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Driven Hofstadter butterflies and related topological invariants
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The properties of the Hofstadter butterfly, a fractal, self-similar spectrum of a two-dimensional electron
gas, are studied in the case where the system is additionally illuminated with monochromatic light. This is
accomplished by applying Floquet theory to a tight-binding model on the honeycomb lattice subjected to a
perpendicular magnetic field and either linearly or circularly polarized light. It is shown how the deformation of
the fractal structure of the spectrum depends on intensity and polarization. Thereby, the topological properties
of the Hofstadter butterfly in the presence of the oscillating electric field are investigated. A thorough numerical
analysis of not only the Chern numbers but also the W3 invariants gives the appropriate insight into the topology
of this driven system. This includes a comparison of a direct W3 calculation to the method based on summing up
Chern numbers of the truncated Floquet Hamiltonian.
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I. INTRODUCTION

The integer quantum Hall effect [1,2] marks, in hindsight,
the inception of the field of topological insulators [3,4]. This
discovery was preceded by a few years by Hofstadter’s sem-
inal work on hopping models on a two-dimensional square
lattice in a perpendicular magnetic field [5]. The celebrated
Hofstadter butterfly contains the Landau-level structure un-
derlying the quantum Hall effect in the limit of small fluxes
per unit cell. The relation of the band structure to the Hall
conductance at general flux was later clarified [6] in terms of
Chern numbers [7].

Moreover, an important recent direction of work in the
area of topological insulators are systems under external
driving, mainly by electromagnetic radiation, and the forma-
tion of nontrivial topological phases dubbed Floquet topo-
logical insulators [8–16]. In fact, the study of light-matter
interaction is one of the fastest growing research areas in
physics. Here, two-dimensional systems with underlying hon-
eycomb lattice structure have attracted particular interest in-
cluding graphene [8,11,17–24], silicene [25,26], germanene
[26,27], and transition-metal dichalcogenides [28]. To ac-
cess, e.g., in graphene the feasibility of AC-driven fields
to generate a finite spin polarization of carriers, the effect
of periodically driven spin-orbit coupling was studied in
Refs. [29,30].

Furthermore, as seen from the quantum Hall effect [2],
the topological properties of two-dimensional systems are
also drastically altered by applying a perpendicular magnetic
field, also leading to fractal structures as the Hofstadter
butterfly [5,31–37]. The question arises in which way an
external periodic driving can modify or destroy the fractal
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structure. Moreover, following the seminal paper by Rudner
et al. [13], it becomes clear that the topology analysis of
driven systems needs a different approach compared to the
static case which goes beyond the Chern number calcula-
tion. We are going to address these problems in the present
paper.

Concerning the experimental realizability of the theory de-
veloped in this paper, we first emphasize the pioneering work
of measuring the Hofstadter butterfly in moiré superlattices
[38], showing the possibility of measuring the Hofstadter but-
terfly on a hexagonal lattice structure as well. Utilizing super-
lattice structures, the necessary magnetic field can be lowered
to easily accessible field strengths of about tens of Tesla.
Furthermore, the formation of Floquet bands exists not only
on paper. Using angle-resolved photoemission spectroscopy,
the periodic band structure was resolved in momentum space
and even the gap opening of driven topological insulators was
realized and measured [39]. Thus, the path to experimental
accessibility is already paved by modern techniques and the
study presented in this paper aims at giving a better under-
standing of the fundamental building blocks by focusing on
a single graphene sheet subjected to a strong perpendicular
magnetic field and externally driven by polarized light.

This paper is organized as follows. First, we treat in Sec. II
the Hofstadter butterfly problem [5] on the honeycomb lattice
[31,32,35,40] in a rigorous manner. Then we generalize it in
Sec. III to the case with periodic driving, realized by linearly
and circularly polarized light. We show some representative
numerical results for different frequencies, intensities, and po-
larizations. Finally, the topological properties of the Floquet-
Hofstadter problem are characterized with Chern numbers
and W3 invariants in Sec. IV. Thereby, we compare this
invariant with the often-used summation over Chern numbers
in the truncated Floquet space for different frequencies and
intensities. We combine an analytical as well as a numerical
approach to the above quantities, and close with a summary in
Sec. V.
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FIG. 1. Coordinate geometry used on the honeycomb lattice: The
green arrows represent the different nearest-neighbor vectors �ai and
the blue ones the lattice vectors �bi.

II. HOFSTADTER BUTTERFLY FOR THE
HONEYCOMB LATTICE

A. Derivation of the Hamiltonian

To model graphene, we use a tight-binding model where
only nearest-neighbor hopping can take place. We choose the
lattice vectors as

�b1 = a

(
0

√
3

)
, �b2 = a

( 3
2√
3

2

)
, (1)

with a being the distance between the carbon atoms. The
nearest-neighbor vectors are

�a1 = a

(
1
0

)
, �a2 = a

2

(−1
√

3

)
, �a3 = a

2

( −1

−√
3

)
, (2)

as depicted in Fig. 1. The position of an arbitrary unit cell is

�R(m, n) = m�b1 + n�b2, m, n ∈ Z. (3)

In the presence of a vector potential, the hopping parameter t
gets modified by the Peierls phase,

t �→ tm,neiφ( j)
m,n , (4)

where the phase is the integral over the vector potential along
the hopping path

φ( j)
m,n = e

h̄

∫ �R(m,n)+�a j

�R(m,n)

�A(�r ) · d�r, j = 1, 2, 3 . (5)

The magnetic field is applied in z direction, �B = B�ez. For
Landau gauge �A(�r ) = (0, Bx, 0)T , the Peierls phase becomes
independent of the index m,∫ �R(m,n)+�a2,3

�R(m,n)

�A(�r ) · d�r = ±3
√

3

4
Ba2

(
n − 1

6

)
, (6)

and zero for the hopping in �a1 direction. Note that the pref-
actor in the above expression is related to the area of the
elementary unit cell Acell by 3

√
3a2/4 = Acell/2. As usual, we

restrict the flux per unit cell in units of the elementary charge
over Planck’s constant to a rational value:

φ ≡ e

h
BAcell = p

q
. (7)

Thus, the Peierls phase can be written as

e

h̄

3
√

3

4
Ba2

(
n − 1

6

)
= πφ

(
n − 1

6

)
, (8)

which leads then to the explicit form of of the Hamiltonian

H = −t
∑
mn

[
a†

m,n

(
bm,n + eiπφ(n− 1

6 )bm+1,n−1

+ e−iπφ(n− 1
6 )bm,n−1

) + H.c.
]
, (9)

where the sum is over all unit cell positions. The solutions of
the stationary Schrödinger equation are plane-wave type states
of the general form

|�k〉 =
∑
mn

ei�k· �R(m,n)(αna†
m,n + βnb†

m,n)|0〉, (10)

where the creation operators a†
m,n, b†

m,n for the different sub-
lattice sites are acting on the fermionic vacuum |0〉. αn, βn are
complex amplitudes depending only on n since the Peierls
phase does so, see Eq. (8). Making a projection on a state
〈0|am′,n′ or 〈0|bm′,n′ leads to a system of coupled equations
for the amplitudes,

−ε

t
αn = βn + zn(�k)βn−1, (11)

−ε

t
βn = αn + z∗

n+1(�k)αn+1, (12)

with

zn(�k) = e−iπφ(n− 1
6 )−i�k· �b2 + eiπφ(n− 1

6 )ei�k·(�b1−�b2 ). (13)

B. Periodicity of the Hofstadter Problem

Equations (11) and (12) define a prima vista infinite system
of linear equation, which, however, closes to a finite one due
to periodicity properties of the amplitudes involved. First, we
define the operators

Tr

(
am,n

bm,n

)
T †

r =
(

am,n+r

bm,n+r

)
, (14)

u

(
am,n

bm,n

)
u† = (−1)n

(
am,n

bm,n

)
, (15)

such that for

p even: TqHT †
q = H, (16)

p odd: uTqHT †
q u† = H. (17)

For even p, the translation operator Tq acts on the state ansatz
as

|�k〉 = ei�k·�b2q Tq |�k〉 , (18)

and consequently the amplitudes have the periodicity

αn+q = αn, βn+q = βn . (19)
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FIG. 2. Hofstadter butterfly for the honeycomb lattice. The en-
ergy is given in units of the hopping parameter t .The ground state of
the Hofstadter spectrum is defined as the state with lowest energy,
represented by the red line.

In the other case where p is odd,

|�k〉 = ei�k·�b2q uTq |�k〉 , (20)

and the amplitudes have to fulfill

αn+q = (−1)n+qαn, βn+q = (−1)n+qβn. (21)

The relations given in Eqs. (19) and (21) can be summarized
as

αq = (−1)pqα0, βq = (−1)pqβ0. (22)

Thus, Eqs. (11) and (12) define a finite linear system of
equation for, say, α0 . . . αq−1 and β0 . . . βq−1, and if both p
and q are odd the relation between the missing amplitudes αq,
βq and α0, β0, respectively, contains an additional minus sign.
This sign can be compensated by shifting the wave vectors by
half of a reciprocal lattice vector as kx → kx + 2π

3q , leading to

αn+q = (−1)n+1+qαn , (23)

βn+q = (−1)n+1+qβn . (24)

This allows us to use Eqs. (19) for all flux values in the
calculation of the Hofstadter spectrum and Chern numbers
but one should keep in mind that one gets a shifted band
structure for odd flux values according to Eqs. (20)–(24).
As a result, to calculate the Hofstadter butterfly, a 2q × 2q
matrix is sufficient to obtain the full Hofstadter spectrum. The
numerical result for various fluxes is depicted in Fig. 2.

III. FLOQUET-HOFSTADTER SPECTRUM

In this section, we generalize the Hofstadter butterfly to
the case of an additional oscillating electric field. We will
focus on linear and circular polarization and show how the
two polarization states affect the Hofstadter spectrum.

A. Circularly polarized light

The following vector potential �A is representing circularly
polarized light of frequency ω in the xy-plane and amplitude

A, and the perpendicular magnetic field B:

�A(�r, t ) =
(

A sin(ωt )
A cos(ωt ) + Bx

)
. (25)

The vector potential is included in the Hamiltonian via Peierls
substitution. In what follows, the hopping parameter is re-
named g, and �A(t ) is representing only the time-dependent
part of Eq. (25). The resulting Hamiltonian reads

H = −g
∑
mn

[
a†

m,n

(
ei e

h̄
�A(t )·�a1 bm,n + eiπφ(n− 1

6 )+i e
h̄

�A(t )·�a2 bm+1,n−1

+ e−iπφ(n− 1
6 )+i e

h̄
�A(t )·�a3 bm,n−1

) + H.c.
]
. (26)

The time-dependent Schrödinger equation can be expressed in
the Floquet form,

HF |�k, t〉 := (H − ih̄∂t ) |�k, t〉 = ε |�k, t〉 , (27)

where ε is the quasienergy which is only defined modulo
integer multiples of h̄ω. The state |�k, t〉 is periodic in time
with a period T = 2π/ω which allows for a discrete Fourier
transformation. According to Eq. (10), the general solution of
HF can be written in the form

|�k, t〉 =
∑
mn

ei�k· �R(m,n)(αn(t )a†
m,n + βn(t )b†

m,n)|0〉. (28)

Due to the periodicity of |�k, t〉, one can expand the terms
αn(t ), βn(t ) using the Fourier series

αn(t ) =
∑

l

αn,l e
ilωt , (29)

where the index l is the quantum number of the Floquet mode
(also called Floquet replica). The equivalent to Brillouin zones
(BZs) for the real space are the Floquet modes for the time
space. Additionally, we use the Jacobi-Anger expansion [24],

eiz cos(ωt ) =
∞∑

n=−∞
Jn(z)ein(ωt+ π

2 ), (30)

where Jn denotes the nth order Bessel function of the first
kind. The Floquet Eq. (27) leads to the following coupled
expressions for the amplitudes:

l h̄ωαn,l − g
∑

l ′
Jl ′ (γ )[βn,l−l ′ + fn,l ′ (�k)βn−1,l−l ′ ] = εαn,l ,

(31)

l h̄ωβn,l − g
∑

l ′
Jl ′ (γ )[αn,l+l ′ + f ∗

n+1,l ′ (�k)αn+1,l+l ′ ] = εβn,l ,

(32)

with

fn,l ′ (�k) = eiπφ(n− 1
6 )−il ′ 4π

3 ei�k·(�b1−�b2 ) + e−iπφ(n− 1
6 )−il ′ 2π

3 e−i�k·�b2 ,

(33)

where γ ≡ eAa/h̄, termed light parameter. Exemplary numer-
ical results for different driving frequencies can be seen in
Figs. 3 and 4. The bending direction represented by the green
dashed line depends on the sign of the driving frequency ω.
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FIG. 3. The Hofstadter butterfly gets deformed in the presence
of circularly polarized light. The frequency ω of the periodic driving
was set to 6.0 g/h̄ and the intensity γ to 1.0 eAa/h̄. With the present
choice of frequency, the different butterflies of the different Floquet
modes do not overlap. The red line shows the state with lowest
quasienergy of the central Floquet mode.

B. Linearly polarized light

We now investigate the case of linear polarization of the
light represented by

�A(�r, t ) =
(

Ax cos(ωt )
Ay cos(ωt ) + Bx

)
. (34)

The orientation of the linear polarization can be tuned by
varying Ax and Ay. The effective amplitude for the three
different hopping paths is then governed by

�A(t ) · �ai = Ai cos(ωt ) with i = 1, 2, 3 . (35)

In contrast to the case of circularly polarized light, where
the transitions between the different Floquet modes are for
all hopping directions equally suppressed, they are for linear
polarization not. This can be seen from the fact that the
argument of the Bessel function is different for each hopping

FIG. 4. The frequency ω of the circularly polarized radiation was
set to 3.0 g/h̄ and the intensity γ to 1.0 eAa/h̄. The spectra of the
different Floquet modes overlap.

FIG. 5. Hofstadter butterfly in the presence of linearly polarized
light where Ax = 0.0 , Ay = 1.0 at a frequency ω of 3.0 g/h̄. The ef-
fective amplitude for each hopping direction is governed by Eq. (35).

direction. The equivalent equations to Eqs. (31) and (32) for
linearly polarized light read

l h̄ωαn,l − g
∑

l ′

[(
Jl ′ (γ1)βn,l−l ′ + Jl ′ (γ2)eiπφ(n− 1

6 )+i�k·(�b1−�b2 )

+ Jl ′ (γ3)e−iπφ(n− 1
6 )−i�k·�b2

)
βn−1,l−l ′

] = εαn,l , (36)

l h̄ωβn,l − g
∑

l ′

[(
Jl ′ (γ1)αn,l+l ′ + Jl ′ (γ2)e−iπφ(n+ 5

6 )−i�k·(�b1−�b2 )

+ Jl ′ (γ3)eiπφ(n+ 5
6 )+i�k·�b2

)
αn+1,l+l ′

] = εβn,l . (37)

Here, we have introduced three different light parameters:

γi = eAia

h̄
.

One should note that particle-hole symmetry is conserved
for linear light polarization, see Fig. 5, whereas it is not for
circular polarization.

C. Gap size

To prepare for the following section, where we analyze
the Chern numbers of the static Hofstadter and the Floquet-
Hofstadter problem, we investigate the gap size occurring
between the different Floquet-Butterfly modes. To do so, we
first clarify what is meant by the gap between the different
butterflies. We always calculate the gap size numerically
between the lowest band of the central Floquet mode, being
in the interval [−h̄ω/2, h̄ω/2), and the highest band of the
minus one Floquet mode, lying in [−3h̄ω/2,−h̄ω/2). Due
to the periodicity of the Floquet-Hofstadter spectrum on the
quasienergy axis, the gap between neighboring modes is
always the same. It is obvious that the quasienergetic gap is
not equal for all flux values, e.g., in Fig. 3 the lowest band of
the central Floquet mode is not constant as a function of the
flux per unit cell.

As already mentioned, we focus on Chern numbers in the
following section. A change of the Chern number is always
related to a band touching. Hence, we are interested in the
minimal gap as a function of flux, denoted as 
ε in Figs. 6,
7, and 8. We refer to a gap between the butterflies if there is
no flux value where the lowest band of the central Floquet
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FIG. 6. The gap 
ε of the Floquet-Hofstadter spectrum as a
function of frequency ω and intensity γ for circularly polarized light.
In the investigated intensity range, two maxima occur rising linearly
with the driving frequency.

mode and the highest band of the n = −1 mode touch. The
right plots of Figs. 6, 7, and 8 show cuts through the contour
plot at a frequency of 5.0 g/h̄. The upper plots show cuts at
an intensity of 3.0 eAa/h̄. We can see that the gap size rises
linearly with the frequency. In anticipation of the following
section, we can state that the change of Chern numbers for
ω = 6.0 g/h̄ is for all polarizations only induced by band
touchings of butterfly bands lying in the same Floquet zone
and not by touching of bands from different Floquet modes.

IV. TOPOLOGICAL CHARACTERIZATION

A. Chern numbers

Now we turn to the topological characterization of the
Hofstadter bands [6,24,41–43], focusing first on Chern num-
bers. The topological invariants can be defined for quantum
states with two periodic parameters. They are calculated by
an integral of the Berry curvature �F over a two-dimensional
compact surface T 2, in this case the BZ in the quasienergy
space of HF : Since the eigenstate |α, �k, t〉 with HF |α, �k, t〉 =

FIG. 7. The polarization shows in y direction. The gap shows
qualitatively a similar behavior as for circularly polarized light but
the gap is overall smaller.

FIG. 8. The polarization was set in x direction, parallel to the
�a1 bonding. The two gap maxima at γ = 2.75 eAa/h̄ and γ =
6.4 eAa/h̄ at ω = 5.0 g/h̄ for y polarization move together when
changing the polarization into the x direction.

εα |α, �k, t〉 is periodic in time we can, according to Eq. (29),
also formally write

|α, �k, t〉 =
∑

n

einωt
∣∣un

�kα

〉
, (38)

where α refers to a band index within one Floquet replica
n. The Chern number associated to a Floquet band α with a
Floquet state |un

�kα
〉 and quasienergy ε�kα

is given by

Cα = 1

2π

∫
BZ

d2k �Fα (�k) · ẑ, (39)

with the Berry curvature [6,44,45] given by

�Fα (�k) =
∑
β =α

Im

〈
un

�kα

∣∣ �∇�kHF

∣∣un
�kβ

〉 × 〈
un

�kβ

∣∣ �∇�kHF

∣∣un
�kα

〉
(ε�kα

− ε�kβ
)2

. (40)

As long as the Floquet space is not truncated, �Fα (�k) does not
depend on the Floquet mode n. The effect of a truncation of
the Floquet space will be discussed in Sec. IV B.

FIG. 9. The Chern number of the state of lowest energy of the
Hofstadter butterfly in dependence of the magnetic flux per unit cell.
The flux values are all p/q with p coprime to q < 101.
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FIG. 10. The ground-state Chern number of the Floquet-
Hofstadter spectrum: The frequency ω of the circularly polarized
light was set to 6.0 g/h̄. The black values show the case of vanishing
light intensity γ and the red values are calculated for an intensity of
1.0 eAa/h̄.

Following Goldman [46], we concentrate on the state of
lowest energy in one Floquet mode at given flux per unit
cell as indicated in Fig. 2. The Chern number is calculated
numerically by the method proposed by Fukui et al. [7].
Figure 9 reproduces the data of Ref. [46] and extends it to
a larger number of different flux values φ = p/q. The com-
putation is effectively limited by the fact that with growing
q (being coprime to p), energy bands move closer to each
other and are increasingly difficult to resolve, an effect which
is most pronounced at fluxes near zero and unity. From a
numerical perspective, the bands are degenerate, impeding the
use of the computation scheme by Fukui et al. constructed for
nondegenerate band structures.

Next, we analyze how polarized light affects the Chern
numbers of the Hofstadter butterfly. First, let us consider the
case of circularly polarized light. The basis for this analysis
is Eqs. (31) and (32). At high frequencies the Hofstadter but-
terflies of the different Floquet modes are quasienergetically
separated since the distance of the Floquet modes is governed
by the photon energy. Hence, the change of Chern numbers
is induced by band touchings within the Floquet zone, as can
be seen in Figs. 6, 7, and 8. At frequencies large compared
to the hopping energy, the butterfly spectrum has an overall
gap in a broad intensity range. For intensities considered in
this section, the topological phase transitions are all due to
band touchings within the same Floquet mode. Again, we
concentrate on the state of lowest quasienergy in the central
Floquet mode, see Fig. 3. With Eqs. (31) and (32), we were
able to reproduce several results of Mikami et al. [14] in the
limit of vanishing magnetic field strength.

As already stressed in several works [14,47,48], the distri-
bution function in a driven system is in general not an equi-
librium distribution function. Despite that, the Chern number
maintains its significance [14], keeping in mind that one needs
another topological invariant to fully characterize a driven
system [13]. We use the term ground state as the state with
lowest quasienergy of the central Floquet mode, emphasizing
that we do not touch the question of the occupation of the
Floquet modes in general. However, we assume that the

FIG. 11. The distribution of the ground state Chern number in
the presence of circularly polarized light exhibits, for intensities γ of
2.0 eAa/h̄ and 2.1 eAa/h̄, a rather different behavior as for vanishing
intensity. The plot shows flux values for q < 21.

ground state depends adiabatically on the intensity at least
in the high frequency regime. As long as the driving is far
from resonances the driving does not significantly change the
ground state and with that the distribution function. This also
requires that the driving must not induce a heating of the
system. Hence, if we only occupy the ground state of the
static system, we also assume that in the off-resonantly driven
system only the ground state is occupied.

Our Chern number computations are done in the off-
resonant frequency regime. Hence, the ground state of the
driven system undergoes the topological phase transitions pre-
sented in Figs. 10, 11, and 12. For a vanishing light parameter
γ and high frequencies, the ground-state Chern numbers are
the same as in the undriven case, see Fig. 9. In Fig. 10,
most Chern numbers coincide with the case of a vanishing
intensity. When the intensity is further increased, the ground-
state Chern number exhibits a rather different behavior. Even
small intensity changes can have a vast influence on the Chern
number [14], see Fig. 11. Since the Floquet-Hofstadter spec-
trum gets twisted in the presence of circularly polarized light
and keeps particle-hole symmetry for linearly polarized light,

FIG. 12. In the case of linear polarization with Ax = 0.0, Ay = γ ,
the distribution of the Chern number is for linearly polarized light
similarly affected as for circularly polarized light. The frequency ω

was again fixed at 6.0 g/h̄ and the intensity is governed by Eq. (35).
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it is obvious that the band structure of graphene is affected
differently for the two polarization states. The deformation of
the band structure and the associated gap closing and opening
is related to the change of Chern numbers. Hence, we also
investigate the influence of linearly polarized light on the dis-
tribution of Chern numbers. Similar to the case of circularly
polarized light, for rather small intensities only few Chern
numbers deviate from the static Chern number distribution.
An increase of the intensity leads to a significantly different
behavior, as shown in Fig. 12. For circularly polarized light,
the ground state is uniquely defined. Whereas, for linearly
polarized light this is not the case for all flux values. At flux
values of, e.g., 6/11, 6/13, or 3/17, a band crossing of the
ground state occurs. This effect can be seen at eight different
flux values for q < 21. The occurrence of the band crossing
of the ground state seems not to follow a simple rule.

B. W3 invariants

The topological invariant ν3 associated with the third ho-
motopy group of the periodic unitary maps {U�k (T )} is given
in R3 by

ν3[U�k] = 1

24π2

∫
BZ

d3k εαβγ tr
[(

U −1
�k (T )∂αU�k (T )

)
· (

U −1
�k (T )∂βU�k (T )

)(
U −1

�k (T )∂γU�k (T )
)]

. (41)

Rudner et al. [13] have devised an invariant specifically de-
signed for the characterization of periodically driven systems.
The idea is to replace in Eq. (41) one k-dimension with the
time and choose a unitary matrix Ũ�μ which is periodic in
time and topologically equivalent to a time evolution operator
U�μ[49],

W3[Ũ�μ] = 1

24π2

∫
[0,1)3

d3μεαβγ tr
[(

Ũ −1
�μ ∂αŨ�μ

)
· (

Ũ −1
�μ ∂βŨ�μ

)(
Ũ −1

�μ ∂γ Ũ�μ
)]

, (42)

where the cube [0, 1)3 is spanned by two normalized in-plane
wave vectors and the time t/T with �μ ∈ [0, 1)3. The indices
α, β, γ are given modulo 3 and ∂α ≡ ∂μα . This new invariant
is related to the lowest quasienergy gap in the central Floquet
mode. The relation between the W3 invariants of different
gaps ξn with exp(iξn) ∈ S1 around quasienergies εν is closely
related to Chern numbers Cν of appropriate bands ν. It is given
by [42]

W3[Ũ , ξb] = W3[Ũ , ξa] −
∑

ν=ν1,...,νk

C(3)
ν

∣∣∣∣
μ3≡ t

T =1

, (43)

where the bands ν1, . . . , νk are the bands one passes through
when the value ξ changes from the gap at ξ = ξa to the gap at
ξ = ξb. The Chern number is calculated by [42]

C(α)
ν = 1

2π i

∫ 1

0

∫ 1

0
dμα−1dμα+1 [εαβγ (∂β (S†∂γ S))]νν,

(44)

where C(3)
ν |μ3=1 is equivalent to Eq. (39). The columns of

the matrix S contain the eigenvectors of U�μ. Clearly, the full

computation of the invariant constructed in Ref. [13] is more
complicated [42] than for Chern numbers [7].

The calculation scheme suggested by Rudner et al. [13]
in frequency space is described in the following. To calculate
the generalized topological invariant for driven systems, one
first computes the Chern number of all bands below the in-
vestigated gap of a truncated Floquet matrix. The generalized
invariant is then given by the sum off all Chern numbers
below this gap. In Fig. 5 in Ref. [13], the lowest band of
the truncated Floquet matrix has a Chern number C0 different
from CF . The reason why that Chern number is not CF is
due to the truncation. As already shown by Shirley [50,51]
from the Fourier expansion in Eq. (38), it follows that the
corresponding eigenvector to a quasienergy ελ differs from the
eigenvector of the quasienergy ελ + h̄ω only by an index shift
of the entries and a phase φ, which one is free to choose [50],

ελ ↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

u−2
λ

u−1
λ

u0
λ

u1
λ

u2
λ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇐⇒ ελ + h̄ω ↔ eiφ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

u−3
λ

u−2
λ

u−1
λ

u0
λ

u1
λ

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (45)

where λ labels a discrete set of quantum numbers, e.g., spin or
sublattice degrees. This holds equivalently for arbitrary shifts
nh̄ω, with n ∈ Z, of the quasienergy. It shows that the Chern
number Cελ

of a band described by ελ has to be equal to the
Chern number of the shifted band:

Cελ
= Cελ+nh̄ω . (46)

This means for the numerics that if we assume that only a
finite number of eigenvector entries are different from zero,
we have to choose the truncation of the Floquet modes large
enough to achieve convergence of these. Let us assume that
we have to limit the number of Floquet modes to m to achieve
convergence of the central quasienergy ελ up to a needed
precision. If the eigenvector corresponding to ελ ± mh̄ω is
computed, the eigenvalues and eigenvectors are in general
not converged, leading to different results in the quasienergy
spectrum as well as Chern numbers. To sum up, these noncon-
verged Chern numbers might lead to an incorrect topological
characterization. Indeed, Höckendorf et al. give a counterex-
ample in Ref. [42] where the summation over Chern numbers
suggested by Rudner et al. [13] fails to give the correct W3

invariant. The authors consider a spin-1/2 rotation described
by the Hamiltonian

Hw = 2πw �f (μ1, μ2) · �σ , (47)

together with the corresponding time-evolution operator

U (�μ) = e−iHμ3 , (48)

where the μi are chosen as in Eq. (42), w ∈ Z and the
function �f is a map from the square to the unit sphere �f :
[0, 1]2 → S2. For further details, we refer to Ref. [42]. The
corresponding two bands have Chern number ±1, whereas
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W3 = 2w. Despite the fact that the Hamiltonian H is time
independent, the system exhibits a nontrivial topology when
investigating its time evolution. We are now in the position
to clarify why the summation over Chern numbers proposed
by Rudner et al. fails for this example. If we apply Floquet
theory to the Hamiltonian Eq. (47) with vanishing driving
amplitude and frequency ω = 2π/T , we create Floquet copies
identical to the undriven system. This implies that the Chern
numbers of the two bands in each Floquet zone are equal
to the Chern numbers of the undriven system, i.e., they are
±1. Therefore, summing over all Floquet copies yields a
topological invariant of zero in contrast to the correct W3

invariant of 2w. The above mapping �f (μ1, μ2) can be easily
constructed by concatenating three different mappings. The
first one is shifting and stretching the square:

�s(�μ) : [0, 1]2 → [−1, 1]2, (49)

�s(�μ) :

(
μ1

μ2

)
�→

(
2μ1 − 1
2μ2 − 1

)
. (50)

The second one is a map from a square to a circle,

�c(�μ) : [−1, 1]2 → {|�μ| � 1 : �μ ∈ R2}, (51)

�c(�μ) :

(
μ1

μ2

)
�→

⎛
⎜⎝μ1

√
1 − μ2

2
2

μ2

√
1 − μ2

1
2

⎞
⎟⎠, (52)

and the third one maps a circle to a sphere,

�b(�μ) : {| �μ| � 1 : �μ ∈ R2} → {|�μ| = 1 : �μ ∈ R3}, (53)

�b(�μ) :

(
μ1

μ2

)
�→

⎛
⎝

μ1

n sin(πn)
μ2

n sin(πn)
cos(πn)

⎞
⎠, (54)

with n =
√

μ2
1 + μ2

2 . This finally yields the sought map-
ping f :

�f (μ1, μ2) = �b(�c(�s(�μ))) . (55)

Let us now consider the case w = 1. The operator in Eq. (48)
can be interpreted as a time-evolution operator of a time-
independent Hamiltonian,

Hw=1 = 2π

T
�f (μ1, μ2) · �σ , (56)

which has, however, a trivial but periodic time evolution with
a period T = 1. Note that the eigenvector matrix � of Hw=1

allows for the transformation:

� �f (μ1, μ2) · �σ�† = σ z. (57)

Rudner et al., Appendix C in Ref. [13], made the attempt to
map all time-independent flat-band Hamiltonians onto

HP(�μ) = 2π

T
P(�μ), (58)

with P(�μ) being a projection operator. The authors were
able to show that for these class of Hamiltonians the W3-
invariant W3[U ] is equal to the Chern number of the bands
with quasienergy ε = −2π/T . One should stress that the

FIG. 13. The Chern number of the state with lowest energy of
the central Floquet zone for a flux per unit cell of p/q = 1/3 and
circularly polarized driving.

quasienergies of a Hamiltonian of the form Eq. (58) are
degenerate everywhere whereas the Chern numbers are still
defined. But there is a class of flat-band Hamiltonians which
cannot be mapped onto HP. One example is Hw=1 since the
spectra differ. Here, the mentioned relation between the W3

invariant and the Chern number fails. Furthermore, very much
as in Appendix C, one can show that the quasienergies of
the Floquet Hamiltonian corresponding to Eq. (56) are both
zero and thus degenerate everywhere. Nevertheless, the Chern
numbers are ±1 and summation over these will never lead
to the same number of edge modes as predicted by W3 =
2. This shows that the summation over Chern numbers of
the truncated Floquet Hamiltonian is not justified for every
system. Another example is discussed in Appendix C. Despite
these counterexamples, the summation over Chern numbers
over the truncated Floquet matrix and the calculation of the W3

invariant for graphene without magnetic field show a striking
accordance, see Appendix B.

To assure the correctness of the topological invariant, we
applied the algorithm proposed by Höckendorf et al. [42]
to compute numerically the W3 invariant for the Floquet-
Hofstadter spectrum at p/q = 1/3. The result is plotted
in Fig. 15. To have a comparison to the static topologi-
cal invariants, we first compute the Chern number of the
state with lowest energy of the central Floquet zone for
a flux per unit cell of p/q = 1/3 and circularly polarized
driving. The three-dimensional momentum-time BZ is dis-
cretized by 200 × 200 × 200 points together with 30 Flo-
quet replicas. The resulting Chern numbers are plotted in
Fig. 13 for different amplitudes γ and frequencies ω of
the driving field. In the left lower region of Fig. 13, in-
side the arc from (γ , ω) = (0.0 eAa/h̄, 5.1 g/h̄) to (γ , ω) =
(1.9 eAa/h̄, 2.0 g/h̄), we cannot trust the numerical values.
The reason can be understood by investigating the band
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FIG. 14. The sum over all Chern numbers below ε = 0 computed
from the truncated Floquet Hamiltonian with the same flux and
polarization as in Figs. 13 and 15.

structure. In the parameter space where h̄ω < 6.0 g, the bands
of the Floquet-Hofstadter spectrum overlap and the Chern
numbers are not well defined. With rising intensity, the de-
generacies are lifted and anticrossings occur. Moreover, there
are (γ , ω) regions where no gap between the lowest and
the second lowest exists but the bands are nowhere degenerate,
see Appendix A.

FIG. 15. The W3 invariant computed with the algorithm by Höck-
endorf et al. [42] for the Floquet-Hofstadter spectrum at p/q = 1/3.
The driving was circularly polarized.

FIG. 16. The difference between the sum over Chern numbers
and the W3 invariant. Gray regions show parameter configurations
(γ , ω) where the Chern number sum and the W3 invariant coincide.

In the last step, we apply the W3 calculation scheme fol-
lowing Ref. [13], as mentioned before. The same flux and
polarization is used as for Fig. 13. The result is plotted in
Fig. 14. In the following, we compare the results of both
W3 calculations and contrast them against the corresponding
Chern numbers.

The difference between both results for the W3 invariant is
depicted in Fig. 16. The comparison shows that apart from
zones close to topological phase transitions, the results coin-
cide. Interestingly, the Chern number itself also shows great
agreement with both the sum over the Chern numbers and
W3. This justifies once more the topological characterization
presented in Sec. IV A. Using the connection between edge
modes and the W3 invariant which has been proven in Ref.
[13], this result allows for the prediction of the number of edge
modes in this driven system.

Furthermore, we would like to stress that although the
here-presented topological characterization is different from
the one presented in Ref. [52] by Kooi et al., the Chern
numbers for a flux per unit cell of p/q = 1/3 agree with our
results up to the sign of the W3 invariants due to a different
sign choice of the driving frequency.

V. SUMMARY

In this paper, we presented an explicit and rigorous treat-
ment of the Hofstadter problem on the hexagonal lattice. One
important result is the explicit proof of the periodicity of the
Hofstadter butterfly: Depending on whether the numerator of
the flux per unit cell is even or odd, the periodicity of the
fractal spectrum is different. To understand how illumination
of graphene with both circularly and linearly polarized light
in the presence of a magnetic field will effect the fractal
spectrum, we unified the Hofstadter butterfly with the Floquet
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theory. These two polarization modes lead to clearly different
scenarios. Circularly polarized light in combination with a
magnetic field is able to lift the symmetry of the quasienergy
spectrum around zero energy, whereas linearly polarized light
is not, as shown by representative data. Furthermore, we
investigated the gap size between different Floquet modes of
the Floquet-Hofstadter spectrum.

To investigate the topological properties of this dynami-
cal system, we studied the Chern number of the state with
lowest quasienergy in the central Floquet mode for different
flux values. Limiting the computations to the high-frequency
regime, we were able to identify that the topological phase
transitions induced by the external radiation field are only
caused by gap closings and openings of butterfly bands and
not by touching of different Floquet modes. For vanishing
intensity the computed Chern numbers coincide with the
ones of the undriven system. Furthermore, we found that the
system undergoes several topological phase transitions when
tuning the flux per unit cell or the intensity. Thereby, the
distribution of the Chern numbers changes in the presence
of an oscillating electric field for both linearly and circularly
polarized light similarly. For moderate intensities, only a few
Chern numbers are different from the Chern numbers of the
static case whereas for higher intensities the distribution is
substantially altered.

Yet the appropriate invariant to look at in case of a pe-
riodically driven system is the W3 invariant. We computed
this topological indicator for the Floquet-Hofstadter spectrum
to give a comparison with the results on Chern numbers. In
the high-frequency limit, both the Chern number and the W3

invariant coincide, yielding the correct number of edge modes
appearing in a system of finite size. The latter allows for
experimental access. Finally, we were able to show agreement
with other topology studies on the Floquet-Hofstadter spec-
trum in the off-resonant regime whereas our topology analysis
of the system is valid in all driving regimes, resonant and off
resonant.

Note added. Recently, other works on the same subject
appeared, which stress the role of different regimes of the
driving frequency. [52] and other lattice types [53].
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APPENDIX A: GAPLESS NONDEGENERATE STATES

There is a global gap between two bands if the minimum
of the upper band is always greater than the maximum of the
lower band. Consider the case of two bands without a global
energy gap. It does not imply that there is a degeneracy of the
two bands. This scenario occurs for specific (γ , ω) configura-
tions of the Floquet-Hofstadter spectrum between the lowest
and second-lowest band marked as black stripes in Fig. 17.
An exemplary quasienergy band structure is shown in Fig. 18.
There is no gap between the lowest two nondegenerate bands.

FIG. 17. The W3 invariant computed with the algorithm of Höck-
endorf et al. [42] for the Floquet-Hofstadter spectrum at p/q =
1/3. The driving was circularly polarized. Parameter spaces (γ , ω)
without a gap are marked black.

APPENDIX B: W3-INVARIANT FOR GRAPHENE
WITHOUT MAGNETIC FIELD

Although there are examples where the summation over
the Chern numbers of the truncated Floquet Hamiltonian fails

FIG. 18. The quasienergy band structure for p/q = 1/3,
(γ , ω) = (2.65 eAa/h̄, 3.0 g/h̄) and kx = 0. The lowest two bands
are not degenerate but they do not have a gap in the sense that
the minimum of the second lowest band is always greater than the
maximum of the lowest band.
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FIG. 19. The sum over all Chern numbers of the truncated Flo-
quet Hamiltonian below ε = 0 for graphene with circularly polarized
driving and without magnetic field. Our data almost perfectly repro-
duce the results from Ref. [14].

to give the correct topological invariant, as shown, e.g., by
two examples in Ref. [42], the procedure gives the correct re-
sults for several models including circularly polarized driven
graphene. In the seminal work by Mikami et al. on Floquet
topological insulators [14], the authors were able to relate
topological phase transitions to effective hopping amplitudes.
Moreover, the topological phase diagram of graphene with
circularly polarized driving has been investigated. To make
direct contact to the work by Mikami [14], we have set the
discretization of the time-momentum BZ to 200 × 200 × 200
and the number of Floquet replicas to 50. Although the lowest
and topmost eigenvalues and eigenvectors of the truncated
Floquet Hamiltonian are not converged, i.e., they are different
from the index shifted eigenvectors with eigenvectors taken
from the central Floquet zone [compare Eq. (45)], they remain
relevant for the topological classification of driven graphene.
In the converged Floquet zones, the sum over all bands has to
be zero inside one specific Floquet zone [42]. For the lowest
and highest Floquet zones, this is not necessarily the case.
The deviation from the converged Chern numbers contains
the information about the difference of Chern numbers and
the W3 invariants such that the summation indeed gives the
correct topological invariant. This can be seen when com-
paring the sum over all Chern numbers of the truncated
Floquet Hamiltonian Fig. 19 with the W3 invariant Fig. 20.
The difference between the two values is plotted in Fig. 25. In
the region of small intensities γ and h̄ω < 1.5 g, they do not
agree. However, this is due to numerical instabilities of the
algorithm for the W3 invariant. To show that there is indeed
no difference between the sum over Chern numbers and W3,
we analyzed the sizes of the gaps at zero quasienergy and
−ω/2. Figure 21 shows the difference between −ω/2 and
the minimum of the lower band of the central Floquet zone.

FIG. 20. The W3 invariant coincides in reliable regions with the
sum over Chern numbers. Except for numerical unstable regions, the
Chern number sum and the W3 invariant show a striking agreement.

Comparing the regions where the −ω/2-gap is closed with
the corresponding regions where the Chern number changes,
Fig. 26, one can see that the zeros of the −ω/2-gap are
responsible for a change of Chern numbers. Whereas, the
arc in Fig. 22 starting from (γ , ω) = (0.5 eAa/h̄, 1.2 g/h̄) to
(γ , ω) = (1.0 eAa/h̄, 1.36 g/h̄), where the zero gap is closed,

FIG. 21. The size of the zone edge gap in dependence of intensity
γ and driving frequency ω. The data were calculated as distance
between the minimum of the lower band of the central Floquet zone
and −ω/2. The zero lines at the right half of the plot are also visible
as topological phase transition in Fig. 26.
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FIG. 22. The minimum of the upper band of the central Floquet
zone in dependence of intensity γ and driving frequency ω is plotted.
The zeros, and with the band touchings, can be directly mapped to a
change of the sum over Chern numbers, compare Fig. 19.

can be seen in Fig. 20 as well as in Fig. 26. In the following,
we clarify if there is a difference between the sum over
Chern number of the truncated Floquet Hamiltonian and the
W3 invariant. We calculated the gap sizes in the interval γ ∈
[0.0, 0.6] eAa/h̄ for ω = 1.2 g/h̄. The BZ is discretized by
using 3500 × 3500 points. If there would be a gap closing,
e.g., at (γ , ω) = (0.2 eAa/h̄, 1.2 g/h̄), in Fig. 20 we should
see a signature of a gap closing either in Fig. 23 or in Fig. 24.
The latter show the gap sizes in a double logarithmical plot
for the zero and the −ω/2 gap. If there would be a gap
closing, there should be a signature at − ln(γ ) ≈ 1.6 which
is not the case. This shows that the deviations between Chern
number summation and W3 can be traced back to numeri-
cal instabilities. Indeed, we were able to achieve agreement
between the results of the summation over Chern numbers
and the W3 invariant when increasing the discretization of
the time-momentum BZ for some representative points. As
an example, we investigated (γ , ω) = (0.1 eAa/h̄, 1.4 g/h̄):
An increase of the number of discretization points to 800 ×
800 × 800 is necessary to achieve convergence of the W3

algorithm and, with that agreement, with the summation
over Chern numbers. Besides numerical demanding regions,
both topological characterizations show a striking agreement,
colored with gray in Fig. 25. To our knowledge, apart from
the observation that the sum over the Chern numbers of the
truncated Floquet Hamiltonian and the W3 invariant seem to
coincide for circularly driven graphene, a proof, so far, is
missing. Remarkably, even in the cases where both the Chern
number and the W3 invariant coincide (e.g., compare (γ , ω) =
(4.0 eAa/h̄, 2.0 g/h̄) Figs. 26 and 20), not all Floquet zones
of the truncated Floquet Hamiltonian have the same Chern
numbers as the central Floquet zone, as depicted in Fig. 27.
This holds even for the off-resonant regime. Figure 28 extends

FIG. 23. 
 is the minimum of the upper band of the central
Floquet zone and γ is here understood as dimensionless intensity
γ → γ h̄/eAa. The plot shows the gap size, i.e., the difference
between the minimum of the upper band and zero, for γ = 1/520
to γ = 3/5 at fixed ω = 1.2 g/h̄. The peak at − ln(γ ) ≈ 0.7 is an
evidence for a gap closing at γ = 0.5. Whereas for − ln(0.2) ≈ 1.6,
no peak is visible, giving a hint that there is no topological phase
transition at γ = 0.2.

Fig. 27 to higher driving frequencies. However, this feature
survives for even higher driving frequencies ω ∝ 106 g/h̄.
Again, this can be understood when having a closer look at the
quasienergy band structure. In the far off-resonant regime, the
gap between the two bands of graphene is very small. Hence,
even when the Floquet zones are far away from each other, a
small coupling is enough to close and reopen the small gap of
some Floquet zones.

FIG. 24. 
 is the distance between the minimum of the lower
band of the central Floquet zone and −ω/2 and, as in Fig. 23, γ is
again dimensionless. No peak is visible in this plot, where γ and ω

are in the same parameter range as in Fig. 23.
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FIG. 25. Difference between the W3 invariant and the sum over
Chern numbers.

APPENDIX C: W3 INVARIANT FOR SPIN-1/2 ROTATIONS

Besides the example given in the main text, there is a
second case given in Ref. [42], where the summation over
the truncated Floquet Hamiltonian does not give the correct
topological invariant in the driven case. In this case, the time-
evolution operator reads

U (�μ) = e−i2πw�g(�μ)·�σ , (C1)

FIG. 26. The Chern number of the lower band of graphene of the
central Floquet zone. The driving is again circularly polarized. One
can see the difference to the W3-invariant in Fig. 20.

FIG. 27. The innermost Floquet zone having different Chern
numbers from that of the central Floquet zone. The counting of
the Floquet zones starts here with the lowest mode, e.g., for
(γ , ω) = (4.0 eAa/h̄, 1.6 g/h̄) the (−50+4)th Floquet zone has dif-
ferent Chern numbers from the Chern numbers of the central Floquet
zone.

where �g(�μ) is a bijective map from the cube [0, 1]3 to the
unit ball | �μ| � 1 that maps the surface (center) of the cube
to the surface (center) of the unit ball [42]. Let us set w = 1 to
calculate the W3-invariant for one period. The mapping �g(�μ)

FIG. 28. Even in the far off-resonant regime, not all Chern
numbers of the Floquet zones of the truncated Floquet Hamiltonian
agree with the Chern numbers of the central Floquet zone.
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can be constructed by applying two mappings. The first one is
shifting the unit cube and stretching it,

�s(�μ) : [0, 1]3 → [−1, 1]3, (C2)

�s(�μ) :

⎛
⎝x

y
z

⎞
⎠ �→

⎛
⎝2x − 1

2y − 1
2z − 1

⎞
⎠, (C3)

and the second one is the mapping to the unit ball:

�c(�μ) : [−1, 1]3 → {|�μ| � 1 : �μ ∈ R3}, (C4)

�c(�μ) :

⎛
⎝x

y
z

⎞
⎠ �→

⎛
⎜⎜⎜⎜⎝

x
√

1 − y2

2 − z2
(

1
2 − y2

3

)
y
√

1 − z2

2 − x2
(

1
2 − z2

3

)
z
√

1 − x2

2 − y2
(

1
2 − x2

3

)

⎞
⎟⎟⎟⎟⎠ . (C5)

By concatenation, we yield

�g(�μ) = �c
(
�s(�μ)

)
. (C6)

With the explicit form given for the mapping from the cube
to the ball, we can calculate the eigenvalues of the operator

�g(�μ) · �σ , which are

λ± = ±
√

1 + 64xyz(x − 1)(y − 1)(z − 1) . (C7)

By identifying x ≡ kx, y ≡ ky, and z ≡ t/T , the time-
dependent Hamiltonian can be reconstructed with

H (t ) = ih̄
(
∂tU (t )

)
U †(t ). (C8)

Having H (t ), we can calculate the corresponding Floquet
Hamiltonian which has a driving period of ω = 2π since we
have chosen w = 1. But we know that the quasienergies ε± of
the Floquet Hamiltonian are equal to the eigenvalues of U (�μ)
evaluated after one period, i.e.,

ε± = i ln e±i2πλ± |t/T =1, (C9)

= ±2π, (C10)

and by shifting the quasienergies into the central Floquet zone
we get two degenerate bands with zero quasienergy:

ε± = 0. (C11)

The Floquet spectrum is everywhere degenerate but the Chern
numbers are well defined. However, the summation over
Chern numbers of the truncated Floquet Hamiltonian doesn’t
give the correct topological invariant, which in this case is
W3 = 2.
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Us=1(�k, t ) = Ũ (�k, t ). 3) Ũ (�k, T ) has to maintain a gap around
εs with εs=0 = ε, εs=1 = π/T and a smooth interpolation from
s = 0 to s = 1.

[50] J. H. Shirley, Interaction of a quantum system with a strong os-
cillating field, Ph.D. thesis, California Institute of Technology,
1963.

[51] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[52] S. H. Kooi, A. Quelle, W. Beugeling, and C. Morais Smith,

Phys. Rev. B 98, 115124 (2018).
[53] L. Du, Q. Chen, A. D. Barr, A. R. Barr, and G. A. Fiete,

Phys. Rev. B 98, 245145 (2018).

165411-15

https://doi.org/10.1103/PhysRevA.91.063628
https://doi.org/10.1103/PhysRevA.91.063628
https://doi.org/10.1103/PhysRevA.91.063628
https://doi.org/10.1103/PhysRevA.91.063628
https://doi.org/10.1103/PhysRevA.95.063628
https://doi.org/10.1103/PhysRevA.95.063628
https://doi.org/10.1103/PhysRevA.95.063628
https://doi.org/10.1103/PhysRevA.95.063628
https://doi.org/10.1103/PhysRevLett.118.216801
https://doi.org/10.1103/PhysRevLett.118.216801
https://doi.org/10.1103/PhysRevLett.118.216801
https://doi.org/10.1103/PhysRevLett.118.216801
https://doi.org/10.1038/nature12186
https://doi.org/10.1038/nature12186
https://doi.org/10.1038/nature12186
https://doi.org/10.1038/nature12186
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1016/j.aop.2018.10.005
https://doi.org/10.1016/j.aop.2018.10.005
https://doi.org/10.1016/j.aop.2018.10.005
https://doi.org/10.1016/j.aop.2018.10.005
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1103/PhysRevB.97.045140
https://doi.org/10.1088/1751-8121/aa7591
https://doi.org/10.1088/1751-8121/aa7591
https://doi.org/10.1088/1751-8121/aa7591
https://doi.org/10.1088/1751-8121/aa7591
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1088/0953-4075/42/5/055302
https://doi.org/10.1088/0953-4075/42/5/055302
https://doi.org/10.1088/0953-4075/42/5/055302
https://doi.org/10.1088/0953-4075/42/5/055302
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevA.96.053602
https://doi.org/10.1103/PhysRevA.96.053602
https://doi.org/10.1103/PhysRevA.96.053602
https://doi.org/10.1103/PhysRevA.96.053602
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRevB.98.115124
https://doi.org/10.1103/PhysRevB.98.115124
https://doi.org/10.1103/PhysRevB.98.115124
https://doi.org/10.1103/PhysRevB.98.115124
https://doi.org/10.1103/PhysRevB.98.245145
https://doi.org/10.1103/PhysRevB.98.245145
https://doi.org/10.1103/PhysRevB.98.245145
https://doi.org/10.1103/PhysRevB.98.245145

