic
decay, the algebraically localized states can be actually either conducting or insulating in thermodynamic limit.
We exemplify this statement with explicit calculations on the Aubry-André-Harper model in the presence of
power-law hopping, with the power-law exponent α > 1, so that the thermodynamic limit is well defined. We
find a phase of this system where there is a mobility edge separating completely delocalized and algebraically
localized states, with the algebraically localized states showing signatures of superdiffusive transport. Thus,
in this phase, the mobility edge separates two kinds of conducting states, ballistic and superdiffusive. We
trace the occurrence of this behavior to near-resonance conditions of the on-site energies that occur due to the
quasiperiodic nature of the potential.

DOI: 10.1103/PhysRevB.100.174201

I. INTRODUCTION

In the context of disordered noninteracting (quadratic
Hamiltonian) systems on a lattice, localization of a single-
particle eigenstate refers to the condition where the corre-
sponding eigenfunction has a single highly pronounced peak
at a particular system site. The most well-studied form of
localization is the Anderson localization [1,2]. In (1D) short-
ranged noninteracting systems, it occurs in the presence of
a potential with infinitesinmal random disorder. Any single-
particle eigenstate of such a system has a pronounced peak
at a lattice site, with exponentially decaying tails. This expo-
nential decay allows for definition of a finite single-particle
localization length. One of the most important physical ef-
fects of such exponential localization is complete absence of
transport. In other words, an exponentially localized state is
completely insulating in the thermodynamic limit. In contrast,
in the absence of disorder, all single-particle eigenstates are
completely delocalized, leading to ballistic transport.

Replacing the random disordered potential by a quasiperi-
odic potential, such as the Aubry-André-Harper (AAH) po-
tential, leads to richer physics [3,4]. The paradigmatic AAH
model consists of a 1D chain with nearest-neighbor hopping
and the AAH on-site potential. As the strength of the on-
site potential is increased, the AAH model shows a phase
transition from an all states completely delocalized phase to
an all states exponentially localized phase, via a critical point
[3]. At the critical point, all states are neither delocalized nor

*madhumita.saha91@gmail.com
†santanu.maiti@isical.ac.in
‡archakp2@gmail.com

localized but are “critical” or multifractal [5]. Though the
AAH model does not have a mobility edge, slight extensions
of the AAH model, such as adding a next-nearest-neighbor
hopping, leads to having mobility edges in energy, separat-
ing regions of delocalized and exponentially localized states
[6–8]. The physical effect of having such a mobility edge
is that the same system can be conducting or insulating de-
pending on energy. Quasiperiodic systems, with and without
mobility edges, are the limelight of recent research [9–17].
These systems have been experimentally realized in several
setups, with tunable interactions [18–24]. They have received
the spotlight recently, with the possibility of exploring the
effects of interactions on a system with a mobility edge as
one of the main focuses [13–15,18,25].

Apart from such quasiperiodic systems, a different class of
noninteracting systems also show delocalization-localization
transitions, as well as possible mobility edges, in one dimen-
sion. They are disordered systems with long-ranged hopping
which decays as a power law [7,26–42]. Depending on the
power-law decay exponent, the single-particle eigenstates of
such systems can be delocalized or localized or multifractal.
Long-range disordered systems have been of growing interest
recently due to theoretical and experimental demonstrations of
exotic physics in them such as time crystals [43,44], prether-
malization [45–48], dynamical phase transitions [49–53],
environment-assisted transport [54], etc. Recent theoretical
exploration into localization properties of long-range systems
[7,26–31,33–42,55–64] have revealed the surprising fact that
correlations in long-range hopping can actually aid local-
ization [33,35]. Several recent works investigate interacting
systems with long-range hopping with the focus on the ex-
istence of many-body localization and entanglement in such
systems [55–61,65–72]. There have also been a few recent
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works inspecting the physics of power-law hopping in the
presence of quasiperiodic potentials [36,37,65,73]. Extremely
rich phase diagrams of such systems in terms of localization,
delocalization, and multifractality of the single-particle eigen-
functions have been presented [36,37].

However, the localized states of disordered or quasiperi-
odic systems with power-law hopping are very different from
those with short-ranged hopping. The localized states in the
presence of power-law hopping have a pronounced peak with
tails decaying algebraically, instead of exponentially [33]. As
a consequence, a single-particle localization length, if defined,
would be infinite. In this sense, the algebraically localized
states are not truly “localized.” So, unlike exponentially local-
ized states, the relation between such algebraically localized
states and the transport properties of the system in the ther-
modynamic limit is not obvious. Exploration of this physics
is especially crucial in the context of all the recent works
investigating many-body localization in long-range systems
[55–61]. But, to our knowledge, this has not been explored
before. In this paper, we fill this gap by elucidating the con-
nection between localization and transport for algebraically
localized states. We show that in quasiperiodic systems with
power-law hopping, the algebraically localized states can be
actually conducting.

The most common characterization of a single-particle
eigenstate as localized or delocalized is done in terms of the
scaling of the inverse participation ratio (IPR) with system
size [7,36,37]. For a localized state, the IPR does not scale
with system size. This property comes from the existence of a
pronounced peak and is true for both exponentially localized
and algebraically localized states. Indeed, in most of the previ-
ous works [7,36,37], IPR is one of the main quantities used to
explore localization-delocalization transitions in the presence
of power-law hopping. This, however, does not directly say
anything about the transport properties of the system, as we
show in this paper. We first prove that, for a 1D noninteracting
fermionic system at zero temperature, if the mean position
of a particle at the Fermi energy is well defined, then the
system is insulating. If the corresponding mean position is
ill defined, then the system is conducting. According to this
criterion, if the states near the Fermi level are algebraically
localized, the system can be conducting or insulating, depend-
ing on the strength of the algebraic decay. We check this by
working out an explicit example. The example we consider
is the AAH model in the presence of power-law hopping. We
choose the strength of the AAH potential such that without
power-law hopping, all states would be exponentially local-
ized. As shown in Ref. [37], for such choice of parameters,
in the presence of power-law hopping, there is a mobility
edge in this system separating completely delocalized and
algebraically localized states. We consider α > 1, so that the
thermodynamic limit is well defined. We classify transport
in terms of the Drude weight [74–76] and the many-particle
localization length [77–80] (which is different from single-
particle localization length) at zero temperature. We find that,
when the Fermi level corresponds to an algebraically localized
state, the system is conducting for 1 < α � 2, while it is
insulating for α > 2. We further show that due to quasiperi-
odicity of the AAH potential, there occurs near-resonance
conditions, as a result of which the mean of the probability

distributions associated with the algebraically localized states
become ill defined for 1 < α � 2, while the mean remains
well defined for α > 2. This thus exemplifies our analytical
result. Note that this occurs due to quasiperiodic nature of
the potential and will not be seen in the case of random
disorder. Most interestingly, for 1 < α < 2, we show clear
evidence of superdiffusive transport through the algebraically
localized states. Thus, we find a phase of the system where
there is a mobility edge in energy separating two different
kinds of conducting regions, ballistic and superdiffusive. To
our knowledge, this is the first time such a system is being
reported.

II. LOCALIZATION AND TRANSPORT

A general Hamiltonian of a noninteracting a system with
time-reversal symmetry is given by

Ĥ =
�N/2�∑

�,m=−�N/2�
H�mĉ†

� ĉm, (1)

where ĉ� is the bosonic or fermionic annihilation operator at
site �, and H is a symmetric matrix (for time-reversal sym-
metry, H has to be real). For concreteness, we have numbered
the sites from −�N/2� to �N/2�, where �x� the least integer
greater than or equal to x. We will be interested in results in the
thermodynamic limit, N → ∞, where the exact numbering in
the sum will not matter as long as the lower limit goes to −∞
and the upper limit goes to ∞. The diagonal elements of H
give the on-site energies, and the off-diagonal elements give
the hopping, which in general can be long range. The matrix
H can be diagonalized via an orthogonal transformation

�T H� = D, (2)

where D is a diagonal matrix containing the eigenvalues of
H, and �T is the transpose of �. The eigenvalues of H are
the single-particle energies of the system, and the columns of
� give the single-particle eigenfunctions of the system. Lo-
calization phenomena in noninteracting systems concerns the
localization of the single-particle eigenstates. In the following,
we restrict our study to 1D systems.

Let �n(x) be the single-particle eigenstate of the system
with energy ωn. Then

Pn(x) = �2
n(x) (3)

gives the probability of a particle to be found with energy ωn

at site x. The following defines a completely delocalized state:

Pn(x) ∼ 1

N
→ completely delocalized. (4)

The single-particle state is termed localized if Pn(x) has a
pronounced peak at some site, say, x0, with decaying tails.
Depending on the nature of decay of the tails, the single-
particle state can be exponentially localized or algebraically
localized:

Pn(x) ∼ e−( |x−x0 |
ζ

)p → exponentially localized, (5)

Pn(x) ∼ 1

|x − x0|p
, |x − x0| � 1 → algebraically localized.
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The IPR of the single-particle state is given by [36]

IPR(n) =
�N/2�∑

x=−�N/2�
�4

n(x). (6)

It can be readily checked that if the single-particle state is
completely delocalized, i.e., �n(x) ∼ 1/

√
N , then IPR(n) ∼

1/N . On the other hand, if the single-particle state has a pro-
nounced peak that does not scale with system size, IPR(n) ∼
N0, i.e., the IPR does not scale with system size. This property
of IPR holds irrespective of whether the single-particle state
is algebraically localized or exponentially localized. Thus,
IPR(n) ∼ N0 is often taken as a defining property of a lo-
calized single-particle state. While IPR does not distinguish
between algebraically localized and exponentially localized
states, various other related properties, like a full multifractal
analysis, can be used to distinguish between algebraically
localized and exponentially localized states where direct
demonstration of the defining behavior in Eq. (5) is not easy
to obtain. The theory of localization is quite well developed.
But the connection between localization of single-particle
eigenstates and particle transport properties of the system
is nontrivial and has not been explored for algebraically
localized states. Exploring this connection is the goal of this
work.

Particle transport properties of an isolated system in the
thermodynamic limit is given by the Kubo formula. At finite
frequency, this is given by

σ (ω) = πDδ(ω) + σ reg(ω). (7)

DC transport properties are given by the zero frequency limit
of above formula. Here D is the Drude weight. The Drude
weight gives the zero frequency peak of conductivity. A
finite value of D points to ballistic transport. DC conductivity
diverges in such case. If transport in not ballistic, D is
zero. The second part, σ reg(ω), which gives the regular
part of conductance, governs transport properties in such
cases. If limω→0 σ reg(ω) = 0, the system is insulating. If
limω→0 σ reg(ω) is finite, the system has normal diffusive
transport, while if limω→0 σ reg(ω) → ∞, the conductivity
diverges, even if D is zero. This kind of transport is called
superdiffusive.

Equation (7) is strictly valid in the thermodynamic limit.
For numerical calculations on finite systems, one has to be
very careful of boundary conditions. It can be shown that
for a finite system with open boundary conditions, the Drude
weight D is identically zero. This holds true even for ballistic
transport, when periodic boundary conditions give a finite
value of D. As shown in Ref. [81], in such cases, under
open boundary conditions, σ reg(ω) develops a peak at finite
frequency, which grows in height and moves towards zero
frequency as system size is increased. So, in the thermody-
namic limit, equivalence between open boundary and periodic
boundary conditions is restored.

Let us first write the expression for σ (ω) for 1D systems
assuming open boundary conditions (see Appendix A for the
derivation):

σ (ω) = iπ
∫ ∞

−∞
dteiωt

× d

dt

⎧⎨
⎩ lim

N→∞
1

N

�N/2�∑
p,q=−�N/2�

pq〈[n̂p(t ), n̂q(0)]〉
⎫⎬
⎭. (8)

Here we have used the definition of a particle current operator
for an open boundary condition: Î = d

dt x̂ = d
dt

∑N
p=1 pn̂p, and

〈·〉 = Tr(e−βĤ/Z · · · ), with β being the inverse temperature.
This is one of the so-called “Einstein relations” connecting
particle conductivity to “diffusion” of density correlations.
In fact, the long-time scaling of the density correlations is
one of the standard ways to classify DC transport. After the
Fourier transform in the above equation, this becomes the
low-frequency scaling of σ (ω):

σ (ω) ∼ ω−s, ω → 0. (9)

For ballistic transport s = 1, for diffusive transport s = 0, for
superdiffusive transport 0 < s < 1, and for subdiffusive trans-
port −1 < s < 0, for complete absence of diffusion (hence-
forth we will identify this with the exponentially localized
case) s � −1 (see Appendix B for more detailed discussion
of transport classification). This is true in general, for both
interacting and noninteracting systems at all temperatures. We
now specialize to noninteracting fermionic systems at zero
temperature. For noninteracting systems, we can evaluate the
above expression in terms of single-particle eigenstates. At
zero temperature, this is given by

σ (ω) = lim
N→∞

π

N

�N/2�∑
p,q=−�N/2�

pq
∑
m,n

ωm�EF

ωn�EF

[(ωn − ωm)�n(p)�m(p)�n(q)�m(q)δ(ω + ωm − ωn)]. (10)

From the above equation, it is clear that the low-frequency behavior is governed by the nature of single-particle eigenstates near
the Fermi energy EF . Thus, unsurprisingly, the nature of single-particle eigenstates near EF governs the DC transport properties
of a noninteracting fermionic system in the thermodynamic limit at zero temperature. However, it is nontrivial to take the ω → 0
limit in the above equation, because it has to be taken only after taking the N → ∞ limit. Otherwise the result is always zero.
The physical reason for this is that in a finite system, there is always a infrared cutoff, given by ωmin ∼ 1/N . One way of
consistently taking the low-frequency and the thermodynamic limit of the above equation is evaluating the summation at ωmin

and approximating the δ function with a Lorentizian (any other approximation to δ-function will also work) whose width is
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also ωmin:

lim
ω→0

σ (ω) = lim
ωmin→0

lim
N→∞

1

N

�N/2�∑
p,q=−�N/2�

pq
∑
m,n

ωm�EF

ωn�EF

[
(ωn − ωm)�n(p)�m(p)�n(q)�m(q) ωmin

(ωmin + ωm − ωn)2 + ω2
min

]
. (11)

Now, if we take ωmin → 0 first, the term in the square bracket
gives a finite value. Assuming that there is no degeneracy
of single-particle eigenvalues (for a finite system under open
boundary conditions), this yields

lim
ω→0

σ (ω) = lim
N→∞

[x(EF )]2

N
, (12)

where

x(EF ) =
�N/2�∑

x=−�N/2�
xPn(x)|ωn≈EF (13)

is the mean of the probability distribution given by square of
a single-particle eigenfunction at EF . It relates conductivity
of a noninteracting system at zero temperature to the mean
position of a particle with energy EF . In going from Eq. (11)
to Eq. (12), we have switched the order of taking the two
limits. This is allowed only if the RHS of Eq. (12) is well
defined. However, the RHS may be ill defined because the
N → ∞ limit of the mean of the probability distribution may
be ill defined. The mean is well defined in thermodynamic
limit only if

lim
N→∞

x(EF ) = lim
a→∞

[
lim

b→∞

b∑
x=−a

xPn(x)|ωn≈EF

]

= lim
b→∞

[
lim

a→∞

b∑
x=−a

xPn(x)|ωn≈EF

]
. (14)

In other words, the mean should be the same finite number
irrespective of the order in which the lower limit is taken to
−∞ and the upper limit is taken to ∞. Each of the limits in the
above equation must exist. It can be checked that the existence
of the mean in the thermodynamic limit is the necessary and
sufficient condition for the RHS of Eq. (12) to be well defined
(see Appendix D). Equation (12) then shows that, if the mean
is well defined, limω→0 σ (ω) = 0. So, existence of x(EF )
in the thermodynamic limit is a sufficient condition for the
system to be insulating at zero temperature. It can be checked
that this is also a necessary condition for the same. To see this,
note that naively setting ω = 0 in Eq. (10) gives σ (0) = 0,
which means, if the system is insulating, interchanging the
order of the ω → 0 and the N → ∞ limits must be possible.
Thus, Eq. (12) must be well defined in such case, which
implies that x(EF ) is well defined in the thermodynamic limit.
Thus, if and only if the mean position of a particle with Fermi
energy is well defined in the thermodynamic limit, the system
is insulating. Conversely, it follows that, if the corresponding
mean is ill defined in the thermodynamic limit, then the system
is conducting. In this case, the RHS of Eq. (12) is ill defined,
which shows that switching of the order of the limits in

Eq. (11) is not allowed. Hence we have proven the following
crucial result: for 1D noninteracting fermionic systems at zero
temperature:

lim
N→∞

x(EF ) → well defined ⇒ insulating,

(15)
lim

N→∞
x(EF ) → ill defined ⇒ conducting,

assuming no degeneracy of single-particle eigenvalues for the
finite system under open boundary conditions (which is true in
most cases). It directly connects properties of single-particle
eigenfunctions in 1D noninteracting systems to transport. Let
us understand this result in terms of localization. Intuitively,
spatial localization of a single-particle eigenstate means that
one can associate a “classical” notion of position to a parti-
cle in that state. This is certainly true for an exponentially
localized state, where the particle can be taken to located
in a region of width ζ around x0 [see Eq. (5)]. Here ζ is
the single-particle localization length. In this case, the mean
position is certainly well defined, and thereby from Eq. (15),
the system is insulating if the Fermi level corresponds to an
exponentially state. This is also intuitive since the particle can
be taken to be confined to a finite region. The situation is more
complicated if there is an algebraically localized state at EF .
In this case, there is no length scale within which the particle
can be assumed to be confined. In other words, an infinite
number of moments of the probability distribution Pn(x) are ill
defined in the thermodynamic limit. Equation (15) then gives
the extremely nontrivial result that it is the existence of the
mean (i.e., the first moment) of Pn(x) that governs the nature
of transport. If the mean exists, then the system is insulating,
irrespective of nonexistence of higher moments. Conversely,
if the mean is ill defined, there is no way to associate the
“classical” notion of position to a particle in that state (i.e., not
even a mean position). All moments of Pn(x) are ill defined in
this case. A particle in such a state cannot really be considered
“spatially localized” but must be considered extended over the
entire system. Since the state is extended (in this sense), it
should contribute to transport.

Equation (15) thus has profound consequences for the
algebraically localized states. It is well known that mean
of a probability distribution with tails decaying as Pn(x) ∼
|x − x0|−p is well defined only if p > 2. This can be easily
checked by noting that for Pn(x) ∼ |x − x0|−p, |x − x0| � 1:

N∑
x=a

xPn(x) ∼
{

N2−p, ∀ p �= 2
log(N ), p = 2

, (16)

for arbitrary finite choice of a. Thus, for p � 2, one of the
limits in Eq. (14) does not exist, while for p > 2 all the limits
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in Eq. (14) can be shown to exist. By Eq. (15), this says that

For Pn(x)|ωn≈EF ∼ 1

|x − x0|p
, |x − x0| � 1,

p > 2,⇒ insulating

p � 2,⇒ conducting. (17)

Thus, we have found the connection between algebraic lo-
calization in one dimension and transport. This is our main
analytical result. Most interestingly, this says that, contrary to
exponential localization, algebraically localized states can be
conducting. Note that IPR ∼ N0 for any positive the value of
p. So for p � 2, we have states which are localized according
to IPR scaling with system size but are conducting in the
thermodynamic limit.

We would like to check the above findings in a nontrivial
setting. For this purpose, we have to characterize DC transport
at zero temperature numerically. DC transport is characterized
by the low-frequency behavior of σ (ω) [see Eq. (9)], and
hence by the existence of the Drude weight and by the
low-frequency nature of σreg(ω). However, direct numerical
calculation of these quantities for large system sizes is quite
difficult. At zero temperature, there exists an alternative,
easier, but equivalent way, which we discuss below.

At zero temperature under periodic boundary conditions,
it was shown by Kohn [74] that the Drude weight can be
equivalently calculated from the change in the ground-state
energy of the system in the presence of a small magnetic
flux. Let E0 be the ground-state energy of the system in the
presence of a flux φ. Then the Drude weight is given by

D(N ) = N

4π2

∂2E0

∂φ2
|φ→φmin , D = 2π lim

N→∞
D(N ), (18)

where φmin is the flux at which E0 becomes minimum. For a
noninteracting system, D(N ) is governed by the nature of the
single-particle eigenstates of the system near the Fermi energy
EF [since limω→0 σ (ω) is governed by the same; see Eq. (10)].
From Eq. (18) we see that D(N ) corresponds to the change
in the ground-state energy of the system with a periodic
boundary condition under an infinitesimal flux. Since putting
a flux corresponds to a twist in the boundary conditions, D(N )
measures the change in E0 due to a small change in boundary
conditions. Thus, it is plausible that finite-size scaling of D(N )
depends on the weight of the eigenfunctions at the boundary.
If the states near the Fermi energy EF are completely delo-
calized, which corresponds to ballistic transport, the weight
of eigenfunctions at the boundary does not decay with system
size. So D(N ) ∼ N0, which corresponds to ballistic transport.
If the states near EF are exponentially localized, the weight of
the eigenfunctions at the boundary decays exponentially, and
D(N ) ∼ e−N . By the exact same reasoning, if the states near
EF are “algebraically localized,” we expect D(N ) to decay as
a power law, D(N ) ∼ N−�.

Thus, if D(N ) ∼ N0, transport is ballistic. For an expo-
nentially localized system, D(N ) ∼ e−N . For other types of
transport (diffusive, superdiffusive, subdiffusive), D(N ) goes
to zero with system size slower than exponentially. For alge-
braically localized states, we expect D(N ) ∼ N−�.

Further classification is provided by limω→0 σ reg(ω). But
direct calculation of this limit of σ reg(ω) is difficult. So

following Refs. [77–80] one can equivalently look at the
many-particle localization length, which is defined as follows.
Let |0〉 be the many-particle ground state of the system,

|0〉 =
Ne∑

n=1

|�n〉. (19)

Here Ne is the number of particles in the system. The many-
particle localization length ξ is defined as [77–80]

ξ 2(N ) = 1

N
[〈0|x̂2|0〉 − (〈0|x̂|0〉)2]

= 1

2N

�N/2�∑
p,q=−�N/2�

[(p − q)2(〈n̂pn̂q〉 − 〈n̂p〉〈n̂q〉)], (20)

where x̂ = ∑�N/2�
p=−�N/2� pn̂p is the position operator, and 〈·〉 =

Tr(|0〉〈0|·). [In Refs. [77–80], the definition of ξ 2 involves
normalization by number of particles Ne. Here we have instead
normalized by N assuming Ne ∝ N . This does not change
any of the physics associated with ξ 2(N ).] Once again, it
is important to note the issue of boundary conditions. The
many-particle localization length requires definition of the
position operator. The position operator is well defined only in
open boundary conditions. So, contrary to the Drude weight,
for numerical calculations on a finite-size system, one needs
to calculate ξ 2(N ) strictly under open boundary conditions.
The many-particle localization length helps us to characterize
transport due to the following relation valid at zero tem-
perature (see Refs. [77–80] and also Appendix C for the
derivation):

lim
N→∞

ξ 2(N ) ∝ lim
N→∞

∫ ωmax

ωmin

dω
σ reg(ω)

ω
, (21)

with ωmin ∼ 1/N and ωmax ∼ inverse of lattice spacing. In
the above equation, σ reg(ω) is assumed to be calculated in
a finite but large system with open boundary conditions,
and then the N → ∞ limit is taken in the RHS. Note that
on a finite but large system with open boundary conditions,
σ reg(ωmin) ∼ σ (ωmin). Hence using Eq. (9) in Eq. (21), and
noting ωmin ∼ 1/N , we can find the behavior of ξ 2(N ) with
system size as

ξ 2(N ) ∼
⎧⎨
⎩

Ns, ∀ s > 0
log(N ), ∀ s = 0
N0, ∀ s < 0

. (22)

So we see that ξ 2(N ) is finite in thermodynamic limit for
subdiffusive transport, s < 0, which gives insulating behav-
ior in thermodynamic limit. So finiteness of ξ 2(N ) points
to insulation. On the other hand, logarithmic divergence of
ξ 2(N ) shows the system is diffusive and has a finite conduc-
tivity. Power-law divergence of ξ 2(N ) shows conductivity is
diverging. For ballistic transport, ξ 2(N ) ∼ N . Like D(N ), for
noninteracting systems, ξ 2(N ) is governed by the nature of
states near EF [since limω→0 σ (ω) is governed by the same;
see Eq. (10)].

So finite-size scaling of D(N ) under periodic boundary
conditions and that of ξ 2(N ) under open boundary conditions
allows us to characterize zero temperature particle transport
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as follows:

D(N ) ∼ N0, ξ 2(N ) ∼ N ⇒ conducting, ballistic,

D(N ) = N−�, ξ 2(N ) ∼ Ns ⇒ conducting,

superdiffusive, (23)

D(N ) = N−�, ξ 2(N ) ∼ log(N ) ⇒ conducting, diffusive,

D(N ) = N−�, ξ 2(N ) ∼ N0 ⇒ insulating, subdiffusive,

D(N ) ∼ e−N , ξ 2(N ) ∼ N0 ⇒ insulating, exponentailly

localized,

where we have assumed that the slower than exponential
decay of D(N ) with N for the middle three cases is a power-
law decay. This, as explained before, is expected for the
algebraically localized systems. Note that both D(N ) and
ξ 2(N ) are properties of the many-particle ground state of
the system and are well defined irrespective of whether the
system is interacting or noninteracting. Here, however, we
are interested in noninteracting systems, where nature of
single-particle eigenstates near EF govern the behavior of
D(N ) and ξ 2(N ). Particularly, we see from Eq. (17), if the
states near EF are algebraically localized, then, for p > 2, the
system will be insulating and ξ 2(N ) will remain finite in the
thermodynamic limit, while for p � 2, the system is expected
to be conducting, and ξ 2(N ) will diverge with an increase in
system size. In either case, D(N ) is expected to go to zero
as a power law. In the following, we work out an illustrative
example where exactly this happens. To our knowledge, this
is the first work showing that algebraically localized states in
1D can be conducting.

III. AN ILLUSTRATIVE EXAMPLE

A. The model

We consider a model with the quasiperiodic AAH potential
and power-law hopping:

Ĥ =
�N/2�∑

x=−�N/2�
ε(x)ĉ†

x ĉx

−
N/2∑

x=−N/2

�N/2�−1∑
m=1

(
1

mα
ĉ†

x ĉx+m + H.c.

)
,

ε(x) = W cos(2πb x). (24)

Here {cx} is the fermionic annihilation operator at site x, and
b is an irrational number. The system has power-law hopping
with exponent α and strength −1. The long-range power-law
hopping has a hard cutoff at m = �N/2� − 1. This cutoff is
required to uniquely define the periodic boundary condition,
which is required for calculation of the Drude weight. The
important point here is that the cutoff scales with system
size. In addition, the system has an on-site potential ε(x),
which is a cosine potential of strength W and period 1/b.
If b is an irrational number, the period of the potential is
incommensurate with the lattice. We take b = (

√
5 − 1)/2,

which is the golden mean. Rational approximations to the
golden mean is given by the ratios of consecutive Fibonacci

numbers,

Fn = Fn−2 + Fn−1, lim
n→∞

Fn

Fn+1
= b =

√
5 − 1

2
, (25)

where Fn is the nth Fibonacci number. To implement pe-
riodic boundary condition along with this incommensu-
rate potential, the system sizes are chosen to be Fibonacci
numbers.

With nearest-neighbor hopping (i.e., α → ∞), the above
model is the paradigmatic AAH model. This model shows a
phase transition from all states completely delocalized to all
states exponentially localized with increase in the strength of
on-site potential W . The transition point is W = 2, which is
the critical point. There is no mobility edge in the nearest-
neighbor case. In the presence of power-law hopping, there
occurs a rich phase diagram of the model with mobility edges
separating different kinds of states. The phase diagram of
the model in terms of the mobility edges has been explored
in detail in a recent work [37]. One of the main results of
that work is that, depending on the value of W and α, there
occurs a fraction bq number of completely delocalized states,
where q is an integer. The parameter space in terms of α

and W can be broken up into regions with integer values
of q. A single mobility edge occurs separating these states
from the rest of the states. For α < 1, the rest of the states
are multifractal, while for α > 1, the rest of the states are
algebraically localized.

In this paper, we want to look at particle transport at
zero temperature through a noninteracting system which has
algebraically localized states near EF . So, throughout the rest
of the paper, for numerical calculations, we choose, W = 3,
and α > 1. The classification of transport behavior in terms of
D(N ) and ξ 2(N ) given in the previous section depends on the
existence of the thermodynamic limit. Since we are dealing
with a long-range system the existence of the thermodynamic
limit is not obvious. However, for α > 1, the single-particle
eigenenergies are bounded from below in the thermodynamic
limit. Also, the ground-state energy at a given filling is exten-
sive, as can be checked by explicit numerical calculations (see
Appendix E). So, in this case, the thermodynamic limit is well
defined.

B. Numerical results

In 1D systems with long-range hopping, many interesting
effects are seen when the hopping exponent is 1 < α < 2,
which are often markedly different from α > 2. The interest-
ing transport properties of the ordered system in this regime
have been recently reported in Ref. [82] by the authors. In
the context of quasiperiodic systems, some of the interesting
features in this regime have been discussed in Ref. [37]. In the
present case also, we will see that 1 < α < 2 and α > 2 will
have markedly different behaviors.

In Fig. 1 we present the numerical results for IPR, D(N ),
and ξ 2(N ) for three values of α: α = 1.7 (which is rep-
resentative for 1 < α < 2), α = 2, and α = 2.3 (which is
representative for α > 2). For these values of α and our
chosen value of W = 3, according to Ref. [37], there are b3

fraction of completely delocalized states, and the rest of the
states are algebraically localized (for explicit illustrative plots
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FIG. 1. Plots of IPR, D(N ), and ξ 2(N ) for as a function of n/N where n is the single-particle eigenstate index. For D(N ) and ξ 2(N ), n/N is
to be interpreted as the ground-state filling fraction, i.e., all single-particle eigenstates up to nth state are occupied and the rest are empty. The
left column is for α = 1.7, which is representative of α < 2, the right column is for α = 2.3, which is representative of α > 2, and the middle
column is for α = 2. Each plot shows results for three different system sizes. The vertical dashed line in all plots corresponds to b3, which is
the fraction of completely delocalized states. W = 3.

showing algebraically localized and exponentially localized
states, refer to Appendix F). In Fig. 1 all the quantities are
plotted against n/N , where n is the single-particle eigenstate
index, with the single-particle eigenvalues arranged in ascend-
ing order. The points in the IPR plots correspond to the IPR
of the single-particle eigenstates. For D(N ) and ξ 2(N ) plots,
n/N gives the ground-state filling fraction. The vertical dashed
lines in all plots correspond to b3. The fraction of states with
n/N < b3 are completely delocalized. So their IPR ∼ N−1

(as can be checked by multiplying the data points by N ; see
Appendix G), D(N ) ∼ N0 (as can be seen from the plots), and
ξ 2(N ) ∼ N (as can be seen by dividing the data points by N ;
see Appendix G). Our main object of interest is the typical
behavior of the rest of the states, i.e., the states for which
n/N > b3. It is clear from the plots that for these states IPR ∼
N0, which clearly points towards localization. However, at
these filling fractions, we see that D(N ) ∼ N−�. This is con-
sistent with our expectation for algebraically localized states
and confirms that the states are not exponentially localized.
This is true for all values of α > 1. Most interestingly, we see
from the plots that ξ 2(N ) for filling fraction n/N > b3 behave
differently for α � 2 and α > 2. For α � 2, ξ 2(N ) seems to
increase with system size, while for α > 2, it seems not to
scale with system size. As discussed before, this suggests that
for α � 2, the algebraically localized states are conducting,
while for α > 2, the algebraically localized states are insulat-
ing. Note that there is a more intricate structure and possible
multiscaling, especially for α = 2. This is the usual case for
quasiperiodic systems due to self-similar singular spectra of
eigenenergies. While this is interesting, here, we will not be
concerned with such details. Instead, in the following, we will

be looking at the behavior of system averaged over all values
of n with n/N > b3.

We denote D(N ) and ξ 2(N ) by the values of D(N ) and
ξ 2(N ), respectively, averaged over all filling fractions where
the Fermi energy corresponds to an algebraically localized
state, i.e., for n/N > b3. Figure 2, top left panel shows, plots
of D(N ) with N for α = 1.7 and α = 2.3. In both cases,
D(N ) decays as a power law. Figure 2, bottom left panel,
shows plots of ξ 2(N ) with N for α = 1.7 and α = 2.3. Here
we see that for α = 1.7, ξ 2(N ) diverges with N as a power
law with an exponent between 0 and 1, while for α = 2.3,
ξ 2(N ) does not scale with system size. Thus, according to the
classification of transport properties in Eq. (23), the transport
through algebraically localized states is superdiffusive for
α = 1.7. We have checked that this is the case for 1 < α <

2. So, in this regime, the algebraically localized states are
conducting, with a diverging conductivity. On the other hand,
for α > 2, the transport through algebraically localized states
is subdiffusive according to Eq. (23). In this regime, the
algebraically localized states are insulating.

Figure 2, right panel, shows plots of D(N ) and ξ 2(N ) with
N for α = 2.0. From the top right plot, it is clear that D(N )
decays as a power law in this case also. However, the scaling
of ξ 2(N ) with N seems to match equally well both a power-
law fit with a very small exponent (right middle panel) and
a fit of logarithmic divergence (right bottom panel). From our
data, it is not possible to differentiate between these two cases,
so we cannot conclude whether the transport is diffusive or
weakly superdiffusive. Nevertheless, it is clear that at α = 2,
the algebraically localized states are conducting.
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FIG. 2. System-size scaling of D(N ) and ξ 2(N ), which are the the average values of D(N ) and ξ 2(N ), averaged over all fillings where the
Fermi energies correspond algebraically localized states. The left panel shows the plots of D(N ) and ξ 2(N ) with N for two different values of
α, α = 1.7 and α = 2.3. The right panel shows plots of D(N ) and ξ 2(N ) with N for α = 2. The middle plot of the right panel shows a log-log
plot with a power-law fit of ξ 2(N ) for α = 2. The bottom plot of the right panel shows a log-linear plot with a logarithmic fit of ξ 2(N ) for
α = 2. W = 3.

Assume that D(N ) ∼ N−� and ξ 2(N ) ∼ Ns. In Fig. 3 we
show the variation of � and s with α for α > 1. We see that �

increases linearly with α. More interestingly, we observe that,
for 1 < α < 2, s ∝ (2 − α). However, α = 2 gives a nonzero
value of s from a power-law fit. This seems to suggest that the
behavior at α = 2 is indeed different from that for 1 < α < 2.

1.2 1.4 1.6 1.8 2.0 2.2 2.4

α

0

1

2

3
2.404α−2.851

1.2 1.4 1.6 1.8 2.0 2.2 2.4

α

0.0

0.2

0.4

0.6

s

0.8(2 − α)

FIG. 3. Plots of power-law scaling exponents � and s, corre-
sponding to D(N ) ∼ N−� and ξ 2(N ) ∼ Ns, with α. The results are
obtained from power-law fits. W = 3.

This, though not at all conclusive, seems to point in favor of
the logarithmic fit and hence, diffusive transport at α = 2.

Having established that the algebraically localized states
are conducting on average for α � 2, let us see if this is
consistent with Eq. (17). For this purpose, we look at the
behavior of the power-law tails of the algebraically localized
states. We denote by �n(x) the single-particle eigenfunction
of the nth eigenstate. The behavior of the power-law tails is
embodied by the following quantity:

|�n(x′)|2typ = exp

[
1

N

′∑
n

log
(|�n(x′)|2)

]
, (26)

x′ = x − x0, x > x0,

where x0 is the position of the peak of the algebraically
localized state, N is the number of algebraically localized
states, and

∑′
n denotes sum over all algebraically localized

states. The above quantity is the geometric mean of absolute
value square of all algebraically localized eigenfunctions,
with the position of the peak shifted to zero (the physics
discussed below holds even if arithmetic mean was taken
instead of geometric mean; see Appendix H). The behavior
of |�n(x′)|2typ with x′ gives the typical decay of algebraically
localized eigenfunctions, |�n(x′)|2typ ∼ x′−p. From Eq. (17),
the value of p governs whether the system is conducting or
insulating.
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FIG. 4. Scaling of |�n(x′)|2typ with x′ for α = 1.7 (top), α = 2.0
(middle), α = 2.3 (bottom). The orange dots correspond to points
where x′ = Fibonacci number. The green line shows the scaling of
|�n(x′)|2typ for these points. The black dashed line shows a least-
square fit of all the data points. System size: N = 6765. W = 3.

The plots of |�n(x′)|2typ with x′ are shown in Fig. 4 for
three values of α. For all values of α we see that a least-square
fitting gives a power-law decay with exponent ∼2α. However,
more importantly, |�n(x′)|2typ shows a series of secondary
peaks at values where x′ is equal to a Fibonacci number. The
height of these peaks decay as a power law with the exponent
given by 2(α − 1):

|�n(Fn)|2typ ∼ F−2(α−1)
n . (27)

Then, from Eq. (17), the system is insulating if

2(α − 1) > 2 ⇒ α > 2. (28)

So, for α > 2, the system is insulating in thermodynamic
limit. On the other hand, for α � 2, from Eq. (17), the system
is conducting. This is completely consistent with our findings
from system-size scalings of D(N ) and ξ 2(N ).

The above results show that the transport through the al-
gebraically localized states in our example is completely gov-
erned by the occurrence of the secondary peaks at |�n(Fn)|2typ.
Let us now see the origin of these peaks. We note that because
of the properties of Fibonacci numbers [Eq. (25)], the on-site
energies of sites separated by a distance equal to a Fibonacci
number are very close to being in resonance. In particular, as
shown in Fig. 5, we have

|ε(x0 + Fn) − ε(x0 + Fn−1)| ∝ 1

Fn
, (29)

for any integer value of x0. We also note that

Fn − Fn−1 = Fn−2 � b2Fn, (30)

for large n. The decay of |�n(x′)|2typ with x′ is governed
by the degree of hybridization between the various sites of
the system. Without the power-law hopping term, the system
would be exponentially localized for our choice of parameters.
So the degree of hybridization between two far-off sites would
be exponentially small. The algebraic decay of eigenfunctions
is thus governed solely by the degree of hybridization between
far-off sites due to the long-range hopping. Due to Eq. (29),

101 102 103 104

Fn

10−3

10−2

10−1

100

|ε(
x

0
+

F
n
)
−

ε(
x

0
+

F
n
+

1
)|

8.5Fn
−1.0

FIG. 5. Demonstration that |ε(x0 + Fn) − ε(x0 + Fn−1)| de-
cays as 1/Fn. Here x0 = 1. We have checked that the same remains
true for any integer value of x0.

the hybridization between sites separated by distances of Fi-
bonacci numbers has a tendency to increase with the increas-
ing value of the Fibonacci number, while due to the power-law
decay of hopping, it has a tendency to decrease. The height of
a secondary peak occurring at a distance of Fn from the main
peak of an algebraically localized eigenfunction is governed
by its degree of hybridization with the previous peak at Fn−1.
By this argument, we see that, in our case,

|�n(Fn)|2typ ∼
∣∣∣ 1

(Fn − Fn−1)α[ε(Fn) − ε(Fn−1)]

∣∣∣2

∼ F−2(α−1)
n , (31)

where, in the second line, we have used Eqs. (29) and (30).
This is exactly as we have seen from the numerical calcula-
tions in Fig. 4.

Thus, we have shown that, due to the quasi-periodic nature
of the AAH potential, there occurs near resonance conditions,
because of which, the algebraically localized states become
conducting for 1 < α � 2. This is especially remarkable be-
cause usually mobility edges are thought of as separating
regions of conducting and insulating states. However, our
result shows that in AAH model with power-law hopping one
can have a phase where there is a mobility edge separating
two different kinds of conducting states, viz., ballistic and
superdiffusive. To our knowledge, this is the first time the
possibility of such a system is being reported.

We have demonstrated this taking the irrational number
b as the golden mean. But the same physics holds for other
choices of irrational numbers. Any irrational number can be
expanded in an infinite continued fraction. Truncating the
continued fraction at any stage gives a rational approximation
to the irrational number. Truncating at various levels of the
continued fraction, a series of rational approximations to
the irrational number can be obtained. The near-resonance
condition will then occur for sites separated by a distance
equal to the denominators of the rational approximations. For
the golden mean, these numbers are the Fibonacci numbers.

While the physics described above is immune to the
choice of the irrational number, it is completely due to the
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quasiperiodic nature of the potential. So, instead of the AAH
potential, if the system had random disorder, there would not
be the secondary peaks. In fact, it is known that in such cases,
for algebraically localized states, |�n(x′)|2typ ∼ x′−2α [33,35].
Thus, for random disorder, from Eq. (17), the algebraically
localized states will be insulating for α > 1. As a result,
localization due to random disorder and localization due to
quasiperiodic disorder leads to extremely different transport
properties in the presence of power-law hopping.

IV. SUMMARY AND OUTLOOK

Let us now summarize all the main results in this paper.
In Sec. II, we have analytically explored on general grounds
the relation between localization and nature of transport for
algebraically localized states. We have proven that a nonin-
teracting fermionic system at zero temperature is insulating if
and only if the mean position of a particle at Fermi energy
is well defined in the thermodynamic limit. Based on this
criterion, when the Fermi level corresponds to an algebraically
localized state, the system may be either conducting or in-
sulating depending on the strength of the algebraic decay. In
Sec. III we have given such an example.

In Sec. III the numerical example we have considered
is a system with AAH potential in the presence of power-
law hopping. We have chosen the parameters of the AAH
potential such that in the absence of power-law hopping, the
single-particle eigenstates would be exponentially localized
(W > 2). In the presence of power-law hopping, as shown
in Ref. [7], there is a mobility edge separating completely
delocalized states and algebraically localized states. We have
shown that, due to the quasiperiodic nature of the AAH po-
tential, there occur near-resonance conditions, which causes
a series of secondary peaks in typical algebraically localized
eigenfunctions. The algebraic decay of the height of these
peaks is such that, for 1 < α � 2, the mean of the probability
distribution given by the square of the eigenfunction is ill
defined in the thermodynamic limit. For α > 2, the corre-
sponding mean is well defined in the thermodynamic limit.
Thus, at zero temperature, when the Fermi level corresponds
to an algebraically localized state, the system is conducting
for 1 < α � 2, while it is insulating for α > 2. Classifying
transport in terms of the zero temperature Drude weight and
the zero temperature many-particle localization length, we
have shown that the algebraically localized states, for 1 <

α < 2, lead to superdiffusive transport. Thus, for W > 2 and
1 < α < 2, we have found a phase where there is a mobility
edge which separates two different kinds of conducting states,
ballistic and superdiffusive. This is in contrast with general
wisdom, where mobility edges are usually thought of as
separating conducting and insulating states.

Our work opens several new questions regarding quasiperi-
odic 1D systems with power-law hopping and points to the
rich physics of such systems. For the AAH model with power-
law hopping, in this work, we have only explored a part of the
phase diagram in terms of transport properties. It has been pre-
viously shown that even when the short-ranged AAH model
is delocalized (W < 2), switching on power-law hopping can
lead to localization [36]. This falls in the paradigm of the
recently discussed “correlation induced localization” [35]. It

is of interest to explore the transport through such localized
states in the light of our results. Definitely, the mechanism for
localization or delocalization will be different for such states.
The case of the critical AAH model (W = 2) in the presence
of long-range hopping deserves to be studied even more
thoroughly, and there has been almost no work exploring this.
Further, it has recently been shown that isolated system trans-
port properties and open system transport properties can be
extremely different for quasiperiodic systems [10–12]. Thus,
the open system transport properties of quasiperiodic 1D
systems with power-law hopping is also of extreme interest.
In this work, we have shown the existence of a single-particle
mobility edge that separates regions of ballistic and superdif-
fusive transport. The effect of interactions on such a mobility
edge is also one of the interesting directions to explore, which
may be experimentally possible in trapped ion experiments,
a platform where long-ranged quasiperiodic systems may be
possible to engineer [54]. From a practical point of view, such
systems, with extremely rich and tunable transport properties,
may find use in devising rectifiers [83–85] and autonomous
quantum heat engines [86].
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APPENDIX A: KUBO CONDUCTIVITY UNDER OPEN
BOUNDARY CONDITIONS

Here we outline the steps for derivation of Eq. (8). The
Kubo formula for particle conductivity of an isolated system
in the thermodynamic limit has the form

σ (ω) = πD(N )δ(ω) + σ reg(ω). (A1)

Let us consider a many-body fermionic system in a 1D lattice
of N sites with Hamiltonian given by

Ĥ =
∑

n

En|n〉〈n|, (A2)

where |n〉 is a many-body eigenstate of the Hamiltonian with
energy En. In this case, the expressions for D and σ reg(ω) are

D = lim
N→∞

D(N ),

D(N ) = i

N

(〈 [
Î,

∑
xn̂x

] 〉
−

∑
En �=Em

pn − pm

Em − En
|〈n|Î|m〉|2

)
,

σ reg(ω) = lim
N→∞

π

N

(1 − e−βω )

ω

×
∑

En �=Em

[pn|〈n|Î|m〉|2δ(ω − Em + En)], (A3)
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where pn = exp(−βEn)/Z , Z = ∑
n exp(−βEn), 〈·〉 =

Tr(exp(−βĤ)/Z · · · ), n̂x = ĉ†
x ĉx is the local particle density

operator, and Î is the particle current operator.
Under an open boundary condition, the particle current

operator is given by

Î = dx̂

dt
= −i[x̂, Ĥ],

where x̂ =
∑

x

xn̂x (A4)

is the position operator. With this definition of particle current
operator, it can be checked that D(N ) = 0. As shown in
Ref. [81], if transport is ballistic in such case, then σ reg(ω)
develops a peak at finite frequency, which grows in height
and moves towards zero frequency as system size is in-
creased. In this way, Eq. (A1) is recovered in the ther-
modynamic limit. So under an open boundary condition,
we have

σ (ω) = lim
N→∞

π

N

(1 − e−βω )

ω
×

∑
En �=Em

⎡
⎣pn

∣∣∣∣∣
∑

q

q(Em − En)〈n|n̂q|m〉
∣∣∣∣∣
2

δ(ω − Em + En)

⎤
⎦. (A5)

Converting the δ function to an integral and noting that only ω = Em − En contributes, we can rewrite above expression as

σ (ω) =
∫ ∞

−∞
dt lim

N→∞
π

N

∑
n,m

⎡
⎣ei(ω−Em+En )t (pn − pm)(Em − En)

∣∣∣∣∣
∑

q

q〈n|n̂q|m〉
∣∣∣∣∣
2
⎤
⎦. (A6)

That above equation is same as Eq. (8) can be checked by directly evaluating Eq. (8) in the many-particle basis.

APPENDIX B: CLASSIFICATION OF TRANSPORT

Here we give details of the standard way to classify transport into ballistic, superdiffusive, diffusive, subdiffusive, and
exponentially localized (absence of diffusion). To do this, we rewrite Eq. (8):

σ (ω) =π

∫ ∞

−∞
dteiωt d

dt

⎡
⎣ lim

N→∞
i

N

�N/2�∑
p,q=−�N/2�

pq〈[n̂p(t ), n̂q(0)]〉
⎤
⎦. (B1)

This equation shows that long-time behavior of the following quantity governs low-frequency behavior of σ (ω):

d

dt

⎡
⎣ lim

N→∞
i

N

�N/2�∑
p,q=−�N/2�

pq〈[n̂p(t ), n̂q(0)]〉
⎤
⎦ = d

dt

⎡
⎣ lim

N→∞
−i

2N

�N/2�∑
p,q=−�N/2�

(p − q)2〈[n̂p(t ), n̂q(0)]〉
⎤
⎦. (B2)

In going from the first line to the second, we have used
2pq = p2 + q2 − (p − q)2 and have noted that

∑
p n̂p = Ne is

the total number of particles, which is a conserved quantity. So
we see that the long-time behavior of 〈[n̂p(t ), n̂q(0)]〉 governs
the nature of transport. Using standard linear response theory,
〈[n̂p(t ), n̂q(0)]〉 can be interpreted as being proportional to
the linear response of the system at site p and time t , when
a small instantaneous perturbation is given at site q at time
t = 0. So 〈[n̂p(t ).n̂q(0)]〉 quantifies “diffusion” of an initial
instantaneous perturbation. Let the long-time behavior be
such that, for t � 1:

lim
N→∞

⎡
⎣ 1

2N

�N/2�∑
p,q=−�N/2�

(p − q)2〈[n̂p(t ), n̂q(0)]〉
⎤
⎦ ∼ t s̃. (B3)

Then from Eq. (B1), we see that, by property of Fourier
transform, the low-frequency behavior σ (ω) is given by

σ (ω) ∼ ω−s, s = s̃ − 1. (B4)

For diffusive spread of initial perturbation s̃ ∼ 1, for ballistic
spread s̃ ∼ 2, for absence of diffusion s̃ ∼� 0, in which the
RHS of Eq. (B3) goes to a constant. This leads to the following

classification of transport:

s̃ = 2, ballistic transport,

1 < s̃ < 2, superdiffusive transport,

s̃ = 1, diffusive transport,

0 < s̃ < 1, subdiffusive transport,

s̃ � 0, absence of diffusion, exponentially localized. (B5)

The corresponding values of s can be found from Eq. (B4). It
is clear from above that for ballistic and superdiffusive cases,
the system is conducting, with a diverging conductivity, in the
diffusive case, it has a finite conductivity, and in subdiffusive
and exponentially localized cases, the system is insulating.
Note that in the subdiffusive case there is diffusion but the
system is insulating.

APPENDIX C: MANY-PARTICLE LOCALIZATION
LENGTH FROM σreg

Here we give the derivation of Eq. (21). Without loss of
generality, we will assume that the many-body ground-state
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energy E0 = 0. At zero temperature, then, we have

lim
N→∞

∫ ωmax

ωmin

σ reg(ω)

ω
dω = lim

N→∞
π

N

∫ ∞

0

(1 − e−βω )

ω2

∑
En �=Em

pn|〈n|Î (0)|m〉|2δ[ω − (Em − En)] dω

= lim
N→∞

π

N

∑
Em �=En

pn(1 − e−β(Em−En ) )

(Em − En)2
|〈n|Î (0)|m〉|2

∝ lim
N→∞

1

N

∑
Em �=E0

|〈0|x̂(0)|m〉|2 (put β → ∞ and 〈n|Î (0)|m〉| = −i(Em − En)〈n|x̂(0)|m〉|). (C1)

[Pn = 1, as the contribution will come from the ground
state (n = 0) only at zero temperature.] In the previous line,
the sum is over all m except the ground state. This can be
written as deducting the term (Em = E0) from the sum over
all the values of m. This then becomes

∝ lim
N→∞

1

N
[〈0|x̂2(0)|0〉 − |〈0|x̂(0)|0〉|2]

∝ lim
N→∞

1

N
[〈x̂2(0)〉 − 〈x̂(0)〉2] ∝ lim

N→∞
ξ 2(N ).

Thus we have obtained Eq. (21).

APPENDIX D: CONDITION FOR EXISTENCE OF RHS
OF EQ. (12)

The existence of RHS of Eq. (12) requires the limit

lim
N→∞

x(EF )√
N

(D1)

to be well defined. It is obvious that sufficient condition for is
that limN→∞ x(EF ) is well defined. This requires that the two
following limits exist independently [see Eq. (14)]:

lim
b→∞

b∑
−a

xPn(x), ∀ finite a, lim
a→∞

b∑
−a

xPn(x), ∀ finite b. (D2)

102 103

N

−5.5

−4.5

−3.5

−2.5

−1.5

−0.5

α = 1.7

ω0

E0/N

FIG. 6. Variation of the energy the lowest single-particle level
ω0 and the ground-state energy E0 at half-filling with N for α = 1.7.
Both ω0 and E0/N reach a constant with increase in N . W = 3.

We will show here that the above is also a necessary condition
for Eq. (D1) to be well defined. To see this, observe that
Eq. (D1) is well defined only if

lim
N→∞

x(EF )√
N

= lim
a→∞

1√
a

[
lim

b→∞

b∑
−a

xPn(x)

]

= lim
b→∞

1√
b

[
lim

a→∞

b∑
−a

xPn(x)

]
. (D3)

All limits in the above equation must exist. This clearly shows
that the limits in Eq. (D2) must exist for Eq. (D1) to be well
defined. So, the existence of limN→∞ x(EF ) is a necessary and
sufficient condition for Eq. (D1) to be well defined. If Eq. (D1)
is well defined, then its value is 0.

APPENDIX E: EXISTENCE OF THERMODYNAMIC LIMIT

We have explicitly checked the existence of thermody-
namic limit for our model Hamiltonian Eq. (24) for α > 1.
For this, we look at the variation of the energy of the lowest
single-particle level ω0 and the ground-state energy E0 with
system size N at a fixed filling. If ω0 and E0/N both reach
constant, then the thermodynamic limit is well defined. In
Fig. 6 we show plots of ω0 and E0/N at half-filling for
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|Φ
n
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)|2
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n
(x

)|2

α = 1.7

α = ∞

FIG. 7. Plots of |�n(x)|2 for n = 2000 for the power-law de-
caying system (α = 1.7) and the nearest-neighbor hopping system
(α = ∞) with W = 3. The left panel shows the plot in linear scale,
while the right panel shows the same plot with y axis in log scale.
N = 4181.
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FIG. 8. Complementary plot to Fig. 1 with IPR multiplied by N and ξ 2 divided by N so as to show the scaling corresponding to the
completely delocalized states for these quantities. W = 3.

α = 1.7. It is clear that the thermodynamic limit exists.
Though we present a plot here for half-filling, we have
checked that this remains true for any fixed filling and for all
α > 1.

APPENDIX F: ALGEBRAICALLY AND EXPONENTIALLY
LOCALIZED EIGENFUNCTIONS

Here we explicitly show the difference between alge-
braically localized and exponentially localized eigenfunctions
by plotting them on the same axis. For this purpose, we com-
pare the localized states of the nearest-neighbor AAH model
(α = ∞) with those of the AAH model with power-law decay.
Figure 7 shows plots of the 2000th single-particle eigenfunc-
tion for W = 3 and α = 1.7 and for the nearest-neighbor AAH
model. The left panel of Fig. 7 shows the eigenstates in the
linear scale. The eigenstates of the two different models seem
to overlap. Thus, their peaks are at the same position, and the
height of the peaks are nearly the same. This leads to having
almost the same IPR values. The right panel of Fig. 7 shows
the same plots with the y axis in log scale. It is completely
clear that the eigenfunction corresponding to α = 1.7 decays
algebraically, while that of the nearest-neighbor model decays
exponentially. Thus their tails are very different. As we have
shown in the main text, this leads to very different transport
behavior, for α = 1.7, the “localized” states are conducting,
while for the nearest-neighbor model, they are known to be
insulating.

APPENDIX G: SCALING FOR THE DELOCALIZED
STATES

In Fig. 1 we gave the plots of IPR, D(N ) and ξ 2 as a
function of n/N . We have mentioned that scaling of the IPR
for the completely delocalized states can be confirmed by
multiplying the data points by N , while that for ξ 2 can be
confirmed by dividing the data points by N . In Fig. 8 we
show this by plotting N (IPR) and ξ 2/N with n/N for the
chosen values of α. It is clear that, for n/N < b3, the data
points for N (IPR) and ξ 2/N for various system sizes collapse.
Thus, for this case, IPR ∼ 1/N and ξ 2 ∼ N , as expected for

completely delocalized states and ballistic transport. One can
observe slight deviations at few points, especially for ξ 2/N .
These are due to finite-size effects and go away as system size
is increased.

APPENDIX H: THE AVERAGE ALGEBRAICALLY
LOCALIZED EIGENFUNCTION

In the main text, we have looked at the scaling of tails
of the typical algebraically localized eigenfunction given by
geometric mean of all the algebraically localized eigenfunc-
tions [Eq. (26)]. Here we look at the arithmetic mean of all
algebraically localized eigenfunctions,

|�n(x′)|2 = 1

N

′∑
n

|�n(x′)|2,

x′ = x − x0, x > x0, (H1)

FIG. 9. Scaling of |�n(x′)|2 with x′ for α = 1.7 (top), α = 2.0
(middle), and α = 2.3 (bottom). The orange dots correspond to
points where x′ = Fibonacci number. The green line shows the
scaling of |�n(x′)|2typ for these points. The black dashed line shows a
least-square fit of all the data points. System size: N = 6765. W = 3.
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where x0 is the position of the peak of the algebraically
localized state, N is the number of algebraically localized
states, and

∑′
n denotes sum over all algebraically localized

states. Compared to the |�n(x′)|2typ, |�n(x′)|2 is expected to
show more finite-size effects. This is because atypical behav-
ior due to finite size can make a considerable contribution to
|�n(x′)|2, while those are suppressed in |�n(x′)|2typ. Figure 9

shows plots of |�n(x′)|2 for the exact same parameters as for
|�n(x′)|2typ in Fig. 4. Due to finite-size effects, the least-square
fit of all data points does not seem to decay with an exponent
∼2α, which was seen for |�n(x′)|2typ. Nevertheless, the peaks

for x′ = Fn still exist, with

|�n(x′)|2 ∼ F−2(α−1)
n , (H2)

though the scaling is slightly worse than for |�n(x′)|2typ. The
scaling seems to become better at larger system sizes, as
expected. Thus, both the geometric mean and the arithmetic
mean give the same conclusion. This conclusively shows that
the secondary peaks at x′ = Fn is indeed the generic behavior
of the algebraic localized eigenfunctions of the AAH model
with power-law hopping, and not any artifact of any averaging
procedure.
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[52] B. Žunkovič, M. Heyl, M. Knap, and A. Silva, Phys. Rev. Lett.
120, 130601 (2018).

[53] J. C. Halimeh and V. Zauner-Stauber, Phys. Rev. B 96, 134427
(2017).

[54] C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel,
B. P. Lanyon, P. Hauke, R. Blatt, and C. F. Roos, Phys. Rev.
Lett. 122, 050501 (2019).

[55] A. L. Burin, Phys. Rev. B 91, 094202 (2015).
[56] A. L. Burin, Phys. Rev. B 92, 104428 (2015).
[57] K. S. Tikhonov and A. D. Mirlin, Phys. Rev. B 97, 214205

(2018).
[58] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap, M.

Müller, E. A. Demler, and M. D. Lukin, Phys. Rev. Lett. 113,
243002 (2014).

[59] G. De Tomasi, Phys. Rev. B 99, 054204 (2019).
[60] R. Singh, R. Moessner, and D. Roy, Phys. Rev. B 95, 094205

(2017).
[61] S. Nag and A. Garg, Phys. Rev. B 99, 224203 (2019).
[62] A. Russomanno, F. Iemini, M. Dalmonte, and R. Fazio, Phys.

Rev. B 95, 214307 (2017).

[63] A. Lerose, J. Marino, B. Žunkovič, A. Gambassi, and A. Silva,
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