
PHYSICAL REVIEW B 100, 165417 (2019)

Valley polarization reversal and spin ferromagnetism and antiferromagnetism in quantum
dots of the topological insulator monolayer bismuthene on SiC
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The valley and spin polarizations associated with electronic transport in quantum dots of the large-gap
topological insulator (TI) monolayer bismuthene on SiC are investigated in the linear response regime using
a minimal tight-binding model that accurately describes the low-energy electronic band structure of this TI. It
is found that for zigzag edges the electronic edge states are strongly valley polarized if the Fermi energy lies
in the bulk energy band gap. We predict the edge-state valley polarizations to switch between valleys K and
K ′ as the Fermi energy varies from the top of the valence band to the bottom of the conduction band or if the
direction of electric current through the dot is reversed. If the electrostatic potential in the dot is nonuniform, we
predict that the valley polarization of an electron can reverse as it travels through the dot. The valley polarization
reversal is due to the zigzag edge-state dispersion crossing the center of the Brillouin zone that separates valleys
K and K ′ and is therefore predicted to be a general phenomenon. Although the spin polarization within the edge
states is ferromagnetic, as expected for spin Hall devices, our calculations reveal the out-of-plane component of
the spin polarization of the bulk valence band scattering states to be antiferromagnetic, and the direction of the
out-of-plane component of the Neel vector to depend on whether the electronic accumulation belongs primarily
to valley K or K ′.

DOI: 10.1103/PhysRevB.100.165417

I. INTRODUCTION

Quantum spin Hall (QSH) materials are two-dimensional
(2D) topological insulators that support the transmission of
electrons through the gapless conducting states at the edges
of the system [1–6]. The unique electronic properties of the
gapless edge states [5,6], such as their spin polarization [1,2],
dissipationless edge currents [1,2], quantized two-terminal
conductance G = 2e2/h [1,2], and robustness against the
time-reversal-invariant disorder [1,2], may support future
technological applications. One of the serious obstacles to
exploiting the potential advantages of the unique properties of
the edge states of 2D topological insulators is the small bulk
band gap (less than 30 meV) typical of these materials [3,4].
For such small band gaps, thermal excitations of electrons
result in competition between edge currents and currents due
to the bulk energy bands.

Recently, several theoretical and experimental studies have
been carried out on monolayer bismuthene on SiC and have
revealed this system to be a promising candidate for a
high-temperature 2D topological insulator due to its large
(0.86-eV) band gap that arises from the strong spin-orbit
coupling of bismuth [7–12]. This work [7–12] has also shown
this material to have an indirect bulk band gap. Its conduc-
tion band minimum is at the the center � of the Brillouin
zone while the valence band has two maxima (referred to
as valleys) at the same energy but with differing momenta
K and K ′ [7–12]. Therefore, monolayer bismuthene on SiC
is a potential platform for future technologies exploiting the
spin and valley degrees of freedom simultaneously. The val-
leytronic properties of nanostructures of other 2D materials

have attracted much interest. In particular, those of graphene
have been studied in depth from a wide variety of perspectives
[13–49]. For 2D transition metal dichalcogenides, valleytron-
ics and its interplay with spintronics have been investigated
[50–68]. Studies of other 2D systems such as silicene [33,69–
81], germanene [33,72,74–81], stanene [33,74,77,78,81–83],
SiC nanoribbons [84], and functionalized bismuth [85–88]
and antimony [89,90] monolayers have suggested that they
should also exhibit pronounced valleytronic effects. However,
the valleytronic properties of nanostructures of the topological
insulator bismuthene on SiC have not as yet been explored
either theoretically or experimentally.

Here, we study the valletronics of monolayer bismuthene
on SiC quantum dots using a minimal tight-binding model
developed in Ref. [11]. This model accurately describes the
properties of the low-energy band structure of this system in-
cluding the Rashba valence band splitting and the magnitudes
of the direct and indirect band gaps that have been deduced
from angle-resolved photoemission and scanning tunneling
spectroscopy experiments [8]. This tight-binding model [11]
also yields an indirect band gap that is smaller than the direct
band gap, as has been predicted by density functional theory
based band structure calculations [8].

Calculations of the band structures of 1D zigzag and
armchair nanoribbons within this tight-binding model [11]
indicate that the model does indeed describe a topological
insulator. These band structures (see Fig. 2 of Ref. [11])
exhibit bulk band gaps traversed by gapless edge states as is
typical for nanoribbons of 2D topological materials. As has
been reported in Ref. [11], these edge states form Kramers
pairs related by time reversal and exhibit spin-momentum
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FIG. 1. (a) The bismuthene honeycomb lattice (black) of the two-
terminal monolayer bismuthene quantum dot with contacts attached
to the armchair edges. Each contact is composed of 38 ideal semi-
infinite 1D leads (shown by orange wavy lines). (b) Two alternative
representations of the first Brillouin zone of monolayer bismuthene,
hexagonal (solid line) and rhombic (dotted line).

locking as is expected for topological insulator edge states.
Similar results have also been published by others [8] who
also reported calculations of the Z2 topological invariant that
indicate that monolayer bismuthene on SiC is a quantum spin
Hall insulator with Z2 = 1.

Within this model, we calculate two-terminal electron Lan-
dauer transmission probabilities through quantum dots of bis-
muthene on SiC, the two contacts each being represented by
a group of normal conducting semi-infinite one-dimensional
leads; see Fig. 1(a). The scattering states of electrons trav-
eling through the dot at different energies are calculated by
solving the Lippmann-Schwinger equation numerically. To
investigate the valley polarization of the edge and bulk states
of the bismuthene on SiC dot in the linear response regime,
these scattering states are projected onto the Bloch states of
electrons which are calculated numerically using the tight-
binding parameters provided in Ref. [11]. In this way, we
generalize to multiorbital topological insulator nanostructures
our previously developed conceptual framework and method-
ology [37,49] for studying the spatial distribution of the valley
polarization in graphene nanostructures.

We find the spatial distribution of the scattering states
of the electrons in the quantum dot to take the form of
edge states confined near the edges of the system when the
Fermi energy lies in the bulk band gap, as is expected for
2D topological insulators. The projection of the scattering
states onto the Bloch subspaces of the bismuthene reveals that
the conducting channels propagating at zigzag edges of the
system are strongly valley polarized if the Fermi level is in
the bulk energy band gap. Intriguingly, we also find that the
valley polarization of the zigzag edge states switches between
valley K and K ′ as the Fermi energy varies inside the bulk
energy band gap. Furthermore, reversing the source and drain
contacts (changing the direction of motion of the electrons)
also switches the valley polarization of the edge states. It
follows that this system offers valley switching mechanisms

(controllable by gating and/or current reversal) that may be
exploited in future technologies.

To explore further the reversal of the edge-state valley
polarization as the position of Fermi level relative to the
band-gap changes, and to study the correlation of the spin
and valley degrees of freedom of the electrons of this QSH
system, we have modeled an increasing potential energy in
the direction parallel to the zigzag edges of the quantum dot.
In this model, the dot consists of two regions: Region one,
where the Fermi energy lies in the bulk energy band gap, and
region two, where the Fermi energy is in the valence band.
Although the conduction of the electrons in region one is only
mediated by the edge states, in region two both the edge and
bulk states conduct the electrons through the quantum dot.
We find that, within this model (for fixed Fermi energy), the
valley polarization of the same edge state can reverse as the
dot is traversed, i.e., the valley polarization of an electron can
reverse as it travels through the dot.

We also find the spin polarization in the linear response
regime to be ferromagnetic within each edge state but its
component perpendicular to the plane of the dot to be antifer-
romagnetic for the bulk valence band states. In the latter case,
the direction of the out-of-plane component of the Neel vector
depends on the valley predominantly occupied by the scatter-
ing states. To identify the origin of the antiferromagnetic char-
acter of the spin polarization of these bulk scattering states and
its correlation with the valley polarization, we have calculated
the spin polarization of the electrons in an infinite sample of
2D monolayer bismuthene on SiC substrate as a function of
the wave vector k, and found the antiferromagnetism and its
correlation with the valley index to be a property of the 2D
Bloch states near the valence band maxima.

The remainder of this paper is organized as follows. In
Sec. II, the minimal tight-binding model which describes
the low-energy band structure of monolayer bismuthene on
SiC substrate, the Landuaer theory of electron transport, the
Lippmann-Schwinger equation, and the method of the pro-
jection of the scattering states are explained. We present our
results for the valley and spin polarizations calculated for this
system in Sec. III. Our conclusions are summarized in Sec. IV.

II. MODEL AND FORMALISM

To describe the quantum dot of monolayer bismuthene
on SiC shown in Fig. 1(a), we have used the minimal tight-
binding Hamiltonian developed in Ref. [11]. Previous studies
have shown that the Bi atoms of monolayer bismuthene on
SiC form a planar honeycomb lattice structure with a lattice
constant of 5.35 Å[7,8]. The low-energy band structure of
this system is governed by the px, py, and s valence orbitals
of the Bi atoms due to the presence of the SiC substrate
which stabilizes the 2D monolayer of Bi atoms and shifts
the pz orbital of the Bi atoms out of the low-energy band
structure [8]. The minimal tight-binding Hamiltonian of this
system which captures the key qualitative properties of the
low-energy band structure and Rashba valence band splitting
deduced from the experimental data [8] is of the form [11]

Hiαs,i′α′s′ = H0
α δi,i′δα,α′δs,s′ + HNN

iα,i′α′δs,s′ + HSO
αs,α′s′δi,i′

+ HR
αs,α′s′δi,i′ . (1)
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Here, s and s′ are the spin indices, and α and α′ denote the
6s, 6px, and 6py valence orbitals of the i and i′ Bi atoms,
respectively. H0

α is the energy of valence orbital α, HNN
iα,i′α′ is

the nearest-neighbor hopping energy between the orbital α of
atom i and the orbital α′ of atom i′, HSO

αs,α′s′ is the intra-atomic
spin-orbit (SO) interaction, and HR

αs,α′s′ describes the atomic
Rashba effect which results in the valence band splitting
[8,11]. A complete description of this tight-binding Hamil-
tonian and its parameter values are provided in Ref. [11].

We note that in the present model the tight-binding param-
eters of the bismuthene edge atoms have been chosen to be
the same as those for the bulk. With this choice this model
predicts the presence of edge states that have the fundamental
properties expected for the edge states of 2D topological
insulators for both zigzag and armchair edges, as has been
verified in Ref. [11]. Thus, the present model captures the
key properties of the edges of 2D topological insulators and
allows us to study the properties of topological insulator edge
states theoretically. Some indirect experimental evidence for
the existence of these edge states for monolayer bismuthene
on SiC has been provided by the scanning tunneling spec-
troscopy experiments reported in Ref. [8]. These experiments
found that while there is a large (0.86-eV) gap in the bulk
density of states of this material, the density of states at
bismuthene edges (that occur at steps in the SiC substrate) is
gapless, as is expected if topological insulator edge states are
present.

In order to calculate the scattering states involved in
electron transmission through the quantum dot at energy E ,
we have solved the Lippmann-Schwinger equation which is
of the form

|ψ l〉 = |φl
◦〉 + G◦(E )W |ψ l〉, (2)

where |φl
◦〉 is an eigenstate of the lth lead that is decoupled

from the monolayer bismuthene, G◦(E ) is the sum of the
Green’s functions of the bismuthene quantum dot and
the leads at energy E when the leads are decoupled from the
dot, W is the coupling between the quantum dot and the leads,
and |ψ l〉 is the scattering eigenstate of the coupled system if
the electron is injected into the quantum dot from the lth lead.
The methodology for solving such Lippmann-Schwinger
equations is explained in detail in Appendix A of Ref. [37].
The one-dimensional (1D) source and drain leads attached to
the topological insulator dot are metallic. The effects of the
interfaces between these metallic leads and the topological
insulator dot on transport have been studied in depth in
Ref. [11]. For the configuration of leads considered in this
paper [Fig. 1(a)], it was found in Ref. [11] that the coupling
between the leads and edge states of the dot is effectively
almost perfect since the calculated conductance of the system
of dot plus leads is equal to 2e2/h within machine precision
throughout most of the topological insulator bulk band gap,
indicating essentially perfect injection of electrons from the
source leads into the topological insulator edge states and
perfect extraction from the dot edge states into the drain leads.

The next step is the calculation of the valley polarization
induced in this QSH system when an electric current passes
through it. To this end, we have calculated the Bloch states
of electrons in infinite monolayer bismuthene on SiC numeri-

cally, using the tight-binding model Hamiltonian (1) with the
parameter values given in Ref. [11]. The Bloch states of the
monolayer of Bi atoms in the Dirac notation have the form

∣∣ψ j
k

〉 = 1√
N

N∑

i=1

eik·Ri

6∑

α=1

2∑

s=1

C j
iαs(k)|αis〉, (3)

where j = 1, . . . , 12 stands for the different Bloch states with
wave vector k, i enumerates the unit cells in the monolayer
bismuthene, αis denotes the atomic orbitals in unit cell i, Ri

are the Bravais lattice vectors of the monolayer bismuthene.
The normalization factor N is chosen to be the total number
of the unit cells in the monolayer bismuthene quantum dot.
Each Bloch state is assigned to valley K (K ′) if its wave vector
lies within the upper (lower) triangle of the rhombic Brillouin
zone separated by the green dotted line shown in Fig. 1(b).
Then, the scattering state |ψ l〉 for electrons injected into the
quantum dot from the lth lead is projected onto the subspaces
of the Bloch states of the monolayer bismuthene that belong
to valley K and valley K ′. Although the Bloch states |ψ j

k 〉 are
defined on a continuum in k space, in order to evaluate the
valley-projected states numerically, we have approximated the
continuum by a mesh of k points. Thus, the projected states
are approximated by
∣∣ψ l

K

〉 = B
∑

j,k∈K

∣∣ψ j
k

〉〈
ψ

j
k

∣∣ψ l
〉
,

∣∣ψ l
K ′

〉 = B
∑

j,k∈K ′

∣∣ψ j
k

〉〈
ψ

j
k

∣∣ψ l
〉
,

(4)
where the sums run over the part of the mesh of k points
belonging to valley K or K ′ and B is the appropriate nor-
malization factor, B = number of bismuthene unit cells in the quantum dot

total number of k points in the mesh .
(Notice that B = 1 for the mesh of wave vectors in the
Brillouin zone corresponding to waves that obey periodic
boundary conditions at the edges of the dot. However, the
transport states |ψ l〉 do not obey periodic boundary condi-
tions. Therefore, a finer mesh is required to project the states
|ψ l〉 onto the valleys. In this work, the number of mesh points
used was sufficient to achieve convergence of the calculated
valley polarizations.) Using the calculated projected states,
the current-induced average valley accumulation of electrons
in valley K (K ′) at atomic site n, in a two-contact quantum
dot (each contact at a specific electrochemical potential μi) is
defined as [37,49]

AK (K ′ )
n = 1

2π

∑

l,i

∣∣〈n
∣∣ψ l

K (K ′ )
〉∣∣2 ∂ζ l

∂E

μi. (5)

In this definition, ∂ζ l

∂E represents the density of states at the
Fermi energy in the leads from which electrons flow into the
dot and contributes to the dependence of the onsite valley
accumulations AK (K ′ )

n on the energy. Here, |ψ l〉 originates
from the lead l represented by a tight-binding chain so that
〈n|ψ l〉 = eiζ l n + rle−iζ l n, where rl is the reflection amplitude
of |ψ l〉 from the nanostructure back into the ideal lead l and
E is the energy eigenvalue associated with |ψ l〉. We evaluate
AK (K ′ )

n in the linear response regime where for the electron
source electrode i, 
μi = |eVbias| in Eq. (5) and Vbias is the
bias voltage applied between the electrodes and is assumed to
be small. For the drain 
μi = 0. Having evaluated the onsite
valley accumulations AK (K ′ )

n , the onsite valley polarization
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of electrons Pv
n in the linear response regime is defined as

the difference between the onsite valley accumulations of
electrons at atomic site n, so that

Pv
n = AK

n − AK ′
n . (6)

Consequently, if Pv
n is positive (negative), electrons are pre-

dominantly in valley K (K ′). Spatial maps of these onsite
valley polarizations help to investigate the valley degree of
freedom of the edge states in the quantum dot as will be shown
in Sec. III.

In order to calculate the onsite spin polarization of the
electrons in the monolayer bismuthene on SiC substrate, we
have evaluated the expectation value of the spin operator with
respect to the scattering states ψ l at each atomic site. Then,
the current-induced onsite spin polarization of the electrons
has the form

Ps
n j = 1

2π

∑

l,i

〈
ψ l

n

∣∣S j

∣∣ψ l
n

〉∂ζ l

∂E

μi, (7)

where j = x, y, z represents the components of the spin oper-
ator S, and ψ l

n are the calculated scattering states of electrons
at atomic site n. Note that the other terms of this equation are
as defined in Eq. (5). We evaluate Ps

n in the linear response
regime so that 
μi is as defined for Eq. (5) and is assumed to
be small.

III. RESULTS

In Figs. 2(a) and 2(b) the calculated onsite valley polariza-
tions Pv

n [Eq. (6)] are represented by red (blue) disks where

FIG. 2. Spatial maps of the calculated onsite valley polarization
Pv

n represented by red (blue) when Pv
n is positive (negative). The

diameters of the disks are proportional to the magnitude of the
Pv

n . Electron flow is from source (bottom) to drain (top) here and
in subsequent figures. Energies are measured from the top of the
valence band. (a) EF = 0.10 eV, (b) EF = 0.16 eV. (c) The strongest
onsite valley polarization of the zigzag edge states as a function
of the Fermi energy. The blue (red) arrow locates the top of the
valence band at zero eV (bottom of the conduction band). (d) The
onsite valley polarization on a chain of Bi atoms that extends in the x
direction from the left zigzag edge to the center of the quantum dot.

they are positive (negative) for Fermi energies in the bulk
energy band gap. The diameters of the disks are proportional
to the magnitude of the onsite valley polarization Pv

n . Here,
the electron flow through the nanostructure is from the source
to the drain contact along the zigzag edges of the quantum
dot. Since the Fermi energy is inside the bulk band gap,
conduction is expected to be localized near the edges of the
QSH dot and, therefore, any valley polarization induced by
the electric current should also be located close to the dot’s
edges. Figures 2(a) and 2(b) show that the electric currents do
induce valley polarization and that the latter is localized near
the zigzag edges of the dot. Representative spatial profiles
of the valley polarization are shown in Fig. 2(d). Figure 2(a)
(for which the Fermi energy is at 0.10 eV) exhibits valley K ′
polarization (blue disks) of the edge states, while the valley
polarization of the edge states switches to the valley K (red
disks) in Fig. 2(b) where the Fermi energy is at 0.16 eV.
If we define the valley filter efficiency of the edge states as∑

n AK (K ′ )
n∑

n AK
n +AK ′

n
, then we find efficiencies of 91.8% and 90.2% in

Figs. 2(a) and 2(b), respectively. To gain further insight into
this reversal of the valley polarization of the edge states, we
have plotted the strongest onsite valley polarization in the
quantum dot as a function of the Fermi energy in Fig. 2(c).
Figure 2(c) shows that if the Fermi energy is close to the top
of valence band (indicated by the blue arrow), the edge states
support the transport of electrons accumulating preferentially
in valley K ′ (since Pv

n is negative) and the strength of the
valley polarization decreases as the Fermi energy increases.
The intersection of the solid black line and the orange dotted
line locates the Fermi energy EF s at which the valley polar-
ization of the edge states switches. When the Fermi energy
lies between the EF s and the bottom of the conduction band
(shown by the red arrow), Pv

n is positive and therefore the
edge states conduct electrons that accumulate preferentially
in valley K . We note also that reversing the source and drain
contacts, i.e., changing the direction of motion of electrons
(not shown in Fig. 2), also switches the valley polarization of
the conducting edge channels. Consequently, the monolayer
bismuthene on SiC quantum dot offers practical mechanisms
for valley switching based on gate control or reversing the
contacts.

The reversal of the valley polarization seen in Fig. 2 as the
Fermi energy increases from the top of the bulk valence band
to the bottom of the conduction band can be understood as
follows: The group velocities of the edge states in Figs. 2(a)
and 2(b) both point in the direction from the electron source
to the electron drain electrode, i.e., in the positive y direction
in Fig. 1. Their magnitudes are both close to 5 × 105 m/s.
As can be seen in Fig. 2(a) of Ref. [11], the dispersion of
these zigzag edge states is almost linear within the bulk energy
gap so that the magnitude of the group velocity is almost
independent of the Fermi energy in the gap. More importantly,
as the Fermi energy increases from the top of the valence band
to the bottom of the conduction band in Fig. 2(a) of Ref. [11],
the dispersion E (k) of the edge state with the positive slope
(i.e., positive velocity) crosses from left-hand half of the
Brillouin zone (where the edge state is in the K ′ valley) to the
right-hand half of the Brillouin zone (where the edge state is
in the K valley). This crossing occurs at an energy ∼0.13 eV
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FIG. 3. Spatial map of the calculated onsite out-of-plane com-
ponent (z direction) of the spin polarization Ps

n z represented by red
(blue) when Ps

n z is positive (negative). (a) Fermi level in bulk band
gap EF = 0.10 eV, (b) Fermi level in valence band EF = −0.09 eV.

above the bulk valence band edge. Thus, the reversal of the
valley polarization seen at the same energy EF ∼ 0.13 eV in
Fig. 2(c) is evidently due to the zigzag edge-state dispersion
crossing the center of the Brillouin zone from valley K ′ to
valley K at this energy. Consequently, we predict such a
reversal of the valley polarization to be a general phenomenon
occurring at the zigzag edges of all 2D topological insulators
with honeycomb lattices and qualitatively similar edge-state
dispersions.

We have also investigated the valley polarization of the
armchair edge states of the quantum dot by attaching the leads
to the zigzag edges of the quantum dot instead of to the
armchair edges as in Fig. 1(a). Our calculations showed that
unlike the zigzag edge states, the armchair edge states support
no well-defined valley-polarized transport of the electrons in
the quantum dot. We interpret this as follows: Comparing
Figs. 1(a) and 1(b) it is seen that the vector K − K′ is perpen-
dicular to armchair edges. Because of this, the armchair edge
must cause strong intervalley scattering of electrons so that
the armchair edge states are not valley polarized. However,
since the zigzag edge is parallel to K − K′, this argument
does not apply to zigzag edges so that zigzag edge states
can be valley polarized, consistent with the results presented
above.

In order to study possible correlations between the spin and
valley polarizations in this QSH system, we have calculated
the expectation value of the out-of-plane component of the
local spin polarization 〈Sz〉 when the Fermi energy is inside
and outside the bulk energy band gap. Figures 3(a) and 3(b)
show the spatial maps of the expectation value of the out-
of-plane (z) component of the spin polarization when the
Fermi energy is 0.10 eV (in the bulk energy band gap) and
−0.09 eV (in the valence band), respectively. The calculated
onsite out-of-plane spin polarizations Ps

n z are represented by
red (blue) disks if they are positive (negative) and the diameter
of each disk is proportional to the magnitude of the spin
polarization calculated at the corresponding atomic site. As is
seen in Fig. 3(a), the edge states located at the opposites edges
of the quantum dot have opposite spin polarization. According
to Figs. 2 and 3, the degenerate edge states (Kramers pairs)

FIG. 4. (a) The profile of the potential energy increasing in the y
direction (parallel to the zigzag edge). (b) Schematic representation
of the top of valence band (olive green line) and bottom of the
conduction band (purple line) when the variable potential energy
is included in the model. Energies are measured from the top of
the valence band at y = −85.6 Å, where V (y) = 0. The orange
horizontal line locates the Fermi energy for the case considered in
Fig. 5.

propagating at opposite edges have the same valley polariza-
tion and opposite spin polarization. The latter is characteristic
of QSH materials. Since in Fig. 3(b) the Fermi energy is in
the valence band, the electron transport is mediated by both
the edge and bulk states. While the spin polarization at each
edge is ferromagnetic, intriguingly, the spin polarization of the
bulk shows antiferromagnetic order in Fig. 3(b). Note that the
spin polarization of the zigzag edge states in monolayer bis-
muthene on SiC is dominated by the out-of-plane component
(z direction) while for bulk valence band states this is true only
at the valence band maxima.

In Fig. 2(c) a transition is seen from primarily valley
K ′ polarization of the edge states to primarily valley K
polarization as the electron Fermi level rises relative to the
conduction and valence band edges. This suggests considering
also the complementary case in which the energies of the
valence and conduction band edges depend on the position
in the dot, for instance, due to the presence of multiple gates
at suitably chosen applied voltages. In order to investigate
this and also the behavior of the out-of-plane component
of the spin polarization and the valley polarization when
electrons flow from a region where transport is mediated by
the edge states (Fermi energy lies in the band gap) to a region
where bulk transport is also important (Fermi energy lies
in the valence band) we have considered a model in which
the electron potential energy depends on the position in the
quantum dot as shown in Fig. 4(a). For simplicity we have
chosen a linear model potential energy function of the form
V (y) = V0(ymax + yn), where V0 = 1

171.2 eV/Å, ymax = 85.6
Å, and yn is the y coordinate of the nth atomic site, i.e., V (y)
increases from 0 for the bottommost atomic sites in Fig. 4(a)
to 1 eV for the topmost atomic sites in the y direction, parallel
to the zigzag edges of the quantum dot. The effect of the
increasing potential energy V (y) on the top of the valence
band and bottom of the conduction band as a function of
y is represented schematically in Fig. 4(b). In this model,
the Fermi energy lies in the bulk energy band gap for the
points where it is between the maximum of the valence band
and minimum of the conduction band. Consequently, if the
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FIG. 5. (a), (b) The spatial map of the out-of-plane component of the spin polarization 〈Sz〉 Eq. (7)] and onsite valley polarization [Eq. (6)],
respectively, when the model potential energy is applied for EF = 0.435 eV. Electron flow is from the bottom to the top of each figure. The
meanings of the colors of the red and blue disks are as in Figs. 2 and 3. The region where the Fermi energy lies in (out of) the bulk energy
band gap is represented by the orange (black) coloring. Note that the spin and valley polarizations in the orange and black regions are plotted
on different scales for clarity. The diameters of the disks plotted in the orange regions representing the spin (valley) polarizations are scaled up
by a factor 5 (7) relative to those in the black regions.

Fermi energy coincides with the valence band maximum at
y = yg, then in the region of the quantum dot with yn < yg

only the edge states propagate and in the remaining region
we have both bulk and edge states propagating through the
nanostructure.

As is seen in Fig. 5(b), the valley polarization of the edge
states in the orange region switches from valley K to K ′
due to the variation of the location of bulk energy band gap
relative to the Fermi level as a function of the y coordinate
of the atomic sites. Here, for the bottommost atomic sites the
Fermi energy EF is greater than EF s shown in Fig. 2(c), so
the edge states are polarized in valley K . As yn increases and
the top of the valence band approaches EF (EF < EF s), the
edge states become polarized in valley K ′. A comparison of
the calculated results of the spin and valley polarization at
various Fermi energies shows that increasing the Fermi energy
when the potential energy is applied, results in enhancement
of yg shown in Fig. 4(b) and a larger orange region where only
the edge states propagate through the system. Interestingly,
Fig. 5(b) shows that in the presence of a position-dependent
potential, the valley polarization of electrons can reverse when
the electrons travel through the quantum dot. It should be
noted that the spin and valley polarizations in the orange and
black regions of the quantum dot are plotted with different
scales for clarity: The diameters of the plotted disks in the
orange regions shown in Fig. 5(a) are scaled up by a factor 5
relative to those in the black regions. The corresponding scal-
ing factor is equal to 7 in the case of the valley polarizations
plotted in Fig. 5(b).

The out-of-plane spin polarizations shown in Fig. 5(a)
reveal that when the Fermi level is in the valence band, the
electric current flowing through the dot results in antiferro-
magnetic order in the interior of the dot, i.e., the expectation
values of the z components of the spin angular momenta
induced on adjacent bismuth atoms have opposite signs. This

is in contrast to the ferromagnetic order (i.e., parallel spins)
within each zigzag edge of the dot that is typical of QSH
edge states. We find the antiferromagnetic order seen in the
interior of the dot in Fig. 5(a) to be an intrinsic property
of the bismuthene valence band Bloch states belonging to
the predominantly populated valley. This is demonstrated in
Fig. 6(a) which shows the Bloch state expectation values
〈Sz(k, m)〉 = � j〈ψ j

k (m)|Sz|ψ j
k (m)〉 of the z components of the

spin on the two Bi atoms (m = 1, 2) in the unit cell of infinite
2D bismuthene on SiC. Here, k parametrizes the wave vectors
along the straight line passing through the valley vectors K
and K′ in the Brillouin zone and the sum is over the two
highest (Rashba-split) valence band Bloch states |ψ j

k (m)〉 of
infinite 2D bismuthene on SiC in the absence of any applied
bias. The Bloch states are normalized to 1 in the unit cell.
As is seen in Fig. 6(a), the spin expectation values 〈Sz(k, m)〉
for the two atoms in the unit cell have opposite signs for k
in either valley and these signs reverse if k switches to the
other valley. The nature of the correlation of the out-of-plane
spin and valley polarizations for the valence band Bloch states
is also depicted schematically in Fig. 6(b). Namely, if the
valence band electrons are polarized in valley K , then the
left Bi atom in the unit cell has negative and the right Bi
atom has positive out-of-plane spin polarization. However, if
the valence band electrons are polarized in valley K ′, then
the atomic out-of-plane spin polarizations are reversed. These
results show that if the Fermi level is in the valence band
and there is an imbalance between the populations of the two
valleys, then antiferromagnetic order such as that in Fig. 5(a)
will be present simply as a consequence of the properties of
valence band Bloch states. While in general the Bloch states of
infinite 2D monolayer bismuthene on SiC may have nonzero
in-plane as well as out-of-plane spin components, we find
that the in-plane spin components vanish at the valence band
maxima.
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FIG. 6. (a) Expectation values of the out-of-plane component of
the spin of electrons occupying valence band Bloch states of the
infinite 2D crystal of bismuthene on SiC along a line in k space. K ,
K ′, and M are as in Fig. 1(b). The expectation values are evaluated
at the two Bi atomic sites in the crystal unit cell and are summed
over the Rashba split valence bands. The black dashed line separates
the regions of k belonging to valleys K and K ′. (b) Schematic
representation of the unit cells of the crystal (green rhombi) showing
the out-of-plane atomic spin polarizations from part (a) (olive green
and purple arrows shown in the top rhombi) for electrons in valley
K and K ′. The corresponding valley polarizations at the atoms are
indicated by the red and blue disks shown in the bottom rhombi,
respectively.

IV. CONCLUSIONS

This paper has investigated the valley and spin polariza-
tions associated with electric currents in quantum dots of
monolayer bismuthene on SiC, a potential candidate for a
high-temperature topological insulator due to its large bulk
energy band gap. The calculated valley polarizations of the
edge states in this quantum spin Hall system reveal that
the conducting channels localized at the zigzag edges of
the quantum dot are strongly valley polarized. The strength
and the sign of the valley polarization of these edge states
are evaluated as a function of the Fermi energy in the bulk
energy band gap. It is shown that the valley polarization of
electrons switches between valleys K ′ and K as the Fermi
energy varies from the top of the valence band to bottom
of the conduction band in the bulk energy band gap. The
calculated results of the spin polarization of the monolayer
bismuthene on SiC dot show that the spin polarization of
the zigzag edge states is predominantly in the out-of-plane
direction. In this quantum spin Hall system, the degenerate
edge states propagating at opposite zigzag edges of the system
have opposite out-of-plane spin polarizations but the same
valley polarization. We have also investigated the out-of-plane
spin and valley polarizations of the electrons when the Fermi
energy lies outside the bulk energy band gap by considering a
position-dependent model potential energy. We predict that if
the Fermi energy lies in the valence band, the scattering states
propagate through bulk atomic sites of the quantum dots as
well as through the edge atomic sites and that the out-of-plane
spin polarization of scattering states is antiferromagnetic in
the bulk in contrast to the ferromagnetic order at the edges
of the system. If the Fermi energy is in the bulk band gap,
we find that in the presence of a position-dependent potential
it is possible for opposite valley polarizations to be present
simultaneously at different positions in the same edge state.
Thus, it is possible for the valley polarization of an electron to
reverse as it travels through the quantum dot.
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