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We study charge transport through N-lead junctions (N � 3) of spinless Luttinger-liquid wires with bias
voltages applied to Fermi-liquid reservoirs. In particular, we consider a Y junction, which is a setup characteristic
of the tunneling experiment. In this setup, the strength of electron-electron interactions in one of the arms
(“tunneling tip”) is different from that in the other two arms (which form together the “main wire”). For a generic
single-particle S matrix of the junction, we find that the bias voltage V applied, even symmetrically, to the main
wire generates a current proportional to |V | in the tip wire. We identify two mechanisms of this nonequilibrium-
induced “emergent chirality” in a setup characterized by the time-reversal- and parity-symmetric Hamiltonian of
the junction. These are (i) the emergence of an effective magnetic flux, which breaks time-reversal symmetry, and
(ii) the emergence of parity-breaking asymmetry of the setup, both proportional to the interaction strength and the
sign of the voltage. The current in the tip wire generated by mechanism (i) is reminiscent of the Hall current in the
linear response of a system the Hamiltonian of which breaks time-reversal symmetry; however, in the absence of
any magnetic field or a local magnetic moment. Similarly, mechanism (ii) can be thought of as an emergent “pho-
togalvanic effect,” however, in the presence of inversion symmetry within the main wire. The nonequilibrium
chirality implies a rectification of the current in the tip when the main wire is biased by ac voltage.

DOI: 10.1103/PhysRevB.100.165410

I. INTRODUCTION

The transport properties of electric circuits built out of
single-channel interconnected quantum wires are strongly
affected by the peculiar charge screening at the junctions,
which leads to critical behavior of the electric current as
a function of the wire length, temperature, or bias voltage
[1–10]. The linear-response properties of N-wire junctions
within the Tomonaga-Luttinger-liquid (TLL) model [11–13],
which is a powerful formalism for studying interacting elec-
trons in one dimension, are well understood, possibly with the
exception [7,14] of the limit of strong attraction for N � 3.
On the contrary, out-of-equilibrium transport through N-lead
junctions is still a challenging problem. While for two-lead
junctions the scaling of the conductance with bias voltage is
essentially carried over from the linear-response scaling with
temperature or length [1,15–19], such a simple connection
cannot be made for multilead junctions (N � 3) [20,21].

Much work devoted to TLL junctions has been relying on
the bosonization method, i.e., a representation of the system
in terms of density excitations. This leaves the question of how
the nonequilibrium fermionic quasiparticle excitations from
the charge reservoirs are transmitted through the junction, and
the related question of the determination of the contact resis-
tance, not straightforwardly answered (see Refs. [16,22–28]
for N = 2; for recipes for how to incorporate the contact re-
sistance for N � 3, see Refs. [6,7,10]). An alternative method,
based on a purely fermionic representation [3,5,8,9,29,30],
including the renormalization-group treatment of strong inter-
actions [8,29,30], avoids this problem.

In this paper, we consider charge transport through a mul-
tilead junction connecting TLL wires in the nonlinear regime.
Rather than customarily focusing on the scale-dependent
(“logarithmic”) interaction-induced contributions to the cur-
rents, which represent virtual excitation processes (screening),
we consider the complementary real processes. Our purpose
here is to demonstrate that the latter give rise to a quite unusual
current response normally encountered in the presence of
a magnetic field, or certain geometric asymmetry for that
matter, in the system.

Perhaps most surprisingly, we find that in a symmetric
Y-junction geometry, i.e., the one with the tip wire attached
symmetrically to the main wire, and for the main wire biased
symmetrically with respect to the grounded tip (Fig. 1), a
current through the main wire drives a “chiral” current in the
tip wire. We emphasize that in the absence of interactions,
and even when the interaction-induced renormalization of the
junction parameters is taken into account, the current in the
tip wire is exactly zero under these conditions.

Why is the current induced in the tip wire by real inter-
action processes chiral? This is because its direction does
not depend on the direction of the current in the main wire
[31]. The direction of the chiral current only depends on
the “sign of interaction” (repulsive vs attractive) in the main
wire and the properties of the S matrix that characterizes
the junction in the noninteracting limit. Formulated in more
general terms, the bias voltage applied to the main wire breaks
parity and/or time-reversal symmetries of the differential
conductance matrix (in space of the reservoir indices), even
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FIG. 1. Current in the main wire (blue) connected symmetrically
(“left vs right”) to the tip wire (red) and biased symmetrically with
respect to it (grounded tip wire with voltages ±V/2 applied to
the main-wire terminals) generates a chiral current Jch in the tip
wire, proportional to the modulus of the bias voltage |V | (at zero
temperature) and the strength of electron-electron interaction α in
the main wire.

if these are preserved at equilibrium. Each of the correspond-
ing interaction-induced terms in the conductance matrix is
proportional, at zero temperature, to the sign of one of the
voltage differences. That is, this “emergent chirality” is an
essentially nonequilibrium phenomenon, nonexistent in the
linear-response limit.

As a matter of fact, the combined effect of the bias voltage
and interactions on the conductance is equivalent to that of a
(local) magnetic flux and/or dipolelike electric field added to
the noninteracting junction, which break, respectively, time-
reversal and parity symmetries. For the Y junction, this leads
to the emergence of the off-diagonal elements of the 2 × 2
matrix of the “fundamental” conductances [20,32]. Specifi-
cally, the antisymmetric and symmetric off-diagonal elements
describe an effective Hall and “photogalvanic” (broadly un-
derstood, e.g., in the spirit of Ref. [33]) response, respectively
[34].

The nonequilibrium symmetry breaking we discuss here
also implies a rectification [35] of (a part of) the current in
the tip wire when the main wire is biased by ac voltage.
In particular, in the symmetric setup of Fig. 1, when the
chiral current is the only current in the tip wire, the junction
performs as an ideal “full-wave rectifier” which rectifies a
sinusoidal driving of the main wire by generating a dc current
and a double-frequency current, with equal amplitudes, in the
tip wire.

Physics behind the emergent chirality is most clearly eluci-
dated by looking at scattering of electrons off nonequilibrium
Friedel oscillations of the electron density around the junc-
tion. As already mentioned above, the nonequilibrium break-
ing of time-reversal and parity symmetries that we consider
in this paper comes from real interaction-induced processes,
as opposed to virtual processes. We formalize our approach
to studying the real processes within two complementary
frameworks: by directly calculating the currents produced by
scattering off Friedel oscillations and by calculating them
within the Keldysh formalism.

The crucial ingredient of our approach to the nonequilib-
rium problem is the recognition of a key difference between

the real and virtual processes from the point of view of sym-
metry which includes chirality. Specifically, let the junction
be time-reversal and parity symmetric in the noninteracting
limit. In the linear response, taking the renormalization of the
junction due to virtual processes into account leaves these
symmetries intact. At nonequilibrium, however, the renor-
malization generically breaks both time-reversal and parity
symmetries [20], similarly, in this respect, to the effect of
real processes considered here. What makes the concept of
emergent chirality precise is that the breaking of time-reversal
and parity symmetries in this phenomenon is inherently linked
to the chirality of the current. This is in stark contrast to
virtual processes for which all currents change their signs,
and only signs, when the polarity of all voltages is changed
to the opposite. The current in wire 3 in Fig. 1 arises precisely
because it breaks time-reversal and/or parity symmetries and
is chiral.

The paper is organized as follows. In Sec. II, we formulate
the model. In Sec. III, we derive the interaction-induced
corrections to the S matrix for the Y junction and the resulting
currents to first order in interaction in terms of scattering off
nonequilibrium Friedel oscillations. In Sec. IV, we calculate
the currents in the N-lead junction to first order in interac-
tion within the Keldysh technique. In Sec. V, we address
the symmetry properties of the conductance matrix in the
nonlinear response. In Sec. VI, we discuss the TLL renor-
malization of the parameters of the junction in the context
of emergent chirality. In Sec. VII, we analyze the connection
of the interaction-induced chiral current to the currents in a
noninteracting junction with broken symmetries, in particular,
to the Hall current induced by a magnetic flux threading the
noninteracting junction. Section VIII summarizes the results.

II. MODEL

We consider a junction of N TLL wires labeled by j =
1, 2, . . . , N , each connected to a reservoir of electrons char-
acterized by a fermionic distribution function f j (ε), where
ε is the energy of electrons emitted from reservoir j. For
the most part of the paper, we focus on the case of thermal
reservoirs characterized by distinct chemical potentials μ j

and the same temperature T , i.e., by f j (ε) = 1/{exp[(ε −
μ j )/T ] + 1}. This corresponds to the Büttiker-Landauer for-
malism with ideal terminals, defined as absorbing anything
incident on them and emitting electrons with the equilibrium
distribution functions that are independent of the state of the
system connected to the terminals.

We use a fermionic representation for the scattering prob-
lem. The electronic states in each wire are separated into
incoming and outgoing components, labeled by the chiral-
ity index η j = ±, with the “right-moving” waves (η j = +)
running away from the junction. The coordinate x in each of
the wires varies from x = 0 to x = L, where L is the length
of the wire from the junction to the reservoir. Assuming a
linearized dispersion of spinless (spin-polarized) electrons,
the Hamiltonian in wire j reads as (h̄ = 1)

Hj =
∑
η j=±

∫ L

0
dx v j (−iη j�

†
η j

∂x�η j + πα jnη j n−η j ). (1)
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Here, nη j = �†
η j

�η j is the chiral density, v j > 0 is the electron
velocity (corrected by the interaction between electrons of
the same chirality), and α j characterizes the strength of the
(short-ranged) interaction, given by the difference of forward-
and backward-scattering Fourier components of the interac-
tion potential. For simplicity, we assume equal Fermi veloci-
ties v j = v in all wires (but allow for the difference between
α j for different j). The wires are connected to each other at
the origin by a symmetric single-particle S matrix S j j′ .

It is worth emphasizing that the above model for the wires
and their junction, assuming that the S matrix is symmetric,
respects time-reversal symmetry on the Hamiltonian level,
which translates into the property of the conductance matrix
being symmetric in the linear-response limit. Time-reversal
symmetry in the conductance matrix is only broken, then, in
the nonlinear response, as was already mentioned in Sec. I. If
we assume that the Hamiltonians (1) for different j and the
S matrix at the junction possess, additionally, 1 ↔ 2 parity
symmetry, this symmetry in the conductance matrix will also
only be violated beyond the linear response, similarly to time-
reversal symmetry.

III. TRIPLE JUNCTION OUT OF EQUILIBRIUM:
EMERGENT CHIRALITY

We begin by considering a symmetric Y junction (also
referred to as a triple junction) consisting of the main wire
(leads 1,2) and the tunneling tip (lead 3). The S matrix for this
setup is given by

Ŝ =
⎛⎝r t t3

t r t3
t3 t3 r3

⎞⎠ (2)

in the basis of terminals 1,2,3. Here, r and t denote the
reflection and transmission amplitudes of the junction within
the main wire, respectively, and r3 and t3 are the reflection
and transmission amplitudes for the tip. Time-reversal sym-
metry means that the S matrix is symmetric (in line with the
comment at the end of Sec. II) and 1 ↔ 2 parity symmetry
means that, in addition, S13 = S23. The scattering amplitudes
in Eq. (2) can be expressed in terms of three angles θ , ψ , and
γ (up to an unobservable global phase) as

r = 1

2
(cos θ + e−iψ )eiγ , r3 = cos θe−iγ ,

t = 1

2
(cos θ − e−iψ )eiγ , t3 = i√

2
sin θ. (3)

The phase γ drops out from the conductance matrix of the
noninteracting junction and does not affect the interaction-
induced renormalization of the other two phases [32]. As will
be shown below, γ also drops out from the nonequilibrium
chiral current. It is worth noting that the angle ψ is zero in the
model of a local tunneling tip (lead 3 connected to the main
wire at a single point). As we will see, the nonequilibrium-
induced chirality is inherently related to ψ �= 0.

In Secs. III A and III B, we start with the case in which
the interaction strength is the same in half-wires 1 and 2,
i.e., along the main wire, α1 = α2 = α, whereas the tip is
noninteracting, α3 = 0. Our prime goal here is to calculate the

(a) (b) (c)

FIG. 2. Three types of processes contributing to the current J3

in the tip. Two interfering waves in each of the processes are
shown by blue (“bare”) and red (“interacting”). The red dots denote
backscattering off the Friedel oscillations within the main wire. Each
process is complemented by its mirror (left-right) image.

current in wire 3, J3, in a way that is more transparent, both
physically and mathematically, than the Keldysh formalism
presented later in Sec. IV. As mentioned in Sec. I, this is
achieved by studying scattering off nonequilibrium Friedel
oscillations. We show in Sec. III B, to leading order in α, that
the current J3 is even in the voltage V applied symmetrically
to the main wire, with J3 ∝ α|V | for zero temperature. In
Sec. III C, we generalize the approach of Secs. III A and III B
to allow for different α j in different wires and for an arbitrary
distribution of voltages.

A. Scattering off nonequilibrium Friedel oscillations

In the spirit of Ref. [3], we first account for interaction in
the main wire perturbatively through the inclusion of addi-
tional scattering off Friedel oscillations around the junction.
This process involves the Hartree interaction potential char-
acterized by the backscattering (Hartree) interaction constant
αH . The total (Hartree plus exchange) interaction-induced
correction to the S matrix (2) is obtainable by the replacement
αH → −α in the Hartree correction.

Friedel oscillations in the main wire give rise to the
quantum interference of scattered waves in three types of
scattering processes denoted as (a), (b), and (c) in Fig. 2.
Importantly, the Friedel oscillations in wires 1 and 2 are
created by electrons supplied by their “own” terminals 1 and
2, respectively, being governed by the distribution functions
f1,2 in the corresponding reservoirs. In particular, for μ1 �=
μ2, the Friedel oscillations to the left and to the right of the
junction have different periods, which will lead to a peculiar
behavior of the currents.

It is convenient to change x → −x in wire 1, so that x
varies from −∞ to +∞ in the infinite main wire 1 + 2 [in
Sec. III, we take the limit L → ∞, with L from Eq. (1), from
the very beginning]. It is also convenient to count the energies
of electrons from the common bottom for all wires. The oscil-
latory part of the Hartree potential in the main wire reads as

UH (x) = αH 2 Re
∫ ∞

0

dε′

2π
e−2iε′x/v ×

{
r f1(ε′), x < 0

r∗ f2(ε′), x > 0.
(4)

In process (a), the wave emitted from terminal 1 at energy ε

is first transmitted through the junction, with the amplitude t ,
into wire 2. Next, it is backscattered off the Friedel oscillation
[red dot in Fig. 2(a)] with the reflection amplitude determined
by the matrix element of the potential UH (x) [Eq. (4)]. The
Friedel oscillation for x > 0 is produced by electrons that are
emitted from terminal 2 with the distribution function f2(ε′)
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and then reflected from the junction with the amplitude r∗.
Finally, the wave leaves the main wire and escapes into wire
3 with the amplitude t3. The corresponding correction to the
transmission amplitude t3 at energy ε is given by

δt a
3 (ε) = αH

2
r∗tt3

∫ ∞

0
dε′ f2(ε′)

1

ε − ε′ + i0
. (5)

The energy denominator in Eq. (5) appears as the result of
the integration over the position of the point at which the
scattering off the Friedel oscillation occurs.

The contribution of process (b) to the transmission am-
plitude t3 is obtainable from Eq. (5) by changing t → r and
f2 → f1:

δt b
3 (ε) = αH

2
r∗rt3

∫ ∞

0
dε′ f1(ε′)

1

ε − ε′ + i0
. (6)

Indeed, interaction-induced scattering at x < 0 requires reflec-
tion from the junction with the amplitude r while the Friedel
oscillation in wire 1 is produced by electrons emitted from
terminal 1 with the distribution function f1(ε′).

Similarly, the contribution of process (c), which is scat-
tering of the wave emitted from terminal 3 off the Friedel
oscillation in wire 2, is obtainable from Eq. (5) by changing
t → t3:

δrc
3(ε) = αH

2
r∗t3t3

∫ ∞

0
dε′ f2(ε′)

1

ε − ε′ + i0
. (7)

Finally, the contributions of the right-left “mirror images” of
processes (a), (b) to δt3(ε) and process (c) to δr3(ε) are obtain-
able from Eqs. (5), (6), and (7), respectively, by exchanging
f1 ↔ f2.

The principal-value integrals over energy in Eqs. (5)–(7)
produce a logarithmically singular correction to the S matrix,
which can be further accounted for by a renormalization-
group summation [9,20]. This gives rise to the currents that
are odd in the voltages. Remarkably, it is the pole contribution
to the integrals (5)–(7) that, while not producing singular
corrections to the scattering amplitudes, leads to an even-in-
voltage current, the emergence of which is the main prediction
of this work.

B. Chiral current

To leading order in the interaction-induced scattering, the
correction to the charge current of noninteracting electrons
(e > 0)

J (0)
3 = −e

∫ ∞

0

dε

2π
{[ f1(ε) + f2(ε) ]|t3(ε)|2 + f3(ε)(|r3|2−1)}

(8)

in wire 3 is given by

δJ3 = −e 2 Re
∫ ∞

0

dε

2π

{
f1(ε)t∗

3

[
δt a

3 (ε) + δt b
3 (ε)

]
+ f3(ε)r∗

3δr3(ε)
} + ( f1 ↔ f2), (9)

where the exchange f1 ↔ f2 should be performed every-
where, both in the factor in Eq. (9) and in Eqs. (5), (6), and
(7) for the corrections to the scattering amplitudes. Note that
only the distribution functions supplied by the terminals enter
the expression for the current. This not only concerns the

explicit factor in Eq. (9) but also the corrections t3 and r3

determined by the Friedel oscillations. In Eqs. (8) and (9), and
everywhere below, for each of wires 1,2,3, the charge currents
are defined as positive when running in the direction away
from the junction.

We now focus on the simplest and perhaps most interesting
case when the main wire is biased symmetrically (Fig. 1):
μ1 − μ3 = −V/2, μ2 − μ3 = V/2, and μ3 = � with an arbi-
trary � counted from the band bottom. According to Eq. (8),
in the absence of interaction, α = 0, the current in wire 3
is zero for this distribution of voltages. It follows from the
structure of Eq. (9) that, under the same conditions, δJ3 (and
hence the total current in the presence of interaction) is an
even function of V .

It is convenient to express the current in terms of the
integrals

Ikl =
∫ ∞

0

dε

2π
fk (ε)

∫ ∞

0
dε′ fl (ε

′)
1

ε − ε′ + i0
. (10)

Including the Fock contribution, as discussed above, by re-
placing αH → −α, we write

J3 = eα Re{|t3|2r∗t (I12 + I21) + |t3|2|r|2(I11 + I22)

+ t2
3 r∗

3 r∗(I32 + I31)}. (11)

By exchanging ε ↔ ε′, the principal values of the integrals I11

and I22 vanish, p.v.{I11} = p.v.{I22} = 0. Thus, process (b) and
its mirror process (I11 and I22, respectively) do not contribute
to J3. The principal values of the integrals I12 and I21 vanish
in the combination p.v.{I12 + I21} = 0. The principal value of
the combination I32 + I31 does not vanish, but is small in 1/�.
Thus, in the limit {V, T }/� → 0, the current J3 is entirely
determined by the pole contributions to Ikl .

For clarity, in the remainder of Sec. III B, we focus on the
zero-temperature case, with

ImI12 = ImI21 = −1

2

∫ ∞

0
dε f1(ε) f2(ε) = −1

2

(
� − |V |

2

)
,

Im{I32 + I31} = −1

2

∫ ∞

0
dε f3(ε)[ f1(ε) + f2(ε)]

=−1

2

(
2� − |V |

2

)
. (12)

Substituting these results into Eq. (11), we observe that the
terms proportional to � (equilibrium current) cancel out
because of the unitarity of the S matrix [specifically, the
cancellation can be seen by multiplying the unitarity condition
t∗
3 t + t∗

3 r + r∗
3 t3 = 0 by t3r∗ and taking the imaginary part

of the product, which gives Im{|t3|2tr∗ + t2
3 r∗

3 r∗} = 0]. The
nonequilibrium current is, however, finite and proportional to
|V |:

J3 = −eα|V |
4

Im
{
2|t3|2tr∗ + t2

3 r∗
3 r∗}, (13)

where, by unitarity, the contribution of process (a) and its
mirror process (combined they give the first term in the
brackets) is (−2) times the contribution of process (c) and its
mirror process (the second term), i.e.,

J3 = −eα|V |
4

Im{|t3|2tr∗}. (14)
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Using the parametrization (3), J3 is expressed in terms of the
angles θ and ψ as

J3 = −eα|V |
16

sin2 θ cos θ sin ψ. (15)

Note that, as already mentioned at the beginning of Sec. III,
the phase γ [Eq. (3)] does not enter the induced current in
wire 3. Equation (15) shows that J3 is zero for the decoupled
(t3 = 0, i.e., θ = 0 or π for arbitrary ψ) or perfectly absorbing
(r3 = 0, i.e., θ = π/2 or 3π/2 for arbitrary ψ) main wire, or
pointlike coupling between the main wire and the tip (ψ = 0).

The “picture” of elastic scattering off Friedel oscillations
is particularly instructive in that it clearly demonstrates the
meaning of the energy integration in Eqs. (5), (6), and (7)
for the corrections to the scattering amplitudes with the
biased distribution functions. Taking the pole terms in the
interaction-induced scattering amplitudes, which produced
the current in Eq. (15), is a hallmark of real processes, as
opposed to screening. The latter involves integration over the
energies of virtual excitations and results in the renormaliza-
tion of the scattering amplitudes. The peculiarity of J3 for the
symmetric distribution of voltages specified above Eq. (10)
is that the principal-value terms in the scattering amplitudes
cancel out, so that the interaction-induced current is solely
determined by the pole terms.

C. Interaction-modified S matrix and the currents

The chiral current is thus seen to come from elastic scatter-
ing off Friedel oscillations, which can be formalized in terms
of the “pole-related” correction δS(p)

jk (ε) to the single-particle
S matrix at energy ε. Extending the calculation in Sec. III B
to arbitrary α1,2,3, we also see that α j appears only in the
combination α j f j (ε). Specifically,

δŜ(p)(ε) = i

2
πα1 f1(ε)

⎛⎜⎝|r|2r |r|2t |r|2t3
|r|2t t2r∗ tr∗t3
|r|2t3 tr∗t3 t2

3 r∗

⎞⎟⎠

+ i

2
πα2 f2(ε)

⎛⎜⎝t2r∗ |r|2t tr∗t3
|r|2t |r|2r |r|2t3
tr∗t3 |r|2t3 t2

3 r∗

⎞⎟⎠

+ i

2
πα3 f3(ε)

⎛⎜⎝t2
3 r∗

3 t2
3 r∗

3 |r3|2t3
t2
3 r∗

3 t2
3 r∗

3 |r3|2t3
|r3|2t3 |r3|2t3 |r3|2r3

⎞⎟⎠. (16)

We emphasize that the S matrix for given ε retains its time-
reversal-symmetric form for arbitrary f1,2,3(ε). At the same
time, 1 ↔ 2 parity symmetry of the S matrix is only preserved
if α1 f1(ε) = α2 f2(ε).

The pole-related O(α j ) correction to the noninteracting
currents J (0)

j is given in terms of δŜ(p)(ε) by

δJj = −e
∫ ∞

0

dε

2π

∑
k

A jk (ε) fk (ε), (17)

where

Ajk (ε) = 2 Re
{
S∗

jkδS(p)
jk (ε)

}
. (18)

From Eqs. (2) and (16), we have for the matrix Â(ε):

Â(ε) = π

4
sin2 θ cos θ sin ψ

×

⎡⎢⎣α1 f1(ε)

⎛⎜⎝0 0 0

0 1 −1

0 −1 1

⎞⎟⎠+ α2 f2(ε)

⎛⎜⎝ 1 0 −1

0 0 0

−1 0 1

⎞⎟⎠

+α3 f3(ε)

⎛⎜⎝ 1 −1 0

−1 1 0

0 0 0

⎞⎟⎠
⎤⎥⎦. (19)

Despite the somewhat cumbersome form of Eq. (16), all
the entries to the matrix Â(ε) are proportional to the single
parameter

A = 1
4 sin2 θ cos θ sin ψ, (20)

already encountered in Eq. (15). The matrix Â(ε) is still time-
reversal symmetric, similarly to δŜ(p)(ε) [Eq. (16)]. It is also
worth remarking that the product αl fl appears in the matrix
elements Ajk (ε) with j, k �= l . This prevents the emergence of
terms with f 2

l (ε) in the current, as it should be.
Substituting Eq. (19) in Eq. (17), we obtain⎛⎝δJ1

δJ2

δJ3

⎞⎠ = e

2
A

×

⎡⎢⎣α2(〈 f2 f3〉 − 〈 f1 f2〉) + α3(〈 f2 f3〉 − 〈 f1 f3〉)

α3(〈 f1 f3〉 − 〈 f2 f3〉) + α1(〈 f1 f3〉 − 〈 f1 f2〉)

α1(〈 f1 f2〉 − 〈 f1 f3〉) + α2(〈 f1 f2〉 − 〈 f2 f3〉)

⎤⎥⎦, (21)

where

〈 f j fk〉 =
∫ ∞

0
dε f j (ε) fk (ε). (22)

Note that δJj does not depend on α j ; in particular, the current
in the tip wire only depends on the interactions in the main
wire.

For T = 0, the average in Eq. (22) is written as

〈 f j fk〉 = min{μ j, μk} = 1
2 (μ j + μk − |μ j − μk|). (23)

The (differential) conductance matrix δĜ, which relates δJ1,2,3

and μ1,2,3 by means of δGjk = e ∂δJj/∂μk , is then repre-
sentable as a sum of two terms:

δĜ = Ĝreg + Ĝch, (24)

where the “regular” part Ĝreg does not depend on the bias
voltages and the chiral part Ĝch depends on their signs (and,
for T = 0, on their signs only). We have

Ĝreg = −e2

4
A

⎛⎝α2 + α3 −α3 −α2

−α3 α1 + α3 −α1

−α2 −α1 α1 + α2

⎞⎠ (25)
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and

Ĝch = e2

4
A

⎡⎣ α2s12 − α3s31 −α2(s12 + s23) − α3s23 α2s23 + α3(s23 + s31)
α1(s12 + s31) + α3s31 −α1s12 + α3s23 −α1s31 − α3(s23 + s31)

−α1(s12 + s31) − α2s12 α1s12 + α2(s12 + s23) α1s31 − α2s23

⎤⎦, (26)

where s jk = sgn(μ j − μk ). Importantly, while Ĝreg remains
symmetric, i.e., respects time-reversal symmetry, this is gener-
ically not the case for Ĝch. Nor does Ĝch maintain 1 ↔ 2
parity symmetry even for α1 = α2, again, in contrast to Ĝreg.
Breaking of time-reversal symmetry in the chiral part of the
conductance matrix is in contrast to its maintenance in the S
matrix at given ε [Eq. (16)].

One of the remarkable properties of the sum of the matrices
Ĝreg and Ĝch is that the current δJi does not depend on the
largest of the chemical potentials μ1,2,3, i.e., only depends
on the difference of the two smallest ones. A corollary is
that δJi = 0 when the two smallest chemical potentials are
degenerate.

Another point to notice is that the conductance matrix Ĝ
in general, and Ĝch in particular, is characterized by redun-
dancy because it obeys two constraints:

∑
j G jk = 0 (charge

conservation, or Kirchhoff’s current law for that matter) and∑
k Gjk = 0 (invariance under an arbitrary shift of the refer-

ence point for the chemical potentials, or Kirchhoff’s voltage
law). With these constraints, the most generic structure of the
conductance matrix for a Y junction is parametrized by three
constants ξ1,2,3:

Ĝ ∝
⎛⎝ 1 −ξ1 ξ1 − 1

−ξ2 ξ3 ξ2 − ξ3

ξ2 − 1 ξ1 − ξ3 1 − ξ1 − ξ2 + ξ3

⎞⎠, (27)

up to a common multiplier. The difference between ξ1 and
ξ2 signifies broken time-reversal symmetry. For ξ1 = ξ2, the
difference between ξ3 and 1 breaks 1 ↔ 2 parity and the
difference between ξ1 and 1

2 breaks 2 ↔ 3 parity. Equation
(27) thus shows that no symmetry that can possibly be bro-
ken is left intact, for a generic distribution of the chemical
potentials μ1,2,3 and a generic set of the interaction constants
α1,2,3, in Ĝch, despite the noninteracting S matrix from Eq. (2)
being highly symmetric. We will further discuss the symmetry
properties of the conductance matrix from the point of view of
emergent chirality in Sec. V.

IV. EMERGENT CHIRALITY FROM THE
KELDYSH FORMALISM

Having clarified the origin of the chiral current in a Y
junction in terms of the interaction-induced corrections to the
single-particle S matrix, we proceed with the analysis of the
general case of N-lead TLL junctions within the fermionic
Keldysh formalism.

A. Fermionic Keldysh technique for an N-lead junction

In the absence of interaction, the net current in wire j can
be written as the difference of the “in” and “out” currents,

J (0)
j = − e

2

∫
dε

2π

∑
k

(δ jk − |S jk|2)hk (ε), (28)

with the partial contribution of wire l weighted with the
“Keldysh function” hk (ε) = 1 − 2 fk (ε) [cf. Eq. (8)]. In the
case of thermal reservoirs at temperature T , on which we
concentrate in this paper,

hk (ε) = tanh
ε − μk

2T
. (29)

We now derive the contribution to the currents to first order
in interaction within the Keldysh technique, largely following
the formulation of a similar nonequilibrium problem for the
case of a two-lead junction in Ref. [29]. The interaction-
induced current in wire j at position z to first order in αl is
given, within the TLL model, by

δJj (z) = −e
∫

dε

2π

∫
dω

2π

∫ L

0
dx

∑
l

(2π iαlv) Tjl (z, x; ε, ω),

(30)

where Tjl represents a “triangle” of the noninteracting Green’s
functions:

Tjl (z, x; ε, ω)

= v
∑

μ=1,2

∑
ηl =±

TrK [ γ̌ extǦε ( j,+, z | l,−ηl , x)

× ˇ̄γ μǦε+ω(l,−ηl , x | l, ηl , x)γ̌ μǦε (l, ηl , x | j,+, z)].

(31)

The Green’s function Ǧε is a 2 × 2 matrix in Keldysh space
(in the Larkin-Ovchinnikov basis),

Ǧε =
(GR

ε GK
ε

0 GA
ε

)
, (32)

with the arguments of Ǧε (l, η′, y | j, η, x) denoting propaga-
tion with energy ε from point x in wire j to point y in wire
l , with the initial and final chiralities η and η′, respectively.
Scattering off the junction is encoded in Ǧε (with the spatial
coordinates x �= 0 and y �= 0) through the S-matrix elements
Sjk :

Ǧε (l,+, y| j,+, x)

= − i

v
eiετ++

[
�(τ++)δl j

∑
m Slmhm(ε)S∗

jm

0 −�(−τ++)δl j

]
, (33)

Ǧε (l,+, y | j,−, x) = − i

v
eiετ+−

[
Sl j Sl jh j (ε)

0 0

]
, (34)

Ǧε (l,−, y | j,+, x) = − i

v
eiετ−+

[
0 hl (ε)S∗

jl

0 −S∗
jl

]
, (35)

Ǧε (l,−, y| j,−, x)

= − i

v
eiετ−−

[
�(τ−−)δl j hl (ε)δl j

0 −�(−τ−−)δl j

]
, (36)
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where τηη′ = (ηy − η′x)/v and �(τ ) is the step function.
Unitarity Ŝ−1 = Ŝ† is explicitly used in Eqs. (33) and (35) for
the Green’s functions with the initial chirality η j = +. The
integration over ε is performed with infinite limits even after
being put on the mass shell, i.e., the energy �, considered
in Sec. III as finite, is sent to ∞ in Eq. (30) from the very
beginning.

The trace TrK in Eq. (31) is over the Keldysh indices. The
fermion-boson vertices γ̌ μ and ˇ̄γ μ and the external (current)
vertex γ̌ ext are given by

γ̌ 1 = ˇ̄γ 2 = 1√
2

(
1 0
0 1

)
, γ̌ 2 = ˇ̄γ 1 = 1√

2

(
0 1
1 0

)
, (37)

and

γ̌ ext = i

2

(
1 1

−1 −1

)
. (38)

Taking the Keldysh trace, we find that only the ingoing (out-
going) chirality ηl = −1 (ηl = 1) contributes to Tjl [Eq. (31)]
for μ = 1 (μ = 2). The result for Tjl can be written as

Tjl (z, x; ε, ω) = i

2v2

∑
m

Im{e−2iωx/vBjlm}

× [ hl (ε + ω) − hl (ε) ] hm(ε), (39)

where we introduce

Bjlm = S jl S
∗
ll SlmS∗

jm. (40)

We observe that the position z of the measurement drops out
in Eq. (39), as expected for the dc response.

Note that the integration over ω in Eq. (30) of the ω-
independent part of the product [ hl (ε + ω) − hl (ε) ] hm(ε)
from Eq. (39) produces zero except for the δ(x) singularity
at x = 0, where Eq. (39) is, as mentioned above Eq. (33),
not valid. In fact, the result is zero also for x = 0. This is
because of the general condition, required by causality [the
vanishing of the 21 (lower left) matrix element of the fermion
self-energy in the basis of Eq. (32) for that matter], that the
sum of the retarded and advanced Green’s functions with
the same arguments, both taken at exactly zero propagation
time is zero:

∫
dω(GR

ε+ω + GA
ε+ω ) = 0 also for x = 0. There-

fore, the product hl (ε)hm(ε) in Tji does not enter any observ-
able. The same is true with regard to the ω-independent term
in the product hl (ε + ω)hm(ε). It is convenient, however, to
keep them both while integrating Tjl over ε and shift the lower
limit of the x integration in Eq. (30) to x = 0+.

We represent the integral over ε of the Keldysh functions
from Eq. (39) in the following form [this is where keeping the
product hl (ε)hm(ε) is useful]:

1

2

∫
dε [ hl (ε + ω) − hl (ε) ] hm(ε) = F (−Vlm)− F (ω− Vlm),

(41)

where

F (ω − Vlm) = 1

2

∫
dε[1 − hl (ε + ω)hm(ε)] (42)

is, for the integration with infinite limits, an even function of
its argument and Vlm = μl − μm; specifically,

F (ω) = ω coth(ω/2T ) (43)

for hl (ε) from Eq. (29), which at T = 0 becomes F (ω) = |ω|.
Substituting Eq. (41) in Eq. (30) and integrating over x

from 0+, as explained in the paragraph above Eq. (41), we
have

δJj = − e

4π

∑
lm

αl

{
−πB′′

jlm

∫
dε fm(ε)

+
∫ ∞

0
dω[ χ ′′(ω)F+

lm(ω)B′′
jlm − χ ′(ω)F−

lm(ω)B′
jlm]

}
,

(44)

where the functions χ ′(ω) and χ ′′(ω),[
χ ′(ω)

χ ′′(ω)

]
=

(
Re

Im

){
2i

v

∫ L

0
dx e−2iωx/v

}
= 1

ω

[
1 − cos(2ωL/v)

sin(2ωL/v)

]
, (45)

filter out the real (B′
jlm = Re Bjlm) and imaginary (B′′

jlm =
Im Bjlm) parts of Bjlm, respectively, and

F±
lm(ω) = F (ω − Vlm) ± F (ω + Vlm). (46)

The term −πF (Vlm)B′′
jlm that would have been added to the

integral in Eq. (44) if we had substituted Eq. (41) in Eq. (30)
and done the integration over ω and x straightforwardly is
absent, because of the exclusion of the point x = 0 from the
x integration. Following from the same argument, since the
integral in χ ′′(ω) is defined as including the point x = 0,
the first term in the curly brackets in Eq. (44) compensates
for the ω-independent term in F+

lm(ω).
Note that, by unitarity, the sum

∑
mB′′

jlm = 0, as follows
directly from Eq. (40), which guarantees that the terms in δJj

in Eq. (44) that are proportional to B′′
jlm vanish at equilibrium.

The vanishing at equilibrium of the remaining part of δJj

relies on F−
lm(ω) being zero at equilibrium by construction.

B. Y junction

Equation (44) gives the interaction-induced current for
an arbitrary number of wires and an arbitrary form of the
noninteracting S matrix. We now apply Eq. (44) to the case of
a Y junction with the noninteracting S matrix obeying Eq. (2),
which is the model considered in Sec. III within the picture of
scattering off nonequilibrium Friedel oscillations.

The term in Eq. (44) that is proportional to B′
jlm represents

a contribution to the current arising from the conventional
renormalization of a junction [20] and will no longer be
considered here. Our immediate goal, then, is to identify the
chiral current Jch

j by looking at the terms in Eq. (44) that are
proportional to B′′

jlm. Using the parametrization of the S matrix
from Eq. (3), we see that the nonzero components of B′′

jlm are
all of the same modulus:

B′′
jlm = AEjlm, (47)
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where A is given by Eq. (20) and the matrices Ejlm are

E1lm =
⎛⎝ 0 0 0

−1 0 1
−1 1 0

⎞⎠, E2lm =
⎛⎝0 −1 1

0 0 0
1 −1 0

⎞⎠,

E3lm =
⎛⎝0 1 −1

1 0 −1
0 0 0

⎞⎠. (48)

We recognize the first term in the curly brackets in Eq. (44) as
associated with Ĝreg [given by Eq. (25) for T = 0].

The chiral current is then given by

Jch
j = − e

4π

∑
lm

αlB
′′
jlm

∫ ∞

0
dω χ ′′(ω)F+

lm(ω). (49)

From Eq. (49), the differential chiral conductance matrix
Gch

jk = e ∂Jch
j /∂μk is written as

Gch
jk = − e2

4π

∑
lm

αlB
′′
jlm

∫ ∞

0
dω χ ′′(ω)

∂F+
lm(ω)

∂μk
. (50)

For T = 0, the integration over ω in Eq. (50) gives∫ ∞

0
dω χ ′′(ω)

∂F+
lm

∂μk
= 2(δlk − δmk )slm

×
∫ |Vlm|

0

dω

ω
sin

2ωL

v
, (51)

where the sign function slm is defined below Eq. (26), which
in the limit of |Vlm|L/v → ∞ reduces to

lim
L→∞

∫ ∞

0
dω χ ′′(ω)

∂F+
lm

∂μk
= π (δlk − δmk )slm. (52)

The chiral conductance matrix thus takes the form

Gch
jk = −1

4
e2A

∑
lm

αlE jlm(δlk − δmk )slm, (53)

which, upon inspection, coincides with Ĝch from Eq. (26).
That is, the calculation we worked through in Secs. IV A
and IV B shows exactly how the physics of scattering off
nonequilibrium Friedel oscillations (Sec. III), which leads to
the emergence of the chiral current, is encoded in the Keldysh
formalism.

C. Finite temperature

We now turn to the case of finite T . As clearly seen from
the structure of the expression for the pole-related current in
Eq. (21), increasing T leads to a suppression of the effect
of nonequilibrium chirality. In the limit of T/� → 0, the
difference of the averages of the distribution functions in
Eq. (21) obeys

〈 f j fk〉 − 〈 f j fl〉 = 1

2

(
Vkl − Vjk coth

Vjk

2T
+ Vjl coth

Vjl

2T

)
,

(54)

where the first term in the brackets on the right-hand side gives
the T -independent linear conductance Ĝreg from Eq. (25). For

|Vjk|, |Vjl | � T , Eq. (54) reduces to

〈 f j fk〉 − 〈 f j fl〉  1

2
Vkl

(
1 + Vjk + Vjl

6T

)
, (55)

where the second term in the brackets gives the leading
term in the chiral conductance Ĝch, which decreases as 1/T
with increasing T compared to Eq. (26). For the differential
conductance, the expansion (55) means the substitution

s jk → Vjk/3T (56)

in Eq. (26).
Within the Keldysh formulation, the generalization to finite

T proceeds with the use of Eq. (43) for F (ω) and the resulting
change of ∂F+

lm/∂μk = 2(δlk − δmk )slm�(|Vlm| − ω) for zero
T [Eq. (51)] to

∂F+
lm

∂μk
= (δlk − δmk )

[
F

(
ω + Vlm

2T

)
− F

(
ω − Vlm

2T

)]
, (57)

where

F (x) = coth x − x/ sinh2 x. (58)

Equation (52) then changes to

lim
L→∞

∫ ∞

0
dω χ ′′(ω)

∂F+
lm

∂μk
= π (δlk − δmk )F

(
Vlm

2T

)
, (59)

so that Gch
jk for arbitrary T is given by Eq. (53) with the

substitution of F (Vlm/2T ) for slm. The asymptotic behavior
of F (x) is F (x) → 2x/3 for |x| � 1 and F (x) → sgn(x) for
|x| � 1, which corresponds to Eq. (56) for the translation of
the results for zero T into those for large T . In particular, using
Eqs. (26) and (56), the expression for the chiral current (15)
changes to

J3  −1

8
eαAV 2

T
(60)

for T � |V |.
It is also worth noting that if |Vlm| � T for a given pair of

l and m, but T is much smaller than the bias voltage between
either of two terminals l, m and the remaining third terminal,
the current distribution is essentially given by that for T = 0
and the chemical potentials μl and μm assumed degenerate
(slm = 0). We will further comment on the finite-T case, from
the perspective of symmetry of Ĝch, in Sec. V D.

V. EMERGENT CHIRALITY AND THE “FUNDAMENTAL”
CONDUCTANCE MATRIX

We now provide an additional way to quantify the phe-
nomenon of emergent chirality by referring to the structure
of the “fundamental” conductance matrix mentioned in Sec. I.
As discussed at the end of Sec. III C, the most general form of
the 3 × 3 conductance matrix for a triple junction [Eq. (27)]
is parametrized by three numbers plus a common multiplier,
altogether four parameters, i.e., the rank of the matrix (27) is
two. The relation between the currents J1,2,3 and the chemical
potentials μ1,2,3 can thus be fully accounted for by means of
a 2 × 2 matrix. One of the useful formulations is based on the
introduction of the linearly independent currents [20]

Ja = (J1 − J2)/2, (61)

Jb = −J3, (62)
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and the differential conductance matrix

ˆ̃G =
(

Ga Gc + Gd

−Gc + Gd Gb

)
(63)

which relates Ja,b to the chemical potentials by

Ga = e ∂Ja/∂Va, Gb = e ∂Jb/∂Vb,

Gc + Gd = e ∂Ja/∂Vb, −Gc + Gd = e ∂Jb/∂Va, (64)

where

Va = μ1 − μ2, Vb = 1
2 (μ1 + μ2) − μ3, (65)

and the chemical potentials counted from their average value
μ̄ are μ1 − μ̄ = Va/2 + Vb/3, μ2 − μ̄ = −Va/2 + Vb/3, and
μ3 − μ̄ = −2Vb/3. The relation of ˆ̃G to Ĝ is given by

ˆ̃G = 1

4

[
G11 + G22 − G12 − G21 2(G23 − G13)

2(G32 − G31) 4G33

]
(66)

with

Gc = 1
2 (G12 − G21), Gd = 1

2 (G11 − G22). (67)

In Secs. V A–V C, we focus on the case of T = 0. The
behavior of Gc and Gd at finite T is discussed in Sec. V D.

A. Off-diagonal elements of ˆ̃G

The significance of introducing Gc and Gd is that both of

them are zero, so that the matrix ˆ̃G is then diagonal, in the
absence of interactions for the case of the S matrix (2). A
comparison of Eqs. (27) and (67) shows that

Gc ∝ ξ1 − ξ2, Gd ∝ 1 − ξ3 (68)

describe time-reversal- (Gc) and 1 ↔ 2 parity- (Gd ) symmetry
breaking, as discussed below Eq. (27). Specifically, Gc has the
meaning of the interaction-induced nonlinear “Hall” conduc-
tance, whereas Gd quantifies the “side diversion” current re-
sulting from interaction-induced voltage-dependent inversion
asymmetry between terminals 1 and 2. The current associated
with inversion symmetry breaking can also be thought of
in terms of the photogalvanic effect, viewed broadly, e.g.,
along the lines of Ref. [33]. Provided Gc = Gd = 0 in the
linear response (time-reversal- and 1 ↔ 2 parity-symmetric
Hamiltonian), either or both of Gc and Gd being nonzero
and chiral beyond the linear response is the essence of the
phenomenon we called “emergent chirality.”

For the conductance matrix from Eq. (26), we have

Gc = − 1
8 e2A [α1(s12 + s31) + α2(s12 + s23)

+ α3(s23 + s31)]. (69)

The emergence of Gc �= 0 is a truly nonequilibrium phe-
nomenon, with all terms in Eq. (69) depending on the signs of
the voltages, for arbitrary α1,2,3. By contrast, if the interacting
part of the Hamiltonian is not 1 ↔ 2 parity symmetric (α1 �=
α2), then Gd is a sum of both chiral and nonchiral terms,
Gd = Gch

d + Glin
d , where the nonchiral term Glin

d exists already
in the linear response (i.e., is not dependent on the signs of any
voltages). Both the scale-dependent and pole contributions to
Glin

d , proportional to B′
jlm and B′′

jlm from Eq. (44), respectively,

are nonzero for α1 �= α2. From Eq. (26), the chiral term Gch
d

reads as

Gch
d = 1

8 e2A [(α1 + α2)s12 − α3(s23 + s31)]. (70)

For μ3 lying between μ1 and μ2, we have s12 = s13 = −s23 =
sgnVa, which gives

Gc = 1
4 e2Aα3 sgnVa, (71)

Gch
d = 1

8 e2A (α1 + α2 + 2α3) sgnVa. (72)

For Vb = 0 (bias μ1 − μ2 applied symmetrically with respect
to μ3), α1 = α2 = α, and α3 = 0, which is the voltage setup
and the choice of α1,2,3 considered in Secs. III A and III B, the
expression for J3 in terms of the elements of the matrix (63)
becomes (with Gd given entirely by Gch

d )

J3 = − 1
e GdVa = − 1

4 eαA|Va|, (73)

which coincides with Eq. (15). Equation (73) thus tells us
that the emergence of the chiral current in the symmetrically
biased tunneling-tip setup with α3 → 0 is the effect of broken
1 ↔ 2 parity symmetry, controlled by the conductance Gch

d .
The same conclusion can also be drawn from the chiral part
of the 3 × 3 conductance matrix [Eq. (26)], which is then
characterized, in terms of the parameters ξ1,2,3 from Eq. (27),
by ξ1 = ξ2 = 0 and ξ3 = −1.

As was already noted below Eq. (22), the current J3 does
not depend on α3 for an arbitrary distribution of voltages.
For the case of μ3 between μ1 and μ2 [Eqs. (71) and (72)],
this shows up in the cancellation of the α3-dependent terms
in the combination Gch

d − Gc, which is probed in this type
of measurement. In particular, for Vb = 0 and α1 = α2 = α,
the current J3 is given by the last expression in Eq. (73) for
arbitrary α3. For α3 �= 0, the emergence of nonzero J3 for Vb =
0 is thus a combined effect of nonequilibrium 1 ↔ 2 parity-
and time-reversal-symmetry breaking, in which the role of
time-reversal-symmetry breaking is to exactly cancel the α3

contribution to J3. This example demonstrates the inherent
relationship between the two types of symmetry, formalizable
as combined parity-time symmetry in the chiral current.

It is worth noting that the emergence of off-diagonal el-

ements of the matrix ˆ̃G is generic for arbitary μ1,2,3 except
for the special case of μ1 = μ2. Specifically, if μ1 = μ2,
then Gch

d = 0 identically for arbitrary α1,2,3. If, additionally,
α1 = α2, then also Gc = 0 at μ1 = μ2. By permutation of
the wire indices, the vanishing of Gc occurs for two arbitrary
chemical potentials μi and μ j being degenerate if αi = α j .

It is also worthwhile to comment on the difference
between Gc and Gd regarding their dependence on α3 in the
tunneling-tip setup (α1 = α2). As follows from Eq. (69), Gc

for any given distribution of voltages with nondegenerate
chemical potentials depends on only one out of three
interaction constants α1,2,3, namely, the one in the wire with
the “intermediate” chemical potential (which lies between the
largest and lowest ones). Specifically, Gc ∝ α3 for μ3 between
μ1 and μ2 [Eq. (71)] and Gc ∝ α in the case of α1 = α2 = α

for any other distribution of voltages (with the exception of
two chemical potentials being degenerate, then Gc is given by
a half-sum of the interaction constants in two wires with the
degenerate chemical potentials). This is why it is possible to
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arrange the voltages to produce the chiral current in Eq. (73)
that specifically probes Gd , with no admixture of Gc, in the
limit of α3 → 0. By contrast, Gd for α1 = α2 does not vanish
in the limit of α3 → 0 for any “nondegenerate” distribution
of μ1,2,3.

In fact, the vanishing of Gch
d while Gc �= 0 requires, for

a distribution of voltages with nondegenerate chemical po-
tentials, that interactions of different signs be present in the
system. Specifically, in the nondegenerate situation, Gch

d =
0 for either (i) α1 = −α2 and α3(s23 + s31) = 0, where the
latter condition means α3 = 0 for an arbitrary distribution of
voltages or arbitrary α3 for μ3 lying above or below both
μ1 and μ2, or (ii) α1 + α2 = −2α3 and μ3 lying between
μ1 and μ2. Therefore, to separate out the effect of emergent
chirality that is due to nonequilibrium time-reversal-symmetry
breaking without fine tuning the Hamiltonian with regard to
the interaction constants of opposite signs, one has to perform
at least two current measurements with different arrangements
of voltages and compare the results, as we explain below.

B. Properties of ˆ̃G with respect to flipping the signs of voltages

Since the conductance matrix ˆ̃G is a function of voltages,
the current measurements for different voltage distributions
yield, generically, different sets of the nonlinear conductances.

One consequence is that the symmetry properties of ˆ̃G include
symmetry with respect to flipping the sign of the bias voltage
between two terminals. A question arises, then, if the chiral
conductances Gch

c and Gch
d are separately measurable by only

manipulating the signs of the voltages. Adding up, for each of
the wires, the currents before and after a simultaneous change
of the signs of Va and Vb filters out the chiral components of Ja

and Jb. Generically, however, these are functions of four chiral
conductances Gch

a,b,c,d because the nonlinearity is present in

both the diagonal and nondiagonal elements of ˆ̃G. It follows
that, for a generic distribution of voltages, this procedure does
not yield Gch

c and Gch
d .

At this point, it is instructive to look at a simple example
in which the junction is pushed out of equilibrium by adding
voltage V at only one of three terminals. Assume also that
α1 = α2 = α. As mentioned above, for μ1 = μ2 both Gd and
Gc are zero in that case. If it is μ3 that remains degenerate with
either μ1 or μ2, then changing V → −V allows one to mea-
sure two combinations of four chiral conductances, namely,
Gch

a − Gch
c /2 − Gch

d /2 and Gch
b /2 + Gch

c − Gch
d , by measuring

the chiral components of Ja and Jb, respectively. The effect of
Gch

a and Gch
b is seen to intertwine with that of Gch

c and Gch
d . In

this example, both Gch
a and Gch

b are nonzero, also for α3 = 0:

Gch
a = 1

16 e2A (α + 2α3) sgnVb,

Gch
b = − 1

4 e2Aα sgnVb (74)

for the voltage V = Vb/2 applied to either terminal 1 or
terminal 2.

The invariance of Gch
a,b with respect to exchanging μ1 and

μ2 in Eqs. (74) is a particular example of general (for α1 = α2)

symmetry of ˆ̃G as a function of Va,b, as follows from Eq. (26):

Gch
a,b(−Va,Vb) = Gch

a,b(Va,Vb),

Gch
c,d (−Va,Vb) = −Gch

c,d (Va,Vb), (75)

which translates into the relation between the currents:

Jch
a (−Va,Vb) = −Jch

a (Va,Vb),

Jch
b (−Va,Vb) = Jch

b (Va,Vb). (76)

Note the existence of the “cross term” (which depends on both
voltages Va and Vb) in Jch

a , with(
Gch

c + Gch
d

)
Vb ∝ Vb sgnVa. (77)

Note also that Jch
a changes sign with exchanging μ1 and μ2

(Va → −Va with Vb held fixed), which makes it indistinguish-
able from the noninteracting contribution to Ja under this
symmetry operation.

C. Measurement protocol to extract the chiral components
of Gc and Gd

Having described the general behavior of ˆ̃G as a function
of Va,b [Eqs. (75)], exemplified by the case of Vb = ±Va/2
[Eqs. (74)], let us turn to another special case, in which
no degeneracy in the chemical potentials is left. Let μ3 be
squeezed between μ1 and μ2 (|Vb| < |Va|/2). As follows from
Eq. (26), the diagonal chiral conductances Ga and Gb are both
zero for this arrangement of voltages for the tunneling-tip
setup with α1 = α2 and arbitrary α3. That is,

Jch
a = (Gc + Gd )Vb, Jch

b = (−Gc + Gd )Va, (78)

with Gc and Gd given by Eqs. (71) and (72), both proportional
to sgnVa. The vanishing of Ga,b for |Vb| < |Va|/2 makes a big
difference compared to their nonzero values for |Vb| = |Va|/2
in Eq. (74). For Vb = 0 [the case describable by Eqs. (78)],
we return to the symmetric setup in which the existence of a
nonzero current Jb is perhaps the most remarkable manifesta-
tion of the phenomenon of emergent chirality.

For Vb �= 0, with Vb parametrizing the difference of the
spacings separating μ3 from μ1 and μ2, both Gc and Gd are
in play and, in Eqs. (78), only these two. It follows that if both
Jch

a and Jch
b are known for given Va and Vb, then Gc and Gd can

be determined separately from Eqs. (78). An important point,
following from the relations (76) is that, to extract the chiral
components of both Ja and Jb, one should flip the signs of all
voltages, exchanging μ1 and μ2 does not suffice, as explained
below Eq. (77). The condition for this “protocol” being useful
for the determination of Gch

c and Gch
d is the placement of μ3

between μ1 and μ2 [excluding the end points of the interval,
as demonstrated in Eqs. (74) by the emergence of nonzero Gch

a
and Gch

b at these points when μ3 varies with respect to μ1 and
μ2, with the starting point between the two].

The procedure of determining Gch
c and Gch

d by relying on
Eqs. (78) elucidates the meaning of these conductances and is
essentially equivalent to the measurement based on the direct
definition of Gc and Gd in Eqs. (67) in terms of the partial
derivatives ∂Jj/∂μk . For example, for the conductance matrix
(26), which only changes in a stepwise manner with varying
μ1,2,3 when two chemical potentials “cross” each other, a
discretized version of the differentiation relates the emergence
of nonzero Gc at nonequilibrium to the inequality

J1(μ1, μ2 + δV, μ3) − J2(μ1 + δV, μ2, μ3)

�= J1(μ1, μ2, μ3) − J2(μ1, μ2, μ3) (79)
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for δV the addition of which does not change the mutual order
of μ1,2,3. Similarly, for Gd ,

J1(μ1 + δV, μ2, μ3) − J2(μ1, μ2 + δV, μ3)

�= J1(μ1, μ2, μ3) − J2(μ1, μ2, μ3). (80)

Both inequalities become equalities in the noninteracting limit
for the time-reversal- and 1 ↔ 2 parity-symmetric S matrix
(2). The measurement protocol to determine Gc and/or Gd

thus generally (not implying that Gc and Gd are chiral) in-
cludes measuring the currents for three different arrangements
of the chemical potentials: (μ1, μ2, μ3), (μ1 + δV, μ2, μ3),
and (μ1, μ2 + δV, μ3). For the case of μ3 between μ1 and μ2

and the relation (78), the protocol reduces to two different sets
of the voltages: (Va,Vb) and (−Va,−Vb).

D. Temperature dependence of Gc and Gd

We now demonstrate that the dependence of the nondiago-
nal conductances Gc and Gd on α1,2,3 and the voltages changes
in an essential way with increasing T . For this purpose, we
return to the case of large T , considered (together with the
general case of arbitrary T ) in Sec. IV C, by calculating Gc

and Gd to order O(1/T ). Substituting Eq. (56) in Eqs. (69)
and (70), we have, for T � |Va|, |Vb|,

Gc  e2A
24 T

(α1V23 + α2V31 + α3V12), (81)

Gd  e2A
24 T

(α1 + α2 + α3)V12. (82)

Note that in the tunneling-tip setup with α1 = α2 = α and
α3 �= α both Gc and Gd in the large-T limit only depend on
Va, independently of the mutual position of μ1,2,3:

Gc  − e2A
24 T

(α − α3)Va, (83)

Gd  e2A
24 T

(2α + α3)Va. (84)

This is in contrast to the zero-T limit, where Gc and Gd

generically depend on both Va and Vb, except for the case of μ3

lying between μ1 and μ2 [Eqs. (71) and (72)]. If α3 = α, the
expansion of Gc in powers of 1/T starts at order V12V23V31/T 3.

From Eqs. (83) and (84), substituted in Eq. (63), we recover
Eq. (60) for J3 in the symmetrically biased junction with Vb =
0. Note that, as a manifestation of the general rule formulated
below Eq. (22), the terms proportional to α3 cancel out in J3,
independently of whether T is zero or not. Note also that,
for nonzero T , time-reversal symmetry is generically broken
(Gc �= 0) in this setup, even for α3 = 0, but Gc vanishes in the
limit of T → 0 if α3 = 0 [Eq. (71)].

VI. HIGHER-ORDER RENORMALIZATION

We now briefly discuss the interaction-induced renormal-
ization of the chiral current (15) [or (73) for that matter] at
zero T in the vicinity of the stable critical point at which
all three wires are decoupled from each other (“point N”).
The global behavior of the renormalization-group flow to this
point at nonequilibrium was discussed in the limit of weak
interaction in Refs. [20,21], with the flow being stopped by
nonequilibrium in an intricate way, distinctly different from

the effect of temperature. We also provide a similar result for
scaling near the unstable fixed point where wire 3 is decoupled
from the ballistic 1 + 2 wire (“point A”).

We can infer how the factor A, which quantifies the ampli-
tude of J3 in Eq. (15), is renormalized by first writing Ga and
Gb in the absence of interaction in terms of the angles θ and
ψ [by using Gi j = (e2/2π )(δi j − |Si j |2) and Eq. (66)]:

Ga = e2

4π
(1 − cos θ cos ψ ), Gb = e2

2π
sin2 θ. (85)

From Eq. (20), the bare value of A is then expressible in terms
of the dimensionless conductances Ḡa,b = 2πGa,b/e2 as

A = s

4
Ḡb[ 4Ḡa(1 − Ḡa) − Ḡb ]1/2, (86)

where s = sgn(cos θ sin ψ ). At both fixed points N and A,
A = 0 [recall also the comment below Eq. (15)].

In the presence of interaction, the renormalization-group
flow under nonequilibrium conditions generically breaks
time-reversal and 1 ↔ 2 symmetry of the conductance matrix
(but does not, by itself, lead to the emergence of chiral
currents, as was already mentioned in Sec. I). As a result, the
renormalized S matrix (even without the pole-related terms)
is generically not parametrized as in Eq. (3) [20]. However,
the renormalization preserves both symmetries for Vb = 0,
as can be seen from Eq. (14) of Ref. [20]. Therefore, for
the main wire biased symmetrically with respect to the tip
wire, Eq. (86) gives the relation between the running values
of A and Ḡa,b at each point of the renormalization-group flow.
With the renormalization included, the chiral current J3 from
Eq. (73) is then representable, for T = 0, as

J3 = − s

16
eα Ḡb[ 4Ḡa(1 − Ḡa) − Ḡb]1/2|Va|, (87)

where Ḡa,b are understood as fully renormalized.
In the neighborhood of the stable point N (where both

Ḡa,b � 1), using the results of Ref. [20] for Ḡb and 4Ḡa − Ḡb,

Ḡb ∝ |Va|α+α3 , 4Ḡa − Ḡb ∝ |Va|2α, (88)

we find from Eq. (87)

J3 ∝ |Va|1+2α+α3 . (89)

Similarly, the renormalization-group flow near the unstable
point A (where 1 − Ḡa � 1 and Ḡb � 1) obeys [20]

1 − Ḡa ∝ |Va|−2α, Ḡb ∝ |Va|α3 (90)

for 1 − Ḡa � Ḡb in the “runaway” domain of the flow [38],
and we obtain

J3 ∝ |Va|1−α+α3 . (91)

As follows from Eq. (89), the conductance e ∂J3/∂Va = Gc −
Gd [for Vb = 0, as assumed in Eq. (87)] as a function of
Va changes sign at Va = 0, with the steplike jump being
“smoothed” by the renormalization for the case of repulsive
interaction with 2α + α3 > 0.

VII. EFFECTIVE CHIRAL MODEL

As mentioned in Sec. I, the phenomenon of emergent
chirality is reminiscent of the transport properties of a junction
in the absence of interaction but in the presence of a magnetic
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1 2

3

FIG. 3. Triple junction in the noninteracting model with a mag-
netic flux and 1 ↔ 2 parity asymmetry to mimic the effect of emer-
gent chirality induced by interactions at nonequilibrium in the model
with the time-reversal- and 1 ↔ 2 parity-symmetric Hamiltonian.
The hopping amplitudes that couple the end points of wires 1,2,3
are marked together with the direction of hopping.

flux and/or built-in asymmetry between wires 1 and 2. We
now compare the interaction-induced chiral conductances Gc

and Gd for the time-reversal- and 1 ↔ 2-symmetric bare S
matrix, namely, we take as an example those from Eqs. (71)
and (72), with their counterparts for a noninteracting junction
with these symmetries broken “by construction.”

For concreteness, we use the model of a Y junction con-
sisting of three end points of wires 1,2,3, with these points
connected by hopping matrix elements (Fig. 3). The S matrix
of the junction can be parametrized as

Ŝ = (1 − iŴ )−1(1 + iŴ ), (92)

where the matrix Ŵ of dimensionless hopping amplitudes is
given by

Ŵ =
⎛⎝ 0 we−iφ w1

weiφ 0 w2

w1 w2 0

⎞⎠ (93)

with real numbers w,w1,w2. The points connected by hop-
ping are vertices of a triangle threaded by the magnetic flux φ

in units of the flux quantum hc/e (restoring here h̄ = h/2π ).
If φ �= 0 (modulo π ), scattering at the junction is not time-
reversal symmetric; if w1 �= w2, it is not 1 ↔ 2 parity sym-
metric. In the case of identical links with w = w1 = w2 and
nonzero φ, this model was introduced in Ref. [7] for studying
the role of φ in the interaction-induced renormalization of
the junction. It is perhaps worth noting once again that, by
contrast, our model in the noninteracting limit [Eq. (2)] is
time-reversal symmetric, so that the effective magnetic flux to
compare with φ in Eq. (93) is solely induced by interactions
under nonequilibrium conditions [31,39].

Consider first the case of φ �= 0 and w2 = w1. The funda-
mental conductance matrix (63) for the noninteracting model
ˆ̃G′ (marked by the prime sign, together with its elements) is

then antisymmetric with G′
c �= 0 and G′

d = 0. Since the chiral
current J3 in Eq. (87) is proportional to Gb, it is useful to write
the relation between G′

c and G′
b, which is

G′
c = w sin φ

1 + w2
G′

b. (94)

This should be compared with Gc from Eq. (71), which is
representable by means of Eq. (86) as

Gc = s

16
e2α3Ḡb[ 4Ḡa(1 − Ḡa) − Ḡb]1/2sgnVa. (95)

To simplify the comparison, let us look at the relation between
Gc and G′

c near the two fixed points (stable N and unstable A)
discussed in Sec. VI.

In the vicinity of point N , both |t3|, |t | � 1, i.e., Ḡa =
|t |2 + |t3|2/2 � 1 and Ḡb = 2|t3|2 � 1, so that the difference
of two terms in the square brackets of Eq. (95) reduces to
4|t |2, with no competition between |t | and |t3|. Similarly, in
the noninteracting model, |t |, |t3| � 1 means |w|, |w1| � 1
with |w|  |t |/2 and |w1|  |t3|/2. As a result, Gc and G′

c
have a similar structure near point N , both proportional to
|t ||t3|2, with sin φ independent of the amplitude of t or t3,
namely,

sin φ → π

2
α3s, (96)

where s = sgnVa × s × sgn w is a product of three sign func-
tions [with s defined below Eq. (86)]. The effective magnetic
flux is thus given by the interaction strength in wire 3 and
its sign changes with flipping the sign of the voltage between
terminals 1 and 2. It is worth recalling that the calculation
in Secs. III and IV was done to first order in α3, so that
Eq. (96) only establishes a linear relation between φ and α3

for |α3| � 1, which is sufficient for our purposes here [40].
Near point A, where 1 − |t | � 1 and |t3| � 1, in the

runaway region of the renormalization-group flow, we have
1 � 1 − Ḡa  2(1 − |t |) � Ḡb = 2|t3|2. The expression in
the square brackets of Eq. (95) is then given by 8(1 − |t |).
The scattering amplitudes of the noninteracting model obey,
for |t3|2 � 1 − |t | � 1, the relation (1 − |w|)2  2(1 − |t |)
and |w1|  |t3|/

√
2. Following the same scheme of relating

Gc and G′
c as for point N , we obtain

sin φ → π√
2
α3(1 − |t |)1/2s. (97)

The structure of the relation between Gc and G′
c in the vicinity

of point A is seen to be different compared to point N , namely,
the effective flux in Eq. (97) depends on the distance to the
fixed point.

Turn now to the case of φ = 0 and w1 �= w2. The matrix
ˆ̃G′ is then symmetric, i.e., G′

c = 0, but G′
d �= 0. The analog of

Eq. (94), now for the relation between G′
d and G′

b, reads as

G′
d = −1

2

(
w2

1 − w2
2

)
(1 − w2)(

w2
1 + w2

2

)
(1 + w2)

G′
b. (98)
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Referring to Eqs. (72) and (86), we have (for α1 = α2 = α)

Gd = s

16
e2(α + α3)Ḡb[4Ḡa(1 − Ḡa) − Ḡb]1/2sgnVa. (99)

Repeating the sequence of steps that led to Eqs. (96) and (97),
the effective anisotropy parameter (w1 − w2)/(w1 + w2) near
either point N or point A (in the runaway domain) is related to
α and α3 by

w1 − w2

w1 + w2
→ − sπ

4
(α + α3)|t | sgnVa, (100)

with |t | � 1 in the former case and |t | = 1 in the latter.
Note that the effective flux is nonzero at point N (|t | → 0)
and vanishes at point A (|t | → 1), whereas for the effective
anisotropy parameter the situation is the opposite: it vanishes
at point N and is nonzero at point A.

It is worthwhile to mention that the matrix Ŵ of the form

Ŵ =
⎛⎝ 0 we−iφ w1e−iφ/2

weiφ 0 w1eiφ/2

w1eiφ/2 w1e−iφ/2 0

⎞⎠, (101)

which corresponds to a zero magnetic flux through the triangle
junction, breaks (for φ �= 0 modulo 2π ) both time-reversal
and 1 ↔ 2 parity symmetries of the S matrix, but does not

break these in the conductance matrix ˆ̃G′, in which both
G′

c and G′
d are zero. It is thus a nonzero effective magnetic

flux that is inherently related to the emergence of finite Gc

in the interacting problem at nonequilibrium (which justi-
fies naming Gc the “Hall conductance”), an inhomogeneous
effective magnetic field with zero mean inside the junction
does not suffice. We reiterate that it is the property of the
Hall conductance Gc being an odd function of the voltage,
as opposed to the equilibrium chiral model [7], that leads to
the unidirectionality of the chiral currents in the leads, which
constitutes the essence of emergent chirality introduced in our
paper.

To give a finishing touch to the comparison to the chiral
model [7], it is also worth mentioning that the chiral fixed
point from Ref. [7], at which the incoming currents are
fully diverted in either the clockwise or counterclockwise
direction, cannot be realized in a symmetric junction with
φ = 0 by manipulating the voltages (Sec. V C). Indeed, in
terms of the fundamental conductances, the chiral fixed point
corresponds to Ga = 3

4 , Gb = 1, Gc = ± 1
2 , Gd = 0 in units

of e2/2π . As can be seen from Eqs. (69) and (70), for
the symmetric junction with α1 = α2 = α3, if Gc �= 0, then
necessarily Gd �= 0, i.e., the junction becomes asymmetric.
It is important here that the nonequilibrium-induced Gc and
Gd , despite being scale independent, are not corrections to
the ultraviolet (bare) values of Gc = Gd = 0, i.e., a finite
Gc in our problem does not bring the renormalization-group
flow into the basin of the chiral fixed point. As described

in Sec. VI, the renormalization-group flow is the same as at
equilibrium (no effective flux affecting the flow), with Gc and
Gd being “infrared quantities” which only appear after the
renormalization is done.

VIII. CONCLUSION

We have presented a theory of the phenomenon we named
“emergent chirality,” a distilled example of which is the emer-
gence of a nonzero current in the “side wire” (tunneling-tip
wire in the electron tunneling experiment) driven by a current
in the symmetrically biased main wire, as illustrated in Fig. 1.
This result is quite remarkable as the current in the side wire
does not depend on the sign of the voltage and is exactly zero
in the linear response, i.e., this is an essentially nonequilib-
rium phenomenon which breaks time-reversal and/or parity
symmetry that exists at the level of the Hamiltonian of the
system.

In the picture we have developed, the chirality of the
current is inherently linked to the presence of electron-
electron interactions. We have given a detailed discussion of
emergent chirality from the perspective of electron scattering
off nonequilibrium Friedel oscillations and also performed a
formal perturbation theory calculation in the Keldysh tech-
nique. Perhaps one of the most important points to empha-
size is that this phenomenon is totally different from the
conventional interaction-induced renormalization, which, in
particular, gives exactly zero current in the side wire in Fig. 1.
Rather, as opposed to virtual processes responsible for the
renormalization, it is entirely due to real processes, one of
the conceptually important peculiarities of which is that they
are not inelastic scattering and give rise to the chiral current
already at first order in the interaction strength.

Before concluding the paper, it is interesting to mention
that the emergent chirality is to an extent phenomenologically
similar to Bernoulli’s effect that occurs in a Y junction of
fluid-filled pipes, where pumping the fluid through the “main”
pipe forces the fluid to flow through the “side” pipe. The simi-
larity is in that the flow in the side pipe is then independent
of the direction in which the fluid flows in the main pipe.
Note that the rate of the “sucked-in” flow is controlled by the
hydrodynamic velocity at the junction, which is sensitive to a
local expansion or narrowing of the flow (“Venturi effect”),
but the phenomenon itself is generic, in similarity to the
generic nature of emergent chirality in the interacting electron
system.
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