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Interatomic potentials based on neural-network machine learning (ML) approach to address the long-standing
challenge of accuracy versus efficiency in molecular-dynamics simulations have recently attracted a great deal of
interest. Here, utilizing Pd-Si system as a prototype, we extend the development of neural-network ML potentials
to compounds exhibiting various types of bonding characteristics. The ML potential is trained by fitting to the
energies and forces of both liquid and crystal structures first-principles calculations based on density-functional
theory (DFT). We show that the generated ML potential captures the structural features and motifs in Pd82Si18

and Pd75Si25 liquids more accurately than the existing interatomic potential based on embedded-atom method
(EAM). The ML potential also describes the solid-liquid interface of these systems very well. Moreover, while
the existing EAM potential fails to describe the relative energies of various crystalline structures and predict
wrong ground-state structures at Pd3Si and Pd9Si2 composition, the developed ML potential predicts correctly
the ground-state structures from genetic algorithm search. The efficient ML potential with DFT accuracy from
our study will provide a promising scheme for accurate atomistic simulations of structures and dynamics of
complex Pd-Si system.

DOI: 10.1103/PhysRevB.100.174101

I. INTRODUCTION

Molecular-dynamics (MD) simulation has been attracting
growing attention in materials science, condensed-matter
physics, chemical and biological science due to its ability
to reveal atomic-level structures and dynamics as well as
structure-property relationship [1,2]. However, to perform
reliable MD simulations, accurate and efficient description
of interatomic forces are critical. Quantum-mechanics
calculation based on first-principles density-functional theory
(DFT) can provide accurate description of interatomic
forces and total energies for many materials, and ab initio
MD (AIMD) simulations based on DFT have been applied
extensively to investigate the structures and dynamics in
different systems [3,4]. However, due to the expensive
computational demand, AIMD can usually be performed with
smaller size (∼500 atoms) and shorter time (typically less
than 1 ns) even with the advent of the newest-generation su-
percomputers. To overcome this limitation, various empirical
interatomic potential schemes for MD simulations have been
proposed. Traditionally, interatomic potentials are defined by
assuming an analytical function with respect to the atomic
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coordinates based on one’s chemical and physical insights,
such as Lennard-Jones potentials for noble gas and colloidal
systems [5,6], Tersoff and Stillinger-Weber potentials [7,8]
for covalent systems, and embedded-atom method (EAM)
potentials [9] for the metallic systems. Although these
potentials have been widely used in MD simulations and
have produced many useful results for better understanding
the structures and properties of many compounds [10,11],
limitations for their application in more complex systems
have also been noticed. The fixed mathematical function
for the interatomic interactions inspired by human chemical
and physical insights often cannot provide the balance
between diverse properties stemming from different bonding
characteristics [12]. New types of potential that can adapt
to various bonding environments in the same systems are
needed for systems with complex bonding characteristics.

Machine learning (ML) is well-known for its ability in per-
forming pattern recognition [13]. Since the energy and forces
on an atom in a condensed-matter system are predominately
dependent on the species of the atom, its valence state, and
interactions with its neighbors, interatomic potentials fitting
can be regarded as pattern recognition problem and ML is
a promising approach. Under this premise, neural-network
potentials (NNPs) were first proposed by Behler and Par-
rinello [14] and were applied in MD simulations for systems
containing thousands of atoms. In this approach, radial and
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angular symmetry functions were proposed as the “descrip-
tors” of the bonding environments to map the atomic coordi-
nates onto the input values of the neural network. The param-
eters of the feed-forward neural network were then optimized
by fitting to the total energies of the system. Based on the
Behler-Parrinello approach to construct the NNP, the related
research has expanded into a number of different systems,
such as bulk silicon [14] and carbon [15], TiO2 [16], CaF2

[17], et al. However, the fixed symmetry functions reduce the
flexibility of the NNPs to describe the complex bonding situ-
ations, particularly for systems with many chemical elements.
Recently, Zhang et al. proposed a more robust and flexible
method for the description of the bonding environment and
developed a Deep Potential Molecular Dynamics (DEEPMD)
scheme based on the ML neural network to overcome this
problem [18–21]. The DEEPMD-KIT package has been applied
successfully in various systems such as molecules, MoS2, Pt,
TiO2, CoCrFeMnNi high-entropy alloy, Al-Mg alloy system,
etc. [18–21]. We would like to note that in addition to the
NNP mentioned above, development of interatomic potentials
based on ML has attracted considerable research interest in re-
cent years. For example, Schütt et al. [22,23] have developed
a SCHNET package with the neural-network architecture and
SCHNETPACK framework to accurately predict chemical prop-
erties and potential-energy surfaces of molecules. Kondor and
co-workers [24] proposed a covariant composition networks
framework for learning the properties of molecules from their
molecular graphs and the framework can extract multiscale
structure and keep track of the local topology. Furthermore,
other forms of ML potentials were also proposed such as
the Gaussian approximation potential [25–27], the Spectral
Neighbor Analysis Potential [28–30], and the moment tensor
potentials [31–33]. For all the ML potentials, the total energy
is calculated as a sum of the atomic energies which are
determined by the atomic configurations and various “descrip-
tors” have been used in different types of ML potentials to
depict the atomic environment. A comprehensive comparison
between different ML potentials can also be found in a recent
paper by Zuo et al. [34].

In this paper, we adopted the DEEPMD-KIT to develop a
NNP for Pd-Si compound as a prototype system. The moti-
vations for choosing such a system are as follows: (i) The
composition of Pd82Si18 can be readily fabricated into bulk
metallic glasses [35] and an accurate potential at this compo-
sition can aid in understanding the metallic glass; (ii) There
are many complex phases which form around the Pd82Si18

composition [36], and an accurate and efficient interatomic
potential would be useful for determining the energy land-
scape and the structures of metastable phases around this
composition; (iii) Solidification processes can be investigated
more efficiently by employing the newly generated NNP; (iv)
Since interatomic potential for this system based on EAM is
available in the literature [37], the developed ML potential
can be directly compared with the existing EAM potential.
We will show that the generated NNP describes the structures
of Pd82Si18 and Pd75Si25 liquids more accurately than the
existing EAM potential. The NNP also outperforms the EAM
potential in predicting the ground-state crystalline structures
of Pd3Si and Pd9Si2 compounds. We note that the generated
NNP should be accurate for MD simulations for Pd-Si systems

with Si composition less than 25 at % where many interesting
and complex new phases may exist.

The paper is organized as follows. In Sec. II, we first
introduce the ML potential development process including
the datasets utilized and the detailed parameters used in the
DEEPMD-KIT. The training and testing accuracies in compari-
son with the first-principles DFT results are then discussed.
In Sec. III, the liquid structure obtained by NNP-MD is
compared with that by AIMD and the EAM potential from
Sheng [37] through the pair-distribution functions (PDFs) and
the cluster alignment method [38,39]. Genetic algorithm (GA)
search is used to demonstrate the promising applications of
NNP in crystal-structure prediction [40,41] and the profiles
and migration of the solid-liquid interface (SLI) as well as the
glass-transition process from the NNP-MD simulations are
also discussed in Sec. III. Finally, a brief summary is given
in Sec. IV.

II. COMPUTATIONAL METHODS

A. Datasets for machine learning training and validation

Liquid datasets for the development of the NNP for Pd-Si
system are generated by AIMD simulations. The AIMD simu-
lations for Pd82Si18 and Pd75Si25 liquids and undercooled liq-
uids are performed using 200 atoms by Vienna Ab initio Sim-
ulation Package (VASP) [3,42]. Projected-augmented waves
with the Perdew-Burke-Ernzerhof (PBE) form of exchange-
correlation potentials are adopted [43,44]. The PBE-DFT
method is accurate for depicting the atomic interaction in
Pd-Si system which has been validated in Refs. [45,46]. Only
the � point is utilized to sample the Brillouin zone and the
default energy cutoffs of 251 eV are employed. The AIMD
simulations are carried out using the canonical ensemble
(NVT) with Nosé-Hoover thermostat under periodic boundary
conditions. The simulation temperatures of the two composi-
tions are 1800, 1600, 1400, 1200, 1100, 1000, 900, and 800 K,
respectively, and the liquid at lower temperatures is quenched
from 1800 K at a constant cooling rate of 0.1 K/step. At
each temperature, the simulation box size is adjusted to ensure
that the average pressure of the system is in the range of
0.0 ±1.0 kB. The time step of the AIMD simulations is
3 fs and a total simulation time of 30 ps is performed at
each temperature. The snapshots are recorded every 0.3 ps
at each temperature and then the static DFT calculations on
the AIMD structures are performed with the energy cutoff

of 400 eV, k-mesh grid of 2π × 1/25 Å
−1

, and the electronic
convergence criterion of 10−5 eV in VASP . Thus, 800 frames
of data consisting of total energy and the forces on each
atom have been collected for each composition. In the NNP
development process, 100 frames of data for each composition
at 800 K are used as validating data and the remaining data are
used as training data. We use the data at lower temperature of
800 K as validating data to make sure that the NNP trained
by the configurations at higher temperatures can predict the
atomic motion and trajectories at lower temperatures.

Besides the liquid data described above, perfect and dis-
torted crystal structures at Pd9Si2 and Pd3Si, whose com-
positions are close to the liquid compositions of Pd82Si18

and Pd75Si25, respectively, are also added to the training
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and validating datasets. The distorted crystal structures are
constructed as follows: (i) The unit cell of the perfect
crystal is compressed and dilated uniformly by σc = 0.9 +
0.01n (n = 0, 1, 2, . . . , 10) to cover various box sizes; (ii) The
atomic positions in the unit cell are randomly displaced with
σa = −0.025 + 0.005n (n = 0, 1, 2, . . . , 10) times the length
of the cell vector, which acts as an analogy to include the
effect of thermal vibrations. In total, 1000 structures including
the perfect crystal structure are generated at each composi-
tion and the energies and forces are calculated by VASP. In
these calculations, plane-wave basis with the energy cutoff
of 400 eV is used and the calculations are performed with a

k-mesh grid of 2p × 1/25 Å
−1

in VASP. The electronic energy
convergence criterion is 10−5 eV. It should be noted that these
settings in VASP are the same as that of the aforementioned
static calculations on AIMD structures. The 1000 config-
urations contain the information of atomic positions, total
energies, and forces on every single atom at each composition,
in which 800 configurations are used as training data and the
rest are used as validating data. Furthermore, AIMD at 300 K
for Pd3Si (128 atoms) and Pd9Si2 (352 atoms) crystalline
phases are performed followed by static calculations with the
same settings as above in VASP . The total energy, atomic
forces, and PDFs of the crystalline structures at 300 K for the
two compositions are used to validate the generated NNP.

Combining the liquid and crystal datasets at different com-
positions, we have 3000 configurations in the training process
and 800 configurations for the validating purpose.

B. DEEPMD training

The DeepPot-SE model [19] in the DEEPMD-KIT package is
applied in the training process. The cutoff radius of the model
is set to 6.0 Å and descriptors decay smoothly from 5.8 Å to
the cutoff radius of 6.0 Å. The size of the filter and fitting
networks are {50,100} and {240,240,240}, respectively. A
skip connection is built (ResNet) between two neighboring
fitting layers. The model is trained by the Adam stochastic
gradient descent method [47] and the learning rate decreases
exponentially with respect to the starting value of 0.001. The
decay rate and decay step are set to 0.96 and 10 000, re-
spectively. In addition, the prefactors in the loss functions are
pe

start = 0.2, pe
limit = 2, p f

start = 100, p f
limit = 1, pv

start = 0,
pv

limit = 0. No virial data are included in the training process.

C. MD simulations and structural analysis

With the interface of the DEEPMD-KIT to the LAMMPS code
[48], MD simulations can be directly performed with the
generated NNP. To compare the liquid structures obtained
by AIMD, NNP, and EAM potential, the same simulation
condition is applied. Specifically, the same starting configu-
ration, same time step (3 fs), same simulation time (30 ps),
and NVT ensemble are used in AIMD and the classical MD
simulations with NNP and EAM potential. Atomic coordi-
nates are collected every 0.3 ps and in total 100 snapshots
are used for further structural analysis. The total and partial
PDFs of the liquid structures are compared. Furthermore, the
cluster alignment method which has been used extensively in
different systems [49–51] is employed to classify the atomic-

level motif. For the cluster alignment method, the alignment
score is calculated as follows:

f = min
0.80�α�1.2

(
1

N

N∑
i=1

(�ric − α�rit )
2

(α�rit )
2

)1/2

, (1)

where N is the number of neighbor atoms in the template;
�ric and �rit are the atomic positions in the aligned cluster and
template, respectively; and α is a coefficient to adapt the bond
length of the template which is chosen to be in the range of
0.8 to 1.2 in the present study. Common motifs like body-
centered cubic (bcc), fcc, hcp, and icosahedra (ICO) are used
as templates in the cluster alignment process as well as the
recently excavated Pd-centered 1551 (Z13) and Si-centered
Z9 motifs [52]. The alignment score indicates the deviations
of the cluster from the template and the smaller alignment
score suggests the higher similarity between the cluster and
template and vice versa.

For the MD simulations on the glass-transition process
of Pd82Si28 and Pd75Si25, the isothermal-isobaric ensemble
(NPT, N = 5000 atoms, P = 0) and a Nosé-Hoover thermo-
stat are used. The periodic boundary conditions are applied
in the three directions and the time step of the simulations
is 2.5 fs. The liquid sample is first annealed at 1600 K for
1 ns to reach equilibrium and then cooled down to 300 K
at 1012 and 1013 K/s for the two compositions. In addition,
MD simulations at 800 K (just above the glass-transition
temperature as can be seen later in Fig. 10) are performed to
investigate the SLI profiles and migration where initially one
part of the simulation cell contains the crystal seeds (Pd3Si or
Pd9Si2) and the other part contains the corresponding liquid
with the same composition. In these MD simulations, there
are 2048 and 2376 atoms in the cell at the Pd3Si and Pd9Si2
composition, respectively. The x direction which is perpendic-
ular to the SLI is allowed to change and the NPxT ensemble is
employed using the Nosé-Hoover thermostat under periodic
boundary conditions. The time step is 3 fs and the total
simulation time is 12 ns at each composition.

D. Crystal-structure search using genetic algorithm

Genetic algorithm (GA) code is linked to the DEEPMD-KIT

package and then the generated NNP is used to perform
crystal-structure prediction for Pd-Si system. For the purpose
of comparison, GA crystal-structure prediction is also per-
formed with the EAM potential from the literature for Pd-Si
system [37]. The crystal unit cells containing 16 atoms for
Pd3Si and 44 atoms for Pd9Si2 are used in the GA search.
In addition, the GA search is performed five times at each
composition with the initial structures belonging to random
symmetry groups to improve statistics. The pool size for
the GA search is 400 and the search is considered to be
converged when the lowest energy of all the structures remains
unchanged in 500 consecutive GA generations.

III. RESULTS AND DISCUSSION

A. Performance of the NNP for liquid structures

The performance of the NNP (Supplemental Material [53])
for liquid structures of Pd82Si12 and Pd75Si25 in the train-
ing and validating datasets are shown in Figs. 1 and 2,
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FIG. 1. NNP vs DFT energies and forces for Pd82Si18 and Pd75Si25 liquid structures in the training data. The corresponding RMSEs are
shown for each system.

respectively. The root-mean-square errors (RMSEs) for the
NNP energies and forces from the structures in the training set
in comparison with those from static calculations on AIMD
structures are less than 1.7 meV/atom for the energies and
100 meV/Å for the forces, while the RMSE for the structures
in the validating set is less than 1.5 meV/atom for the energies
and 95 meV/Å for the forces. We can see that the RMSEs
from the training and validating sets are comparable to each
other. These results indicate that overfitting in ML is unlikely
to occur in this case and the information learned at higher
temperatures can indeed predict the atomic motion at lower
temperatures. The energy RMSE of less than 2.0 meV/atom
and the force RMSE of less than 100 meV/Å are acceptable
and the generated NNP should be promising to describe the
liquid structures accurately.

Figure 3 displays the comparison of the PDFs for the
liquids of Pd82Si18 and Pd75Si25 at 1600 K obtained by
AIMD, NNP, and the EAM potential, respectively. It can
be found that the PDFs from the NNP are in a very good
agreement with that from AIMD up to the distance of 10
Å indicating that the NNP can also accurately describe the
longer-range atomic correlations. However, the results from
the EAM potential underestimate the interaction among the
Pd atoms and overestimate the bonding between the Pd and Si
atoms, as can be seen in Figs. 3(b) and 3(c) and Figs. 3(f)
and 3(g), where the EAM potential gives the weakest first
peak in the Pd-Pd partial PDF and strongest first peak in the

Pd-Si partial PDF. In addition, the Si-Si partial PDF from the
EAM potential deviates much from that by AIMD and a small
prepeak around 2.3 Å in Si-Si partial PDF shown in Figs. 3(d)
and 3(h) obtained by the EAM potential is not seen in either
AIMD or NNP-MD simulations.

We also investigate how NNP captures the atomic-level
short-range order (SRO) motifs in the liquids as compared
with the results from AIMD and the EAM potential simula-
tions. We perform cluster-template alignment [38,39] to quan-
tify the degree of the SRO in the liquids. Common motifs like
bcc, fcc, hcp, and ICO as well as the recently excavated Pd-
centered 1551 (Z13) and Si-centered Z9 motifs [52] are used
as templates in our cluster-template alignment. The alignment
score of 0.15 is used as the cutoff to assign the SRO motif
to the Pd-centered or Si-centered clusters. If a cluster has an
alignment score less than 0.15 for more than one template,
the lowest alignment score is used to assign the cluster to the
corresponding motif. It should be noted that the same cutoff
value has been used in other systems to identify the SRO, such
as Ni-Zr and Ni-Nb systems [50,51] and the relative ratios
between different motifs are not dependent on the choice
of the cutoff value as long as this value is reasonable. The
most dominant motifs for the liquid structures of Pd82Si18 and
Pd75Si25 are the Pd-centered 1551 and Si-centered Z9 motifs,
and the fractions of these dominant motifs as the function
of temperature are plotted in Fig. 4. In general, the fractions
of the dominant motifs in both Pd82Si18 and Pd75Si25 liquids
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FIG. 2. NNP vs DFT energies and forces for Pd82Si18 and Pd75Si25 liquid structures in the validating data. The corresponding RMSEs are
shown for each system.

increase as the temperature decreases from 1600 to 800 K, as
one can see from Figs. 4(a)–4(d). The results from the NNP
are in a much better agreement with the AIMD results, while
the EAM potential underestimates the fractions of the SRO
in both systems. Therefore, the generated NNP could depict
the atomic interactions in the liquid more accurately than the
EAM potential.

We note that for the Pd-centered clusters in both systems,
the fraction of the dominant SRO, namely 1551 motif, is still
less than 5% with respect to the total Pd-centered clusters at
800 K indicating that the first shell of Pd atom is considerably
disordered. However, for the Si-centered clusters in both
systems, the fraction of the Z9 motif is larger than 15% with
respect to the total Si-centered clusters at 800 K from AIMD

FIG. 3. Comparison of the pair distribution functions of (a)–(d) Pd82Si18 and (e)–(h) Pd75Si25 at 1600 K obtained by AIMD (blue), NNP
(red), and the EAM potential (green).
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FIG. 4. Fractions of the dominant motifs for Pd-centered (a), (c) and Si-centered (b), (d) clusters in the structures for both systems at
different temperatures. (e) shows the Pd-centered 1551 template and (f) exhibits the Si-centered Z9 template.

or the NNP. It should be noted that the Si-centered Z9 cluster
is often referred to as a trigonal prism capped with three
half octahedra [46,52], which is a “crystal gene” in Pd3Si
crystalline phase.

B. Performance of the NNP for crystal structures

Figures 5 and 6 show the RMSEs in the energies and forces
for the undistorted and distorted crystal structures of Pd3Si
and Pd9Si2 compositions in the training set and validating
set, respectively (see Computational Methods above) when
comparing the NNP results with respect to the DFT results.
The RMSEs are still small at these two compositions with less
than 3 meV/atom for the energies and less than 90 meV/Å
for the forces in the training and validating data. Comparing
the results between two compositions, the energy errors at
Pd3Si are larger than that at Pd9Si2, while the force errors
are on the contrary. For the AIMD structures at 300 K, the
RMSEs between the NNP and DFT are 1.4 meV/atom and
51 meV/Å for Pd3Si and 0.7 meV/atom and 56 meV/Å for
Pd9Si2, respectively. In addition, the comparison of the PDFs
for the solid phases of Pd3Si and Pd9Si2 at 300 K obtained
by AIMD and NNP is displayed in Fig. 7. It can be found
that the PDFs from NNP are in a good agreement with that
from AIMD indicating that the NNP can well capture the MD
process of Pd3Si and Pd9Si2 crystalline phases at 300 K. In
combination of the RMSEs and PDF comparisons between
NNP and AIMD at 300 K, the generated NNP can perform
well at room temperature (300 K).

To further validate that NNP is able to distinguish struc-
tures with different energies, we apply the potential to recon-
struct the energy vs volume (E-V) curve implicitly contained
in the datasets and the results are exhibited in Fig. 8. In the
datasets (1000 structures) at each composition, there are 500

structures at the equilibrium volume (relative volume = 1)
of the corresponding crystal structure including the perfect
crystal structure and the randomly distorted structures as well
as 500 randomly distorted structures at other volumes. From
Fig. 8, it can be clearly seen that the NNP could reproduce the
E-V curve in the datasets very accurately and the energy of
the perfect crystal phase is considerably lower than others.

The accurate description of the energies and forces by
the NNP at these two compositions endows its promising
application in the crystal-structure prediction. To demonstrate
this, we perform GA structure search using the developed
NNP to determine the ground-state structures of Pd3Si and
Pd9Si2 phases. The atomic position of these two structures are
known in the literature. In our NNP development, these two
ground-state structures are intentionally excluded from the
training dataset. Details of the GA search have been described
in Sec. II D. For the purpose of comparison, GA searches
for the low-energy structures of these two phases are also
performed using the available EAM potential.

Figure 9 displays the lowest-energy structures discovered
by the GA runs at the composition of Pd3Si and Pd9Si2 by
NNP [Figs. 9(a) and 9(b)] and the EAM potential [Figs. 9(c)
and 9(d)]. The corresponding energies from DFT, NNP, and
EAM calculations are also shown for comparison. For the
GA searches at the composition of Pd3Si, the ground-state
structure of Pd3Si crystal phase with the space group of 62
as shown in Fig. 9(a) can be found by NNP within a few
generations in every one of the five GA runs. The discrepancy
between the NNP and DFT energies for this structure is
around 2 meV/atom. In contrast, all the five GA runs by
the EAM potential for Pd3Si discover a structure with the
space group of 82 as shown in Fig. 9(c), whose energy by the
EAM potential is 40 meV/atom lower than that of the known
ground-state Pd3Si crystal structure. When we calculate the

174101-6



DEVELOPMENT OF A DEEP MACHINE LEARNING … PHYSICAL REVIEW B 100, 174101 (2019)

FIG. 5. NNP vs DFT energies and forces for Pd3Si and Pd9Si2 crystal structures in the training data. The corresponding RMSEs are shown
for each system.

energy of this structure by DFT and NNP, the energy is
33 and 28 meV/atom, respectively, higher than the known
ground-state Pd3Si crystal structure. These results indicate
that the EAM potential fails to describe the energy ordering
of crystal structures at the Pd3Si composition. For the GA
search at the Pd9Si2 composition with 44 atoms, the NNP also
correctly captures the known ground-state structure as shown
in Fig. 9(b) in every one of the five GA runs. The discrepancy
in the energy for this structure by the NNP and DFT is only
about 1 meV/atom, which indicates that the NNP potential is
accurate in describing the energy landscape of different crystal
structures. On the other hand, the GA search using the EAM
potential fails to predict the ground-state structure of Pd9Si2.
The lowest-energy structure obtained by the GA search using
the EAM potential is shown in Fig. 9(d), which exhibits
space group 1 symmetry and has energy 21 meV/atom lower
than that of the ground-state structure shown in Fig. 9(b)
by the EAM potential. We note that the failure in correctly
predicting the ground-state structure of the Pd9Si2 phase is
not the problem of the GA search (since it can get the lower-
energy structure by the potential) but the accuracy problem
of the EAM potential. Indeed, DFT and NNP calculations
show that the lowest-energy structure of Pd9Si2 predicted
by the EAM potential shown in Fig. 9(d) has energy of 29
and 35 meV/atom, respectively, higher than that of the true
ground-state structure shown in Fig. 9(b).

C. Performance of the NNP for glass-transition process and SLI

After demonstrating the performance of the NNP for the
liquids and crystals, it is interesting to investigate the glass-
transition process and SLI by MD simulations using the NNP.
Figures 10(a) and 10(b) display the relationship between
instantaneous potential energy (E − 3kBT ) [52,54,55] and
temperature for Pd75Si25 and Pd82Si18, respectively, at the
cooling rate of 1012 and 1013 K/s. It can be found that the
glass-transition temperature (Tg) of Pd75Si25 and Pd82Si18 is
similar to each other and a glassy sample with the lower
energy can be obtained at the lower cooling rate. The Tg of
Pd82Si18 at such a fast cooling rate is a little higher than
that from experiment (645 K) which is measured at much
lower cooling rate (1800 K/s) [56]. These results indicate
that the generated NNP can reasonably well describe the
glass-formation process for Pd75Si25 and Pd82Si18 considering
that the higher cooling rate will result in the higher Tg [57].
In the MD simulation of SLI, 2048 atoms are used at the
composition of Pd3Si. Among them 1024 atoms are initially
arranged in crystal structure and the other 1024 atoms are
initially in liquid state so that a SLI parallel to the (100) plane
of the Pd3Si crystal is formed as shown in Fig. 10(c). The
simulations are performed at 800 K with periodic boundary
condition in all three directions. The change in the total
energy (kinetic plus potential energy) with annealing time is
displayed in Fig. 10(d). It can be seen that the total energy
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FIG. 6. NNP vs DFT energies and forces for Pd3Si and Pd9Si2 crystal structures in the validating data. The corresponding RMSEs are
shown for each system.

decreases continuously with the annealing time indicating
that the crystalline phase continues to grow out of the liquid
phase at 800 K. This crystallization process can be seen
more clearly from Fig. 10(c) where almost the whole MD
cell has been turned into the Pd3Si crystalline phase at the
MD simulation time of 12 ns. These results indicate that the
liquidus temperature (Tl ) at the composition of Pd3Si by the

NNP should be above 800 K, which is consistent with the
experimental observation and phase diagram [36]. The setup
and MD simulation of SLI for the Pd9Si2 are carried out in
the way similar to the case of Pd3Si described above. The
MD simulation cell contains 2376 atoms and initially 1188
atoms are arranged in the crystalline phase and the rest 1188
atoms are in the liquid phase as shown in Fig. 10(e). The

FIG. 7. Comparison of the pair distribution functions of (a)–(d) Pd3Si and (e)–(h) Pd9Si2 at 300 K obtained by AIMD (blue) and NNP (red).
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FIG. 8. E-V curve obtained by NNP and DFT calculations at the
composition of (a) Pd3Si and (b) Pd9Si2. The relative volume denotes
the ratio of the volume of crystal structure to that of the ground-state
(a) Pd3Si and (b) Pd9Si2 crystal structures, respectively. The results
from NNP are almost identical to DFT, so they overlap with each
other.

interface is parallel to the (100) plane of the Pd9Si2 crystal.
In contrast to the case of Pd3Si, the energy of the system
decreases very slowly over the simulation time of 12 ns as
shown in Fig. 10(f). The energy drop over the 12 ns is less than
0.03 eV/atom. A snapshot of the atomic structure at 12 ns as
displayed in Fig. 10(e) shows that the Pd9Si2 crystal solidifies
more slowly than Pd3Si crystal at 800 K. These results suggest

FIG. 9. Lowest-energy structures obtained from the classical GA
searches at the composition of Pd3Si and Pd9Si2 by NNP (a), (b) and
EAM (c), (d) with the corresponding DFT, NNP, and EAM energies.
The red and blue balls stand for Pd and Si atoms, respectively and
the bonds are plotted for connecting the nearest neighbors.

that the crystallization kinetics for Pd9Si2 is slower than that
for Pd3Si at 800 K, which may be due to the relatively lower
Tl of Pd9Si2. This result is consistent with the phase diagram
[36] that the Tl of Pd9Si2 is lower than that of Pd3Si by more
than 200 K and Pd9Si2 is around the eutectic composition. By
comparing the Tg, Tl ,and SLI profiles at Pd3Si and Pd9Si2, the
value of Tg/Tl should be larger for Pd9Si2 than Pd3Si, which
indicates that the glass-forming ability (GFA) of Pd82Si18

should be better than Pd3Si according to Turnbull [58]. In
addition, the Pd82Si18 is around the eutectic composition and
the eutectic instability could also trigger the ”eutectic-glass”
transition [59,60]. What is more, the critical cooling rate (Rc)
is a frequently used criterion to denote the GFA of a system
in experiment and the lower Rc suggests the better GFA. In
this case, the Rc of Pd82Si18 is around 1800 K/s [56,61] while
that of Pd75Si25 is around 106 K/s [61], which is consistent
with the conclusion above that the GFA of Pd82Si18 should be
better than Pd3Si.

IV. SUMMARY

In the present work, the DEEPMD scheme is applied to
develop a machine learning neural-network interatomic po-
tential for Pd-Si system containing complex mixed covalent
and metallic bonding interactions. The developed NNP can
accurately describe the energies and forces in comparison
with the results from first-principles DFT calculations around
the compositions of Pd82Si18 and Pd75Si25 with the RMSEs
on the training and validating datasets less than 3 meV/atom
for the energies and 100 meV/Å for the forces for both
the liquid and crystalline structures. We also show that the
NNP yield more accurate description of the liquid struc-
tures than the existing EAM potential in comparison with
the AIMD results. Moreover, the developed NNP describes
well the energy landscape of various crystalline structures
while the EAM potential fails to correctly predict the ground-
state structure for the Pd3Si and Pd9Si2 crystalline phases.
MD simulations of glass-transition process, SLI, and crys-
tal growth with thousands of atoms also indicate that the
developed NNP can correctly capture the crystallization ki-
netics and GFA for these systems. We anticipate that the
developed NNP can find promising applications in investigat-
ing and unveiling the atomic-level structures and dynamics
of glass formation, nucleation, and crystallization in these
systems. In addition, the developed NNP can also be used
to explore complex metastable structures in these systems
by combining it with genetic algorithm and first-principles
calculations.
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