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Plasmonic-modulated dissipative-driven multiqubit entanglement under asymmetric detuning
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A dissipative-driven system can generate steady-state entanglement robust to control parameters, while
a quantum plasmonic system has the advantages of being strongly coupled to qubits and manipulation of
electromagnetic waves in the subwavelength regime. We propose an effective multiqubit dissipative-driven
entanglement model for a plasmonic system which takes into account coupling of the plasmonic cavity and qubits
as well as the direct coupling between any two qubits and develop a numerical solution of the effective model
on a scalable composite plasmonic structure. In this structure, the multiqubit entanglement under asymmetric
detuning, especially for those combinations containing pairs of antisymmetric detuning qubits, achieves stronger
steady-state entanglement measured by negativity and pairwise concurrence. The robustness of multiqubit
entanglement against variations of the control parameters is also presented. In addition, the phenomenon of
entanglement sudden death caused by the driving field in entanglement dynamics is investigated. Our model
shows evidence that quantum plasmonics has great potential in multiqubit entanglement.
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I. INTRODUCTION

Quantum entanglement plays a fundamental role in quan-
tum information and quantum computation, such as quantum
logic gates, quantum encryption, and quantum error correction
[1–4]. However, entanglement could hardly be achieved due
to the weak direct interaction between qubits. To overcome
this limitation, several methods have been proposed, for ex-
ample, nonlinear optical crystals, nuclear magnetic resonance,
etc. [1,5–7]. Quantum plasmonic structures possess unique
advantages in strong coupling and a smaller size which can
go beyond optical limit [8–12].

Recent study has focused on two-qubit entanglement,
while the study of multiqubits has gradually attracted at-
tention. González-Tudela et al. [13–15] investigated a series
of systems which generate entanglement from two qubits to
multiple equidistant arranged isomorphic qubits by a plas-
monic waveguide and found that four-level system is more
robust than two-level system. Mirza and Schotland [16] an-
alyzed multiqubit transient entanglement in a bidirectional
waveguide and discovered that both entanglement time and
maximum entanglement could increase at least by 3/2 with
the chiral waveguide. In addition to waveguides, other plas-
monic structures such as metallic nanospheres and nanoan-
tennas have also been studied. Ren et al. [17] derived an
analytical solution for entanglement of two to four qubits
induced by multinanospheres with Green’s tensor technique.
Otten et al. [18–20] focused on the effect of the coupling
constant on entanglement and provided both numerical and
analytical solutions when the spontaneous vacuum emission
of qubits could be ignored. In summary, current research on
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multiqubit entanglement often involves some simplifications,
such as considering a one-dimensional condition or ignoring
the dissipation.

However, the duration of those entanglements could hardly
exceed the picosecond level when all the dissipation is taken
into account. In order to be more easily verified by experiment
and better applied, other methods to prolong entanglement
have been studied. One of them is dissipative-driven entan-
glement (DDE), where the entanglement is stabilized and
irrelevant of the initial state. In other words, the steady-state
entanglement is decided only by the control parameters of the
system. Another advantage of DDE is that it fits well with
the plasmonic structure whose loss is strong and unavoidable
[21]. Under the condition of strong plasmonic dissipation,
several effective models for a two-qubit system were proposed
[22–24]. Thereby, some effects of control parameters on en-
tanglement were discovered, such as the fact that maximum
entanglement could be obtained with the symmetric coupling
constant [22] and the symmetric driving field [23].

At present, DDE research is limited to two-qubit entan-
glement, and due to computational complexity, multiqubit
DDE is still under investigation. In addition, as the number of
qubits increases, the number of control parameter combina-
tions increases exponentially; thus, in a multiqubit entangle-
ment simulation, the control parameters are usually set to be
symmetric among different qubits. However, previous studies
[24,25] have shown that the asymmetry of the control pa-
rameters, especially asymmetric detuning, plays an important
role in the two-qubit system. Therefore, asymmetric detuning
needs to be paid attention to in multiqubit entanglement. In
addition, although the driving field is one of the keys to
maintaining steady-state entanglement [26,27], its influence
on multiqubit entanglement dynamics has not been fully
revealed.
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To address these issues, an efficient multiqubit system
model is proposed to reduce computational complexity. A
scalable plasmonic system consisting of a multiqubit and a
dissipative nanoparticle is designed to generate multiqubit
DDE. The numerical simulation of the plasmonic system
by the effective model demonstrates that the steady-state
entanglement produced by the nonzero asymmetric detuning
is significantly larger than that at resonance. In addition, the
number of pairs of antisymmetric detuning qubits plays an im-
portant role in entanglement enhancement, and the maximum
entanglement can be obtained by appropriately combining
the control parameters. Meanwhile, entanglement under small
parameter variations has proven to be robust, which preserves
the properties of DDE. Last, it is observed that a sufficiently
strong driving field may cause entanglement sudden death
(ESD) in the dynamics of multiqubit entanglement.

II. THEORY

A. Lindblad equation and effective model

The proposed plasmonic system consists of a multiqubit
and a dissipative nanoparticle, driven by a classical field,
E = E0eiωt + c.c. A possible physical realization is illustrated
in Sec. II B. The Hamiltonian of the nanoparticle near a
resonance mode ωa can be described as Hc = ωaa†a, where
a† (a) is the bosonic creation (annihilation) operator of the
surface plasmon mode. Each qubit is a two-level system, and
the Hamiltonian for the ith qubit is Hi = ωiσ

†
i σi, where σ

†
i

(σi) is the raising (lowering) operator and ωi is the energy level
difference. We define da = a† + a and di = σ

†
i + σi to be the

dipole operators of the cavity and qubits. The Hamiltonian
for dipole-dipole coupling is HI = ∑

i gidadi + ∑
i< j Ji jdid j ,

where gi is the coupling constant between the ith qubit and
the cavity and Ji j is the coupling constant between the ith and
jth qubits. The last term, HD = −∑

i ηidi + ηada, denotes the
interaction between the driving field and the system. The total
Hamiltonian of the system in the corotating reference under
the rotation wave approximation is

H = �aa†a +
n∑

i=1

�iσ
†
i σi − ηa(a† + a) −

n∑
i=1

ηi(σ
†
i + σi )

−
n∑

i=1

gi(σ
†
i a + σia

†) −
n∑

i, j = 1
i < j

Ji j (σ
†
i σ j + σiσ

†
j ), (1)

where n is the number of qubits. �a = ωa − ω denotes the
detuning between the cavity and the driving field, and �i =
ωi − ω is the detuning between the ith qubit and the driving
field. ηi = μiE0 and ηa = μaE0 are the Rabi frequency of
the qubits and cavity, while μi and μa represent their dipole
moments.

Dissipation of the system is modeled by Lindblad’s mater
equation (ρ is the density matrix of the whole system)

ρ̇ = i[ρ, H] + �(ρ), (2)

where �(ρ) denotes the decay term. Assume the vacuum
spontaneous emission rate for the ith qubit is γi and the decay

rate for the nanoparticle is γa; the decay term is

�(ρ) =
n∑

i=1

γi

2
(2σiρσ

†
i −{σ †

i σi, ρ}) + γa

2
(2aρa†−{a†a, ρ}).

(3)

In order to eliminate the operators of the cavity, an effec-
tive model for the weak-detuning and weak-coupling regime
(gi, ηi, γi,�i � γa) is provided. Among different approaches
[22–24] for a two-qubit system, we found that adiabatic
elimination [22] could be generalized to a multiqubit system.

First, we begin with the Heisenberg picture of motion

σ̇ z
i = 2i

[
ηi(σ

†
i − σi ) +

∑
j �=i

Ji j (σ
†
i σ j − σiσ

†
j )

+ gi(σ
†
i a − σia

†)

]
− γi

(
1 − σ z

i

) + f z
i , (4)

σ̇i = −i

⎡⎣⎛⎝ηi + gia +
∑
j �=i

Ji jσ j

⎞⎠σ z
i + δiσi

⎤⎦ − γiσi

2
+ fi,

(5)

ȧ = i

[
ηa − �aa +

∑
i

giσi

]
− γaa

2
+ fa, (6)

where σ z
i is defined as σ z

i = [σ †
i , σi]. f z

i , fi, fa in Eqs. (4),
(5), and (6) are fluctuation operators representing higher-
order process [22]. Under the semiclassical approximation,
the expectation values for those fluctuation operators are zero.
In addition, when 〈a〉 varies slowly, which is valid in the
weak-coupling regime, it is reasonable to set ȧ = 0 and obtain
an expression for a as a function of σi,

a = ηa + ∑
i giσi

�a − iγa/2
. (7)

Substituting the expression for a into Eqs. (4) and (5), we
have Eq. (8), which can be viewed as the Heisenberg equation
of operators for an effective Hamiltonian and dissipation term.
The effective Hamiltonian is

H eff =
∑

i

[�̃iσ
†
i σi−η̃i(σ

†
i +σi )] −

n∑
i, j = 1
i < j

J̃i j (σ
†
i σ j + σiσ

†
j ),

(8)

where the effective detuning, Rabi frequency, and coupling
constant are

�̃i = �i − g2
i �a(

γa

2

)2 + �2
a

,

η̃i = ηi + gi�aηa(
γa

2

)2 + �2
a

, (9)

J̃i j = Ji j + gig j�a(
γa

2

)2 + �2
a

.
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Meanwhile, the effective dissipation term is

�eff(ρeff ) =
n∑

i, j=1

γ̃i j

2
[2σiρ

effσ
†
j − {σ †

j σi, ρ
eff}], (10)

where

γ̃ii = γi + g2
i γa(

γa

2

)2 + �2
a

, γ̃i j = gig jγa(
γa

2

)2 + �2
a

. (11)

Therefore, an effective Lindblad equation is obtained,

˙ρeff = i[ρeff, H eff] + �eff(ρeff ), (12)

for a multiqubit system with no plasmonic operators. Appar-
ently, this effective model could decrease the dimension of the
Hilbert space, thereby reducing the computational complexity
and facilitating the entanglement simulation of more qubits.
This model is used to obtain theoretical and numerical solu-
tions in Sec. III.

B. Structure for a multiqubit and plasmonic system

Many different structures composed of waveguides, mul-
tiple qubits, and multiple nanospheres have been studied
[17,18,28,29]; however, most of them are complicated and
unscalable. Thus, a scalable structure that is a composite
of only a metallic nanosphere and a multiqubit is designed,
which is modified from a widely used structure in a two-qubit
system [24,30].

As shown in Fig. 1, the dielectric constant of the metallic
nanosphere is εm, and its radius is ra. Qubits are located on a
fixed plane passing through the center of the nanosphere. The
distance between the ith qubit and the center of the nanosphere
is ri, and the distance between the ith and jth qubits is ri j . The
dipoles of qubits are all perpendicular to the plane (parallel to
each other). The whole system is embedded in a host medium
with dielectric constant εb.

For coupling constant in Eq. (1), gi, can be determined
by combining the classical Maxwell equation with quantum
methods [5,31],

gi = −μi

r3
i

√
3ηr3

a

4πε0
, (13)

where μi is the dipole moment of the ith qubit, ε0 is the
vacuum dielectric constant, and η−1 = dRe[εm]/dω|ω=ωa . Ji j

is given by

Ji j = − μiμ j

4πε0εbr3
i j

. (14)

In the interaction terms between the driving field and the
system ηi = μiE , ηa = μaE , E is the strength of driving field,
and μa is the dipole moment of the nanosphere,

μa = εb

√
12ηr3

aπε0. (15)

If the dielectric constant of the host medium is εb = 3
and the nanosphere is made of silver, γa = 54.96 meV could
be derived from the imaginary part of εm [24]. The validity
of the effective model requires that the detunings and cou-
plings of qubits and the nanosphere are limited to the range
gi, ηi, γi,�i � γa. When � ∼ κ , the large detuning strongly

FIG. 1. Schematic diagrams of a system composed of multiple
qubits (which could be molecules, atoms, or quantum dots) near a
nanosphere along with (a) the energy levels of the system, the fre-
quency of the driving field and (b) structural parameters. The qubits
are on a fixed plane passing through the center of the nanosphere,
and the number of qubits n can be adjusted. The whole system is
embedded in a host medium with dielectric constant εb.

suppresses the entanglement, which is not considered here.
The influence of those parameters under the weak-detuning
and weak-coupling condition is discussed in Sec. III.

III. RESULTS AND DISCUSSION

Pairwise concurrence, which is widely used in multiqubit
systems [16,18,19], is used to quantify the strength of entan-
glement. Concurrence [32] between two qubits is defined as

C(ρi j ) = max{0, λ1 − λ2 − λ3 − λ4}, (16)

where ρi j is the reduced density matrix of the ith and jth
qubits, which could be obtained by tracing out other qubits.
λi are eigenvalues of

√
ρi j ρ̃i j , where ρ̃i j = (σy ⊗ σy)ρ∗

i j (σy ⊗
σy), and σy = (0 −i

i 0 ) is the Pauli matrix.
However, even though concurrence performs well in a two-

qubit system, it has been shown that there exists a three-qubit
state, called the Greenberger-Horne-Zeilinger-like state, the
is fully tripartite entangled while the concurrence of each
pair of qubits is zero [33]. In order to identify the tripartite
entangled state more precisely, negativity [34] is also chosen
as a criterion. For a system composed of two subsystems A
and B, the negativity of a state ρ with respect to A is defined
as follows:

NA−B(ρ) = −2
∑

i

σi(ρ
TA), (17)
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FIG. 2. Steady-state density matrix divided into (a), (b), (e), and (f) real elements and (c), (d), (g), and (h) imaginary elements for (a)–
(d) two-qubit and (e)–(h) three-qubit systems. In (b), (d), (f), and (h) ρfull is obtained from the original master equation, and in(a), (c), (e),
and (g) ρeff is from the effective one. A strong match appears between both the real parts and imaginary parts of most matrix elements. The
parameters are set as follows: ηi = 1.6 meV, gi = 0.34 meV, γi = 10 μeV, and γa = 54.96 meV in all panels and �1 = −�2 = 1.2 meV in
(a)–(d) and �1 = −�3 = 1.2 meV, �2 = 0 in (e)–(h).

where {σi(ρTA)} are the negative eigenvalues of the par-
tial transpose ρTA of ρ with respect to A, defined as
〈iA, kB|ρTA| jA, lB〉 = 〈 jA, kB|ρ|iA, lB〉. NA−B(ρ) greater than
zero is a sufficient condition for A and B to be inseparable (en-
tangled). For three-qubit systems, a fully tripartite entangled
state is a state in which each of the three qubits is inseparable
from the other two qubits. Thus, the tripartite negativity [33]
of a three-qubit state is defined as

NABC (ρ) = (NA−BCNB−ACNC−AB)
1
3 , (18)

where A, B, and C each denote a qubit. Nonzero tripartite neg-
ativity is a sufficient condition for full tripartite entanglement.
When the qubit number is greater than 3, it is generalized to
the following form:

NA1A2···An (ρ) = (NA1−A2···An NA2−A1A3···An · · · NAn−A1···An−1 )
1
n ,

(19)

where A1, A2 . . . , An each denote a qubit. Even though
nonzero negativity is not a sufficient condition for a fully
entangled state, it still has significance: each qubit is insep-
arable from the other qubits. Therefore, the negativity defined
in Eq. (19) is used to quantify the global entanglement of the
multiqubit.

A. Verification of effective model

The validity of our effective model is evaluated by com-
paring the results of the full master equation (2) and the
effective master equation (12). As our work focuses on the
steady-state entanglement, it is necessary to compare only

the elements of the steady-state density matrix under typical
parameters. We first consider the number of qubits n = 2.
A detailed steady-state density matrix divided into real and
imaginary parts is provided for both cases in Figs. 2(a)–2(d)
under �1 = −�2 = 1.2 meV, ηi = 1.6 meV, gi = 0.34 meV,
γi = 10 μeV, and γa = 54.96 meV. A great match is found
between the real elements. Meanwhile, even though there
are certain differences between the imaginary elements, those
differences are tiny compared to the real elements, which
means they would not affect the property of the whole density
matrix.

Similarly, when the number of qubits n = 3, the real and
imaginary parts of the steady-state density matrix are shown
separately in Figs. 2(e)–2(h). The parameters are set as �1 =
−�3 = 1.2 meV, �2 = 0, ηi = 1.6 meV, gi = 0.34 meV,
γi = 10 μeV, and γa = 54.96 meV. Obviously, the weak-
detuning and weak-coupling condition gi, ηi, γi,�i � γa is
satisfied under these parameters, and both the real part and
the imaginary part are also well matched. Thus, our effective
model is verified at the density matrix level under the weak-
detuning and weak-coupling condition. This model is used to
investigate multiqubit entanglement in the following sections.

B. Steady-state entanglement under asymmetric detuning

As mentioned above, asymmetric detuning plays an impor-
tant role in two-qubit entanglement. It is worth studying the
effects of asymmetric detuning on the entanglement among
multiple qubits.

First, the situation of three qubits is considered.
For simplicity, the driving field is resonant with the

165415-4



PLASMONIC-MODULATED DISSIPATIVE-DRIVEN … PHYSICAL REVIEW B 100, 165415 (2019)

N
eg
at
iv
ity

(b)

(c) (d)

N
eg
at
iv
ity

(a)

C
on
cu
rr
en
ce

C
on
cu
rr
en
ce

FIG. 3. (a) and (b) Steady-state negativity and (c) and (d) pairwise concurrence (i : j denotes the concurrence of the ith qubit and the jth
qubit) as a function of detuning � under certain symmetry for three-qubit (left) and four-qubit systems (right). The radius of the nanosphere is
ra = 16.5 nm, and the distances between the qubits and the nanosphere are ri = 22 nm (direct dipole-dipole interactions between qubits can
be ignored for three-qubit and four-qubit cases). Spontaneous emission rates are γi = 0.05 meV. Rabi frequency ηi = 0.5 meV.

nanosphere, and the qubits are place at the vertexes
of an equilateral triangle whose center coincides with
the nanosphere. Furthermore, for practical reasons, the
detuning of qubits is limited by a certain symmetry:
each �i (for i = 1, 2, 3) is either ±� or zero, where
� is a variable. Meanwhile, when other parameters
remain unchanged, the entanglement behaviors of
�1 = �a,�2 = �b,�3 = �c and �1 = −�a,�2 =
−�b,�3 = −�c are almost the same (which may be due to
some nonstrict symmetries of the system). Therefore, they are
treated as the same combination in our discussion below (a
similar phenomenon occurs in the four-qubit system). Since
these three qubits are equivalent except for detunings, there
are only five different detuning combinations: (1, 0,−1)3,
(1, 1,−1)3, (1, 1, 1)3, (1, 1, 0)3, and (1, 0, 0)3, where
(i, j, k)3 refers to �1 = i�,�2 = j�,�3 = k�. Figure 3(a)
illustrates the behaviors of negativity when � varies from 0
to 1 meV. Among these five combinations, the negativity of
(1, 0,−1)3 and (1, 1,−1)3 when the detunings are not zero is
significantly larger than when all qubits are resonant with the
driving field (�i = 0), while others are close to the resonant
condition. Actually, both (1, 0,−1)3 and (1, 1,−1)3 have
one pair of qubits whose detunings are antisymmetric, which
is the key for entanglement enhancement. Also, Fig. 3(c)
shows the pairwise concurrence under the variation of �

for special combinations: symmetric detuning (1, 1, 1)3

and semiantisymmetric detuning (1, 0,−1)3. Pairwise
concurrence and negativity have some common behaviors.
For example, in the symmetric detuning case, both negativity
and concurrence are robust under the variation of �, and in
the semiantisymmetric detuning case, proper detunings would
maximize the entanglement. A noteworthy phenomenon is
that under the resonant condition (each �i = 0), the steady
state is fully tripartite entangled as its negativity is greater
than zero, while the concurrence of each pair of qubits is zero.

Next, the case of four qubits is discussed. The driving field
is still resonant with the nanosphere, and the qubits are place
at the vertexes of a square whose center coincides with the
center of the nanosphere. If direct dipole-dipole interaction
can be ignored (which is true in the parameter region dis-
cussed in this paper), the four qubits are equivalent except for
their detunings. By further limiting each �i (for i = 1, 2, 3) so
that it is either ±� or zero, the truly different detuning com-
binations are (1, 1,−1,−1)4, (1, 1, 0,−1)4, (1, 1, 1,−1)4,
(1, 0, 0,−1)4, (1, 0, 0,−1)4, (1, 1, 1, 0)4, (1, 1, 1, 1)4, and
(1, 0, 0, 0)4, where (i, j, k, l )4 refers to �1 = i�,�2 =
j�,�3 = k�,�4 = l�. Figure 3(b) illustrates the behaviors
of negativity for � in the range 0–1 meV. Among the eight
combinations, (1, 1,−1,−1)4 provides the largest global en-
tanglement enhancement compared to the resonance case;
(1, 1, 0,−1)4, (1, 1, 1,−1)4, and (1, 0, 0,−1)4 are second.
Other combinations do not provide significant entanglement
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FIG. 4. Steady-state negativity as a function of (a) the coupling constant g and detuning �, (b) Rabi frequency η and detuning �, (c) the
coupling constant g and Rabi frequency η, and (d) the vacuum spontaneous emission rate γ and detuning �. Each panel demonstrates the
variation of two parameters, and the other two parameters are set to be unchanged. Numerical values of unchanged parameters are set as
follows: � = 1.2 meV, η = 1.6 meV, g = 3.4 meV, and γ = 10−2 meV.

enhancement. This phenomenon can be attributed to the num-
ber of pairs of qubits whose detunings are antisymmetric.
The combination (1, 1,−1,−1)4 has two pairs of antisym-
metric detunings qubits, and (1, 1, 0,−1)4, (1, 1, 1,−1)4, and
(1, 0, 0,−1)4 each have one pair. It has been shown that in
two-qubit systems, antisymmetric detuning (�1 = −�2) can
provide maximum entanglement [22–24], while in multiqubit
systems, the number of pairs of antisymmetric detuning qubits
should also be taken into account.

Furthermore, the behaviors of local entanglement are
depicted in Fig. 3(d), including pairwise concurrence for
symmetric detuning (1, 1, 1, 1)4 and semiantisymmetric
detuning (1, 1,−1,−1). For the case of symmetric detuning,
each pair of qubits forms weak but robust entanglement. In
contrast, for the semiantisymmetric detuning case, those pairs
of qubits with symmetric detunings could hardly entangle
(e.g., 1:2), while the local entanglement of antisymmetric
detuning qubits strongly increases under appropriate detuning
(e.g., 1:3).

C. Robustness of multiqubit entanglement

The strength of multiqubit entanglement is subjected to
the variation of those control parameters. Therefore, it is
important to analyze the robustness of the system, that is, the
sensitivity of entanglement against the variation of the control
parameters which might be caused by imperfections in the
experiment. For simplicity, only three-qubit entanglement is
considered. Furthermore, all the parameters except detuning

are set to be symmetric: ηi = η, gi = g, and γi = γ , which can
be realized in a three-qubit system. We set parameters except
detuning symmetric because previous researchers have re-
vealed that symmetric parameters can maximize entanglement
in two-qubit systems [22,23]. On the other hand, as shown
in Sec. III C, asymmetric detuning can significantly enhance
entanglement. Thus, the detuning combination (1, 0,−1)3,
where �1 = −�3 = �, �2 = 0, is chosen in the analysis for
robustness.

The entanglement under the variation of �, η, g, and γ

is demonstrated in Fig. 4. Even though fine regulation of
the control parameters is needed to obtain the maximum
entanglement, it is quite robust under a small deviation of the
perfect case. The asymmetric detuning � plays an important
role in the formation of entanglement. However, when the
detuning is large enough, the entanglement decreases as the
detuning increases, which has been discovered in two-qubit
systems [24]. The coupling constant g has a similar behavior:
there is no entanglement when coupling is zero, while the en-
tanglement slowly decreases as g increases when the coupling
is large enough. In our effective model, the couplings between
the plasmon and qubits can be viewed as a modification
of direct dipole coupling among qubits [Eq. (9)]. Although
the qubits are placed as far apart as possible so that direct
dipole coupling can be ignored in our discussion above, the
direct dipole coupling could have a significant effect when
the qubits are placed close to each other (e.g., the number of
qubits increases). The vacuum spontaneous emission rate γ

of qubits, which can be viewed as a kind of dissipation, has
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FIG. 5. The dynamics of three-qubit entanglement under dif-
ferent strengths of the driving field. The colors of different lines
represent different initial states. The driving field is resonant with the
plasmon mode. Here �1 = −�3 = 1.2 meV, �2 = 0, gi = 3.4 meV,
γi = 10−2 meV, and ηi = η.

a negative effect on entanglement. It is worth noting that in
the weak-dissipation regime (γ < 10−4 meV), the variation
of γ hardly affects the negativity of the system. The effect of
the strength of the driving field (Rabi frequency) is the most
interesting. There is no entanglement when η = 0, which is
obvious because dissipation could make the system eventually
evolve to the ground state, which is a separable state. A
certain strength of the driving field is a necessary condition for
entanglement; however, negativity quickly decreases to zero
as the strength of the driving field increases when η is large
enough (compared to � and g). Even though the steady-state
negativity is zero both when the driving field is absent and
when the driving field is large, the dynamics of entanglement
evolution are quite different, which is discussed in Sec. III D.
Actually, there would be sudden death when η/g and η/� are
both large enough. In conclusion, the strength of entanglement
under variation of the parameters shares many effects with the
two-qubit system.

FIG. 6. Negativity as a function of time and the strength of
driving field of (a) a two-qubit system and (b) a three-qubit system.
The initial states are set to be |100〉. The driving field is resonant with
the plasmon mode. Here gi = 3.4 meV, γi = 10−2 meV, and ηi = η

in both panels, and �1 = −�2 = 1.2 meV in (a) and �1 = −�3 =
1.2 meV, �2 = 0 in (b).

D. Sudden death induced by the driving field

ESD is an important manifestation occurring in the entan-
glement evolution. Here the effect of the driving field on the
dynamics of entanglement evolution is analyzed. Negativity
as a function of time under different strengths of the driving
field is shown in Figs. 5 and 6. Both the zero-driving field
(η = 0 meV) and large-driving field (η > 5 meV) have a
zero steady-state negativity. However, the dynamics of these
two situations are not the same. In the case that the driving
field is absent, negativity decreases exponentially and towards
zero smoothly (unless the initial state is the ground state).
However, for the large driving field, negativity would reach
zero at a finite time (usually with a discontinuous first deriva-
tive) whatever the initial state is, which could be viewed as
a kind of sudden death. This kind of entanglement sudden
death could be theoretically derived for a two-qubit system,
which is shown in the Appendix. One of the most interesting
phenomena happens when the driving field is at the right
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strength (η ≈ 3–4 meV): the entanglement disappears at a
finite time; however, it revives and reaches its nonzero steady
value when t → ∞.

IV. CONCLUSION

In summary, we studied multiqubit dissipative-driving
entanglement generated by a plasmonic system. A simple
plasmonic structure composed of a metal nanosphere and
multiple qubits was proposed; the dissipation in the system
is modeled by Linblad’s equation, and an effective model for
weak-detuning and weak-coupling mechanisms was derived.
Using the effective model, we studied the effects of asym-
metric qubit detuning on entanglement. The antisymmetric
detunings of a pair of qubits greatly facilitates entanglement
compared to resonance. In addition, more pairs of qubits with
antisymmetric detunings can achieve even stronger steady-
state entanglement. At the same time, the robustness of a
three-qubit entanglement system was analyzed, and we found
that the proper detuning, coupling constant, and driving field
strength could lead to the maximum entanglement value,
while the vacuum spontaneous decay rate has a negative
influence on the entanglement. Finally, both analytical and
numerical calculation indicated that sudden death and revival
occur when the driving field is large enough. Our model
reveals many phenomena that are consistent with two-qubit
entanglement and has great potential for studying multiqubit
entanglement phenomena.
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APPENDIX: THEORETICAL DERIVATION OF
ENTANGLEMENT SUDDEN DEATH IN A

TWO-QUBIT SYSTEM

To simplify, two qubits both at resonance are considered:
�̃ = 0, and η̃i = η, J̃12 = J , and γ̃i j = γ δi j . The Hamiltonian
of two qubits can be presented as follows:

H = H1 ⊗ 1 + 1 ⊗ H2 + H ′, (A1)

where

Hi =
(

0 −η

−η 0

)

denotes the interaction between the ith qubit and the outer
field and

H ′ = −J (σ †
1 σ2 + σ1σ

†
2 ) =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 −J 0

0 −J 0 0

0 0 0 0

⎞⎟⎟⎟⎠ (A2)

denotes the interaction between qubits. If J̃12 = 0, which
means the two qubits have no interaction with each other, the
steady-state density matrix can be solved separately. For the
steady-state density matrix equation

dρi

dt
= i[ρi, H] + γ

2
(2σiρiσ

†
i − {σ †

i σi, ρi}) = 0 (A3)

the solution is

ρi = 1

8η2 + γ 2

(
4η2 2iηγ

−2iηγ 4η2 + γ 2

)
.

For the simplicity of further calculation, the unitary transform

U = 1√
2

(
1 1

−1 1

)
is applied for all matrices M → U †MU (or, equally, repre-
sents those matrices in a new basis). The transformation of
some of the matrices above is as follows:

ρi → 1

2

⎛⎜⎝ 1
γ (−γ + 4iη)

8η2 + γ 2

−γ (γ + 4iη)

8η2 + γ 2
1

⎞⎟⎠, (A4)

Hi =
(

0 −η

−η 0

)
→ 1

2

(
η 0
0 −η

)
, (A5)

H ′ → J

2

⎛⎜⎜⎜⎝
−1 0 0 1

0 1 −1 0

0 −1 1 0

1 0 0 −1

⎞⎟⎟⎟⎠, (A6)

where the unitary transformation for H ′ actually means
H ′ → (U † ⊗ U †)H ′(U ⊗ U ). Suppose J = 0; then ρ = ρ1 ⊗
ρ2 would be the solution for the steady-state density matrix.
For J �= 0, H ′ is treated as a perturbation in the limit η → ∞,
while ρ = ρ1 ⊗ ρ2 + ρ ′ and ρ ′ is the correction for ρ (ρ may
not be normalized). From the steady-state equation for the
density matrix

dρ

dt
= i[ρ1 ⊗ ρ2 + ρ ′, H1 ⊗ 1 + 1 ⊗ H2 + H ′]

+�(ρ1 ⊗ ρ2 + ρ ′) = 0 (A7)

and is simplified by Eq. (A3) (H1 + H2 denotes H1 ⊗ 1 + 1 ⊗
H2),

i[ρ ′, H1 + H2] + i[ρ1 ⊗ ρ2, H ′] + i[ρ ′, H ′] + �(ρ ′) = 0.

(A8)
In the limit where η → ∞, γ /η and J/η are treated as

small quantities. Thus, while ignoring the higher-order term
in Eq. (A8), the equation of the first-order modification for ρ

is

[ρ ′, H1 + H2] + [ρ1 ⊗ ρ2, H ′] = 0. (A9)
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The matrix representations for H1 + H2 and ρ1 ⊗ ρ2 are
(ignoring the higher-order term)

H1 + H2 = 2η

⎛⎜⎝1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎞⎟⎠, (A10)

ρ1 ⊗ ρ2 = 1

4
14×4 + i

γ

8η

⎛⎜⎝ 0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0

⎞⎟⎠, (A11)

the solution for ρ ′ is

ρ ′ = i
γ g

32η2

⎛⎜⎜⎜⎝
0 −1 −1 0

1 0 0 1

1 0 0 1

0 −1 −1 0

⎞⎟⎟⎟⎠, (A12)

and the first-order correction of ρ is

ρ = 1

4
14×4 + i

⎛⎜⎜⎜⎝
0 a − b a − b 0

−a + b 0 0 a + b

−a + b 0 0 a + b

0 −a − b −a − b 0

⎞⎟⎟⎟⎠,

(A13)

where

a = γ

8η
, b = γ J

32η2
. (A14)

To quantify its entanglement, concurrence is used as an
entanglement criterion. In order to calculate concurrence, the
eigenvalues of

√
ρρ̃ (or, equivalently, the square root of the

eigenvalues of ρρ̃) are needed.
After some calculation, it is found that

ρρ̃ =
(

1

16
− 2a2 + 2b2

)
14×4

+

⎛⎜⎜⎜⎝
0 −ib/2 −ib/2 2(a + b)2

ib/2 0 2(b2 − a2) ib/2

ib/2 2(b2 − a2) 0 ib/2

2(a − b)2 −ib/2 −ib/2 0

⎞⎟⎟⎟⎠.

(A15)

The eigenvalues of ρρ̃ are ( 1
16 − 2a2 + 2b2) plus the eigen-

values of the second term in Eq. (A15). In order to obtain the
eigenvalues of the second term in Eq. (A15), another unitary
transformation,

U1 =

⎛⎜⎜⎝
0 1 1 0

1 0 0 1
−1 0 0 1

0 −1 1 0

⎞⎟⎟⎠,

is applied, and the second term in Eq. (A15) becomes

⎛⎜⎜⎝
2a2 − 2b2 0 0 0

0 −2a2 − 2b2 −4ab 0

0 4ab 2a2 + 2b2 −ib
0 0 ib −2a2 + 2b2

⎞⎟⎟⎠.

(A16)

We define ei (i = 1, 2, 3, 4) as the basis of the matrices.
There are no cross terms between e1 and other ei; therefore,
2a2 − 2b2 is one of the eigenvalues of Eq. (A16). Notice that
a and b are small quantities, and the cross term between e2

and e3 has the same order as the diagonal term of e2, which
will give a higher order of shift to the eigenvalues; thus,
−2a2 − 2b2 is an approximate eigenvalue of Eq. (A16) to
second order. The last step to obtain the eigenvalues of ρρ̃ is to
solve the eigenvalues in the subspace spanned by e3 and e4; the
eigenvalues are 2b2 ± √

4a4 + b2. In summary, the eigenval-
ues of ρρ̃ are (in order of largest to smallest) 1

16 − 2a2 + 4b2 +√
4a4 + b2, 1

16 − 2a2 + 4b2 − √
4a4 + b2, 1

16 , and 1
16 − 4a2.

After taking their square root, the concurrence of the system
can be written as

C = max{0, λ1 − λ2 − λ3 − λ4},

λ1 − λ2 − λ3 − λ4 =
√

1

16
− 2a2 + 4b2 +

√
4a4 + b2

−
√

1

16
− 2a2 + 4b2 −

√
4a4 + b2

− 1

4
−

√
1

16
− 2a2 + 2b2. (A17)

Notice that for a proper number of a > 0 and b > 0, the con-
currence of the two qubits could be larger than zero. However,
for a large enough η (a and b are small enough), λ1 − λ2 −
λ3 − λ4 would be lower than zero, which means the steady
state will have no entanglement. Moreover, if the initial state
is prepared as an entangled state, C = λ1 − λ2 − λ3 − λ4 >

0 at t = 0. The evolution of λ1 − λ2 − λ3 − λ4 should be
a continuous function of t ; hence, there must exist a limit
time t when C = λ1 − λ2 − λ3 − λ4 = 0. The entanglement
becomes zero in a finite time, which is the sudden death
induced by the driving field.
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