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Bias-induced circular spin current: Effects of environmental dephasing and disorder
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Analogous to circular spin current in an isolated quantum loop, bias-induced circular spin current can also be
generated under certain physical conditions in a nanojunction having single- and/or multiple-loop geometries
which we propose considering a magnetic quantum system. The key aspect of our work is the development of
a suitable theory for defining and analyzing circular spin currents in presence of environmental dephasing and
impurities. Unlike a transport current in a conducting junction, a circular current may enhance significantly in
presence of disorder and phase randomizing processes. Our analysis provides a spin-dependent phenomenon,
and can give important signatures in designing suitable spintronic devices as well as selective spin regulations.
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I. INTRODUCTION

The phenomenon of bias-induced circular charge current
in a conducting nanojunction having single- or multiple-loop
geometries has been a new paradigm of research over the last
few years [1–10]. We are mostly familiar with transport cur-
rent, which is usually referred as junction current, through a
source-conductor-drain bridge system. But, when the bridging
conductor contains a loop structure, a net circular current may
be generated due to voltage bias satisfying some conditions
[1–10]. This is quite analogous to the appearance of circular
current (more usually known as persistent current) in an
isolated mesoscopic ringlike structure (not connected with
external baths) upon the application of magnetic field [11–15].
Although the phenomena are quite similar, the origins of these
two currents are completely different. In one case it is due to
external magnetic field, and in the other case voltage bias is
responsible. We will focus on the latter one in this work.

The study of bond currents in different arms [1–5,16,17]
of a connected ringlike geometry essentially triggers that a
circular current can be possible if the electrodes are attached
properly such that the contributions from different arms do
not mutually cancel with each other. Naturally, a possibility of
tuning such current can be imagined by changing the junction
configuration. Now what makes this phenomenon so special
is that this circular current induces a very large magnetic field
[5–9] at its center as well as away (not so far) from the center.
Because of smaller ring size, strong magnetic field (in some
cases it may even reach to few millitesla or even tesla) will be
induced, that can be served in many ways. The most probable
application may be the proper regulation of electron spin or
local magnetic moment, which can be utilized to perform
different operations like storage of data, logic functions, spin
switching, spin-selective electron transmission, spin-based
quantum computations, to name a few [18–24].

Thus, whenever we think about the tuning of a single spin
or a magnetic moment, the application of a “local magnetic
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field” may be a worthy option for it. Few proposals have
already been made [25,26] for generating and controlling of
magnetic field locally; among them, circular current induced
magnetic field [5–9] will be the most suitable one, as on one
hand it is very large and on the other hand its tuning is rela-
tively simple as compared with other propositions. So far, the
phenomenon of “charge circular current” in nanojunctions has
been studied [1–10], and no one has explored spin-dependent
circular current, to the best of our knowledge, which might
bring several salient features along this line, and thus probing
into it is undoubtedly very essential.

In this paper we do an in-depth analysis of circular spin
current in a nanojunction considering a magnetic quantum
ring within a tight-binding (TB) framework. To make the
model more realistic, we include the effects of disorder and
environmental dephasing. The main attention is given in de-
veloping a suitable theory for describing circular spin current
density, and thus circular current, in presence of dephasing.
We introduce dephasing effects by connecting Büttiker probes
[27–31] at each lattice site of the bridging conductor, and
it can be assumed as the most convincing and appropriate
way to include phase randomization processes in transport
phenomena. Instead of Büttiker probes, by adding a constant
damping factor one can also introduce dephasing into the sys-
tem, as already reported in a few works [5,32,33], but in this
mechanism all the essential features may not be captured. The
Büttiker probes alter the conservation conditions of different
bond currents that should be incorporated properly to define
the current densities.

Thus, the emphasis will be given in two aspects: (i) estab-
lishing a proper methodology for calculating circular current
in presence of dephasing via Büttiker probes, and (ii) defining
bias-induced circular spin current. These aspects have not
been addressed earlier. We strongly believe that the charac-
teristic features emerged from our analysis may provide some
valuable inputs that can be exploited to investigate several
spin-dependent phenomena.

The arrangement of the remaining part of this paper is
as follows. In Sec. II, we describe different spin-dependent
conserved quantities and finite relations among them. In
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FIG. 1. Schematic representation of a nanojunction having a
single loop that may carry a net circular current in the loop, where I1

and I2 are the currents propagating through upper and lower arms of
the ring, respectively.

Sec. III, we illustrate the complete theoretical prescription
for analyzing the phenomenon of bias-induced circular spin
current in presence of spin-dependent scattering mechanism.
In Sec. IV, we examine the accuracy of our theoretical
prescription based on which the results are computed. This
will give us a confidence of our theoretical prescription. All
the essential results are thoroughly discussed in Sec. V and,
finally, we summarize our findings in Sec. VI.

II. GENERAL DEFINITION OF CIRCULAR CURRENT
AND DIFFERENT SPIN-DEPENDENT CONSERVED

QUANTITIES

To define circular current, let us start with Fig. 1, where a
net current flows from source to drain through the conducting
ring. The current, which enters into the ring divided into
two parts, (say) I1 and I2, and they reunite at the drain end.
We assign positive sign to the current propagating in the
clockwise direction. If N1 and N2 be the number of atomic
sites in the upper and lower arms of the ring, respectively, then
we define circular current in the ring as [5,9]

I = I1N1a + I2N2a

N1a + N2a
= I1N1 + I2N2

N1 + N2
, (1)

where a is the interatomic spacing. Now, for a symmetrically
connected junction where N1 = N2, the currents in the upper
and lower arms are identical in magnitude and opposite in
sign, which results a vanishing circular current. Thus, in order
to have a net circular current, we need to break the status
between the upper and lower arms of the ring [5,9]. It can
be done in many ways: either by considering unequal lengths
of a perfect junction or by introducing impurities in different
arms of a lengthwise symmetric junction or by both.

For the calculation of currents in different sectors, first we
have to properly define the bond currents, and it is always easy
to start with a simple linear geometry (for instance, see Fig. 2).
In this chainlike geometry, the bond current Ii→i+1 between
any two adjacent sites i and (i + 1) can be expressed as [34,35]

Ii→i+1(V ) =
∫

Ji→i+1(E ) dE , (2)

FIG. 2. A nanojunction with a linear conductor having three
atomic sites.

where Ji→i+1(E ) is the bond current density. This expression
is equally valid for any geometry, be it a chain or any other
shaped conductor. Now, when we stick to the linear chain
model, the bond current should be exactly identical to that of
the transport current [6,33], defined as [34]

IT (V ) = 2e

h

∫
T (E ) dE , (3)

where T (E ) is the transmission function. From Eqs. (2) and
(3), we get the condition Ji→i+1 = 2T (setting e = h = 1).
The factor 2 appears due to spin degeneracy. This is the
fundamental relation to define bond current density in a linear
geometry [6,33], and we will extend it accordingly to calcu-
late currents in different segments of any geometrical-shaped
conductor of our interest.

The scenario becomes more tricky and interesting as well
when we consider spin degree of freedom. Under this situ-
ation, the above relation becomes Ji→i+i,σ = Tσ where σ =
↑,↓. Depending on pure spin transmission and spin-flip trans-
mission, we will have different spin-dependent bond currents.
Below, we summarize the properties of spin-dependent bond
current densities and their conservation conditions (following
the same physics as used for the spinless case [6,33]) consid-
ering a simple setup shown in Fig. 2 and that can be easily
generalized for other complicated junctions as well.

Case I. In absence of spin-flip transmission:
(a) When spin-flip transmission is absent, the relations

between different spin-dependent current densities with
transmission components are as follows. Ji→i+1,↑↑ = T↑↑,
Ji→i+1,↓↓ = T↓↓, and Ji→i+1,↑↓ = Ji→i+1,↓↑ = T↑↓ = T↓↑ =
0 ∀ i. Thus, as an example, we can write these rela-
tions for Fig. 2 as J1→2,↑↑ = J2→3,↑↑ = T↑↑ and J1→2,↓↓ =
J2→3,↓↓ = T↓↓. And, the spin-flipped terms are J1→2,↑↓ =
J2→3,↑↓ = J1→2,↓↑ = J2→3,↓↑ = T↑↓ = T↓↑ = 0. Here, all the
spin-dependent current densities in different bonds are con-
served.

Case II. In presence of spin-flip transmission:
(a) In presence of spin-flip transmission, different com-

ponents behave as follows. Ji→i+1,↑↑ �= T↑↑, Ji→i+1,↓↓ �=
T↓↓, Ji→i+1,↑↓ �= T↑↓, Ji→i+1,↓↑ �= T↓↑ ∀ i. Thus, for the
two bonds shown in Fig. 2 we get J1→2,↑↑ �= J2→3,↑↑ �=
T↑↑, J1→2,↓↓ �= J2→3,↓↓ �= T↓↓, J1→2,↑↓ �= J2→3,↑↓ �= T↑↓, and
J1→2,↓↑ �= J2→3,↓↑ �= T↓↑. Here, individual components are
no longer conserved for different bonds.

(b) Another interesting observation is that for a particular
bond Ji→i+1,↑↓ becomes identical with Ji→i+1,↓↑ in that spe-
cific bond, but they vary from bond to bond, i.e., Ji→i+1,σσ ′ is
no longer identical with Ji+1→i+2,σσ ′ .

(c) When we combine spin-flip transmissions along with
pure spin transmission, we get conserved quantities for each
distinct bond. They are prescribed as follows. Total up-spin
current density Ji→i+1,↑↑ + Ji→i+1,↓↑ = T↑↑ + T↓↑ ∀ i. Simi-
larly, for down-spin electrons, the current density Ji→i+1,↓↓ +
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FIG. 3. A nanojunction with a linear conductor in presence of
dephasing electrodes. The (dephasing) electrodes are connected at
all sites of the conductor except the end sites where source and drain
electrodes are attached.

Ji→i+1,↑↓ = T↓↓ + T↑↓ ∀ i. So, for the bonds 1 and 2 we
get the relations J1→2,↑↑ + J1→2,↓↑ = J2→3,↑↑ + J2→3,↓↑ =
T↑↑ + T↓↑ for up-spin electrons and for down-spin electrons
the conditions are J1→2,↓↓ + J1→2,↑↓ = J2→3,↓↓ + J2→3,↑↓ =
T↓↓ + T↑↓.

Here, we would like to note that in the above expressions,
the first term in the subscripts of J and T is used for the inci-
dent spin, while the second one for the transmitting electron.
All these relations are equally valid even in the presence of
disorder and environmental dephasing.

III. THEORETICAL FORMULATION OF CIRCULAR
SPIN CURRENT

Our ultimate goal is to develop a suitable theory for defin-
ing spin-dependent circular current in a nanojunction having
a loop geometry in presence of impurities and environmental
dephasing. To do that, we proceed in three steps. First, we try
to formulate the (effective) bond current density in presence of
dephasing for the spinless case considering a linear geometry
(described in Sec. III A), which is always easy to understand.
Second, we extend the idea for the same system considering
spin degree of freedom (available in Sec. III B). Finally, we
apply the idea into a ringlike geometry to have spin current
density and thus spin circular current (discussed in Sec. III C).

From the conservation relations analyzed above it is clear
that the bond current densities are directly linked to the
transmission functions. Thus, to get bond currents, we need to
find transmission coefficients. Several methods are there like
waveguide theory [36–39], transfer-matrix method [23,40,41],
and Green’s function approach [34,35,42] through which
transmission probability can be calculated, and in this work,
we opt the waveguide theory based on nearest-neighbor TB
model.

A. Formulation of current density in a 1D chain in presence of
dephasing for the spinless case

Let us start with Fig. 3 where a one-dimensional (1D)
nonmagnetic (NM) chain (it can also be called as channel)
is coupled to source (S) and drain (D) electrodes along with
the Büttiker probes. All these electrodes are assumed to be
perfect, NM, and semi-infinite. The Hamiltonian for the entire
system becomes

H = HC + HS + HD +
∑

i

HB + HT , (4)

where HC , HS , HD, and
∑

i HB represent the Hamiltonians for
the channel (C), S, D, and the Büttiker probes (B), respec-
tively. The general form of TB Hamiltonian for these subsys-
tems in the nearest-neighbor hopping (NNH) approximation
looks like

Hα =
∑

εαc†
ncn +

∑
(c†

ntαcn−1 + c†
n−1tαcn), (5)

where α = C, S, D, and B. For all the electrodes, we refer tα =
t0 and it is tC for the channel C. In the absence of any voltage
bias, we call εα = ε0 for the electrodes, while for the channel
C, it becomes εi (i be the site index). These site energies get
modified as long as the bias is included, and the dependence
of these energies on bias can be clearly understood from our
forthcoming analysis. The last term, HT , of Eq. (4) describes
the tunneling Hamiltonian due to the coupling of the channel
with S, D, and dephasing leads, and it is also expressed in the
usual TB form.

To calculate transmission probability and circular current
density, we solve a set of coupled linear equations originated
from the time-independent Schrödinger equation H |ψ >=
EI|ψ >, where |ψ〉 represents the wave function and I is
the identity matrix. Now, for the multiterminal setup, shown
in Fig. 3, we need to consider three different cases taking
separately any one among the source, dephasing lead-1 and
lead-2 as the incoming lead, while the other two including
the drain as the outgoing leads. First, we consider S as the
input lead and, thus, transmitting electrons will be collected
by all the other leads. In this case, the coupled equations for
the perfect conductor look like [33,38]

(E − ε0 − Vb)(1 + ρ(S) ) = tSc(1,S) + t0(e−ik(S)a

+ ρ(S)e
ik(S)a),

(E − ε − Vb)c(1,S) = tS (1 + ρ(S) ) + tCc(2,S),(
E − ε − 2

3
Vb

)
c(2,S) = tCc(1,S) + tCc(3,S)

+ ητ(S→B1)e
ik(B1)a,(

E − ε − 1

3
Vb

)
c(3,S) = tCc(2,S) + tCc(4,S)

+ ητ(S→B2)e
ik(B2)a,

(E − ε)c(4,S) = tCc(3,S)

+ tDτ(S→D)e
ik(D)a,

(E − ε0)τ(S→D)e
ik(D)a = tDc(4,S)

+ t0τ(S→D)e
2ik(D)a,(

E − ε0 − 2

3
Vb

)
τ(S→B1)e

ik(B1)a = ηc(2,S)

+ t0τ(S→B1)e
2ik(B1)a,(

E − ε0 − 1

3
Vb

)
τ(S→B2)e

ik(B2)a = ηc(3,S)

+ t0τ(S→B2)e
2ik(B2)a.

(6)
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Here, we assume that a plane wave with unit amplitude is
injected from the source end. The parameters tS , tD, and η rep-
resent the coupling between S-to-C, C-to-D, and channel-to-
dephasing lead, respectively. The symbols ρ and τ correspond
to the reflection and transmission amplitudes, respectively.
The meaning of different equations and the appearance of
some other factors like Vb, 2/3Vb, 1/3Vb along with the wave
vectors (viz., k(S), k(D), etc.) can be understood explicitly
as follows. To get bias-induced circular current, we need to
apply a finite bias across the conductor, and at the same
time we have to impose the condition that the net current
through each dephasing electrode (Büttiker probe) is zero. To
have this zero-current condition for the dephasing electrodes,
the voltages (say) Vi (in ith electrode) should be adjusted
accordingly. These voltages (Vi) can easily be derived from the
Landauer-Büttiker current expression [34,35] of each virtual
lead, and noting the voltage drop at different lattice sites.
Suppose a bias Vb is applied between the real electrodes, i.e.,
VS = Vb and VD = 0 (VS and VD are the voltages associated
with S and D). Then, for the four-site chain geometry shown
in Fig. 3, the voltage at site 1, where S is connected, will
be Vb and it will be zero at site 4, where D is attached.
Assuming identical voltage drop, as the voltage difference
(VS − VD) is shared into three bonds (for four-site chain),
we can find the voltages Vi at different lattice sites of the
chain. Thus, at site 1, the voltage becomes Vb, and for sites
2, 3, and 4 the voltages are 2/3Vb, 1/3Vb, and 0, respectively.
Setting the bias voltage in this fashion (viz., 2/3Vb, 1/3Vb)
across the virtual electrodes, we can impose the zero-current
condition. This prescription can easily be generalized for any
N-site chain as clearly demonstrated earlier by several groups
[29–31,34,35,43,44]. In presence of nonzero bias between S
and D as the electrochemical potentials of different electrodes
(real and virtual) are different [45], the site energies of the
electrodes get shifted by constant factors associated with the
voltages and, accordingly, the wave vectors K(S), K(D), K(B1),
and K(B2) are modified. The site energies of the bridging con-
ductor (viz., channel C) get modified following the bias drop
along the chain. All these factors are incorporated properly in
different site equations of Eq. (6), and they are now voltage
dependent (for comprehensive analysis, see Refs. [46–48]).

Solving the set of coupled equations given in Eq. (6), we
get the voltage-dependent transmission probability at different
electronic energies at the drain electrode, i.e., T(S→D) and the
bond current density between the sites i and i + 1 of the
channel. These are respectively expressed as

T(S→D) = |τ(S→D)|2 (7)

and

J(i→i+1,S) = (2e/h̄)Im[tC C∗
(i,S)C(i+1,S)]

(2e/h̄)(1/2)t0 sin(k(S)a)

= 2 Im[tC C∗
(i,S)C(i+1,S)]

t0 sin(k(S)a)
. (8)

The term in the denominator of Eq. (8) corresponds to the
incident current density [5,33]. The subscript S in the above
current density expression is used to denote that Eq. (8) is
derived when the source (S) acts as the input lead. For the

other input leads we replace S by appropriate symbols as can
be understood from our forthcoming formulation.

Now, we move to the other case, where the lead-1 (Büt-
tiker probe) acts as the input lead. For this case the coupled
equations are expressed as given in Appendix A, and solving
Eq. (A1) we compute T(B1→D) and J(i→i+1,B1), similar to what
we do in Eqs. (7) and (8). Similarly, considering the other
Büttiker probe (viz., lead-2) as an input lead we evaluate
T(B2→D) and J(i→i+1,B2) solving the set of coupled equations
[Eq. (A2)] as described in Appendix A.

Following these mathematical steps we calculate the trans-
mission probabilities and current densities at different seg-
ments for three different input conditions. We ultimately want
to find an effective expression of current density for the full
system with the help of current densities of different regions
in the presence of dephasing.

Under the condition that the current through each Büttiker
probe is zero, we can express the net transmission probability
for the setup given in Fig. 3 as [29–31,43]

T = TS→D +
∑

i

T(i→D)
Vi

Vb

= T(S→D) + T(B1→D)
2

3
+ T(B2→D)

1

3
, (9)

where the ratio Vi/Vb is determined from the above analysis.
For an N-site conductor, this expression will be extended
accordingly.

Now, in presence of the Büttiker probes we define the
current density in any arbitrary bond connecting the sites i
and (i + 1) as

J(i→i+1) =
∑

j=S,B1,B2

J(i→i+1, j). (10)

From the current conservation conditions, we will have the
following relations between the transmission probabilities and
current densities of different bonds of the junction configura-
tion given in Fig. 3:

2T(S→D) = J(1→2),

2T(B1→D) = J(2→3) − J(1→2),

2T(B2→D) = J(3→4) − J(2→3). (11)

It is well known that for a strictly 1D chain J should always
be identical with 2T [5,33] (where the factor 2 comes due to
spin degeneracy). Thus, combining Eqs. (9) and (11), we get
the effective expression of J in presence of dephasing in the
form

J = J(1→2) + (J(2→3) − J(1→2)) 2
3

+ (J(3→4) − J(2→3)) 1
3 (12)

which is utilized to find the current density in a four-site chain
as prescribed in Fig. 3.

The above expression of J can routinely be extended
for any arbitrary 1D chain having N lattice sites where the
dephasing leads are connected at all the sites except the
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FIG. 4. Ring nanojunction with dephasing electrodes, where the
red and green colors are used to indicate the upper and lower arms
of the ring, respectively. A net circular charge (spin) current (Ic(s)) is
established in presence of a finite bias V .

boundary ones (like what is shown in Fig. 3), and it reads as

J = J(1→2) +
N−1∑
i=2

[J(i→i+1) − J(i−1→i)]
Vi

Vb
. (13)

B. Formulation of current density in a 1D chain in presence of
dephasing considering spin degree of freedom

Now, we consider the spin degree of freedom to generalize
the above prescription for the same setup as taken in Fig. 3.
Similar to the spinless case, here also we will have three
different cases based on the choices of the leads among the
source and two dephasing leads as the input one. For each
input lead, we have two distinct cases depending on which
spin (up and down) of electron gets injected [39].

First, we consider the source S as the input lead. We
modify Eq. (6) in the spin basis to have the required sets (both
for up- and down-spin incidences) of coupled equations, as
prescribed in Appendix B.

In the same footing, we consider the dephasing leads one
by one as the input terminal, and modify Eqs. (A1) and
(A2), accordingly, in the spin basis. Solving these sets of
equations, we get all the required coefficients to evaluate
the spin-dependent current densities at different segments.
Finally, we define the net up- and down-spin current densities
as J↑ = J↑↑ + J↓↑ and J↓ = J↑↓ + J↓↓, respectively, where
Jσσ ′ is evaluated following the similar kinds of steps given
in Eqs. (8), (10), and (12). The expressions can be general-
ized further for any N-site system following the mechanism
given in Eq. (13). Using J↑ and J↓ we define the net charge
and spin current densities as Jc = J↑ + J↓ and Js = J↑ − J↓,
respectively.

C. Circular current in a 1D ring

Utilizing the above concept, we can now determine the
current density and circular current in a nanojunction having
a ringlike geometry. Figure 4 illustrates such a junction set
up with dephasing electrodes. Like earlier, here also the

dephasing leads are connected at all the sites of the ring except
the points where S and D are attached. We call these two
points as NS and ND, respectively. Let Ju

σ and Jl
σ are the current

densities in the upper and lower arms of the ring, respectively.
For the ring system, as two arms are there we need to consider
proper weight factors in order to calculate the circular current
density. It is defined as

Jσ = f uJu
σ + f l Jl

σ , (14)

where f u and f l are the weight factors for the upper and lower
arms, respectively. For a general N-site ring, these factors
are f u = (ND − 1)/N and f l = (N − ND + 1)/N (here, we fix
NS = 1). Thus, for a symmetrically connected ring junction
f u = f l = 1

2 . The meaning of Eq. (14) can be simplified by
looking into the setup presented in Fig. 4. Here, a six-site ring
is taken into account where S and D are connected in such
a way that the upper and lower arms contain five sites (i.e.,
four bonds) and three sites (i.e., two bonds). The scheme is
as follows: imagine we have now two sets, where one set is
a linear junction of five sites with NS = 1, ND = 5, and the
dephasing leads are attached at the sites 2, 3, and 4. On the
other hand, the other set, which is also linear, contains three
sites where S and D are coupled at the two edges of the chain
and the dephasing lead is attached at the middle point. Now,
both for these two sets we determine the current densities
following the steps given in the above two subsections (A
and B) of this section, to get Ju

σ and Jl
σ . Using these current

densities, we eventually calculate Jσ following the relation
given in Eq. (14). Here, it is important to note that the above-
mentioned two sets associated with the upper and lower arms
of the ring are no longer decoupled with each other. When
a bias is applied among S and D, an identical voltage drop
(VS − VD) takes places at the ends of the two arms (viz., upper
and lower) of the ring as they are connected in parallel. For
the junction configuration given in Fig. 4, this voltage (i.e.,
VS − VD) is shared into four bonds for the upper arm, while
it is shared into two bonds for the lower arm. Therefore,
we can easily calculate Vi/Vb for the two arms following the
arguments as described above (Sec. III B).

Once the spin-dependent circular density is found using
Eq. (14), the net circular current Iσ at a bias voltage V can
be obtained from the relation [5,6,9]

Iσ (V ) =
∫ EF + eV

2

EF − eV
2

Jσ (E ) dE , (15)

where EF is the equilibrium Fermi energy.
Finally, to check which spin-dependent circular current

is dominating in a particular bias window, we can define a
quantity called as circular spin polarization as [22]

P = I↑ − I↓
I↑ + I↓

, (16)

where P can be positive, or negative, or even zero.

IV. ACCURACY OF THE ANALYSIS

Before analyzing the results, it is important to check the
accuracy of our theoretical prescription, based on which all
the results are evaluated. In our prescription, we assume
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FIG. 5. Currents in different Büttiker probes together with the
drain current as a function of voltage bias for a similar kind of
conducting junction as shown in Fig. 3. Here, we consider a six-site
chain (N = 6), where the Büttiker probes are connected at the sites
2, 3, 4, and 5, respectively. The currents are computed for a wide bias
window setting the equilibrium Fermi energy EF = 0. The current in
the drain electrode is represented by the red line, while for the four
Büttiker probes, connected at the sites 2, 3, 4, and 5 of the chain,
the currents are described by the four different colors (green, blue,
magenta, and black) though they are not distinctly visible due to
almost overlap of these probe currents.

a linear dependence of the bias drop, and accordingly we
determine the Büttiker voltages, though the finding of Büttiker
voltages is somewhat nontrivial as it is a nonlinear problem.
To validate our linear approximation, in Fig. 5 we compute
currents in all the Büttiker probes together with the drain
current, considering a six-site linear conductor like what is
given in Fig. 3. Two different cases are shown depending
on the strength of η, and in both the cases clearly we see
that the drain current (red curve) is much higher compared
to the currents obtained in the Büttiker probes, even at
much higher voltage bias. Thus, we can emphasize that our
approximation is quite good and can safely be utilized to
analyze the bias-induced current phenomena, in presence of
dephasing.

V. NUMERICAL RESULTS AND DISCUSSION

We analyze the results in two parts giving the emphasis
on (1) circular current in a ring nanojunction in presence of
Büttiker probes for the spinless case and then (2) extension
of it in presence of spin-dependent interaction. To explore
the spin-dependent phenomena, a clear understanding of spin-
independent case is definitely required.

Before starting to analyze the results, let us mention the
parameter values that are common throughout the discussion.
In the absence of any voltage bias, we set ε0 = 0, and for
the perfect ring εi = 0 ∀ i, without loss of any generality.

FIG. 6. Charge current density Jc as a function of energy E
for the (a) ordered (W = 0) and (c) disordered (W = 0.5) rings, at
some typical dephasing strengths (η) where the red, green, blue, and
magenta curves correspond to η = 0, 0.1, 0.2, and 0.3, respectively.
The enlarged version of the dashed framed regions of (a) and
(c) are shown in (b) and (d), respectively, for better viewing of the
curves. Here, we choose N = 6, and connect the source and drain
electrodes at sites 1 and 5, respectively. Here, we set the voltage bias
at 0.4 V.

These site energies are modified in the presence of finite bias,
following the prescription stated earlier. The impurities in the
ring are included by choosing εi in the form of a correlated
disorder one like [49–53] εi = W cos(2πbi), where W mea-
sures the impurity strength and b is an irrational number.
We set b = (1 + √

5)/2 (golden mean), although any other
irrational number can equally be taken into account. Instead
of “correlated” disorder, one can also consider “uncorrelated”
(random) site energies to explore the effect of disorder, but
in that case we take the average over a large number of
distinct disordered configurations. To avoid it, here we ignore
random distribution, and with this consideration no physical
picture will be changed in the context of this study. W = 0
corresponds to the perfect ring. The hopping integrals are t0 =
2, tC = 1, and tS = tD = 0.5. All the energies are measured in
units of electron volt (eV). The system temperature and the
equilibrium Fermi energy EF are fixed at zero. For the entire
calculation, we couple the source electrode at site 1 of the ring
(viz., NS = 1).

A. In absence of spin-dependent interaction

This section focuses on the characteristic properties of
circular charge current density (which sometimes may also
be referred as charge current density without always recalling
the term “circular” for better readability), current densities in
different segments along with transmission probability, in a
ring nanojunction.

1. Charge current density, transmission probability,
and related issues

Let us start with Fig. 6 where the variation of Jc as a
function of energy E is shown both for the ordered and
disordered cases at some typical values of dephasing strength
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FIG. 7. Charge current densities in upper (red line) and lower
(green line) arms of the ring for the (a) ordered and (b) disordered
cases, in the absence of dephasing. The other physical parameters and
ring-electrode junction configuration are kept unchanged as taken in
Fig. 6.

η. Several interesting features are observed, especially across
the peaks and dips. To reveal these facts, we choose a region,
shown by the dashed frame region, from each of the spectra
given in Figs. 6(a) and 6(c), and the enlarged versions of these
two regions are placed in the bottom row of Fig. 6, for better
clarity of different colored curves. Apparently. what we see
from Figs. 6(a) and 6(c) that four picks and dips appear in
each of the spectra. All these picks and dips are associated
with the allowed energy channels of the system. But, actually
the ring junction will have six resonant energy channels since
we set N = 6 which yields six distinct energy eigenvalues. For
the ordered isolated ring the eigenvalues are −2, −1, −1, +1,
+1, and +2, i.e., the levels having eigenenergies +1 or −1
are twofold degenerate, while the other two (i.e., +2 and −2)
are nondegenerate. The energy channels associated with these
eigenenergies get shifted with the inclusion of contact leads to
the ring and/or adding impurities in the ring. Thus, from the
information of discrete energy levels of the isolated rings, the
approximate locations of the picks and dips can be estimated.
A basic question that appears at this stage is that why no such
peak or dip is observed at the other two energies, i.e., around
±2. To explain this fact, let us look into the spectra given in
Fig. 7 where the current densities in the upper and lower arms
of the ring are shown. Here, we set η = 0, and with this result
the nonvanishing behavior of Jc at some typical energies for
finite η can also be understood. A tiny peak across E = ±2
appears for one arm, while a dip of almost equal strength
is observed due to the other arm at these same energies of
disorder-free ring [Fig. 7(a)]. Naturally, around at E = ±2,
vanishingly small contribution in Jc is obtained which is not
visible in open eye from Fig. 6(a). Interestingly, we see that at
the other energies the current densities for both the two arms
have identical sign (+ve or −ve), and hence it results in a net
circular current density. An identical scenario is also observed
for the disordered ring, apart from an overall suppression
of the charge current densities in the arms [Fig. 7(b)]. This
reduction is associated with the disorder in the ring. From
these results we can conclude that the sign reversal of current
densities at the two extreme energy levels remains the same
for both the ordered and disordered rings, which yields almost
zero contribution toward Jc.

Now, concentrate on the spectra given in Figs. 6(b) and
6(d). It is well known that transport current always decreases
with disorder, whereas, for the case of circular current, the
situation may be something different. The net circular current

FIG. 8. Transmission-energy spectra for the ordered and disor-
dered cases considering the identical parameter values as taken in
Fig. 6. The spectra shown in (b), (c), and (e) are the enlarged version
of T -E curves within some suitable energy windows.

for a bias voltage is obtained by integrating the current density
Jc(E ), over the energy window associated with the bias.
Naturally, asymmetric nature of Jc generates more current.
For the energy window shown in Fig. 6(b) it is seen that a
dip is followed by a neighboring peak and thus whenever
we integrate over this energy window, the current will def-
initely decrease as it is the resultant contribution of picks
and dips. For exactly equal and opposite contributions from
different energy levels, the net current should be zero due
to their mutual cancellations. An interesting feature noticed
from Fig. 6(d) is that for the disordered case there is a finite
possibility to have phase (i.e., sign of Jc) reversal in presence
of η, and thus instead of decreasing current with dephasing
(as usually observed for the conventional transport current),
one can get enhanced current since the successive peaks
are of identical sign. Similar kind of enhancement can also
be obtained for the perfect case, in presence of dephasing,
depending on the junction configuration and other physi-
cal parameters, which will be understood from our further
analysis.

The nature of peaks and dips of circular current density
(i.e., magnitude and sign) can be understood from the vari-
ation of transmission function. The results are presented in
Fig. 8. Both for the ordered and disordered cases, large
transmission appears for the two end energy levels; those are
nondegenerate always for the isolated ring (be it ordered or
disordered), where the peak height almost reaches to 2 (the
factor 2 comes due to spin degeneracy). It means that at
these energies transfer of electron is almost 100% and, hence,
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FIG. 9. Dependence of Jc on ring size N for some specific values
of η, connecting the drain electrode at the end atomic site (ND = N)
of the ring. Here, we set E = 0, W = 0, and Vb = 0.4 V. The red,
green, blue, and magenta lines correspond to η = 0, 0.1, 0.2, and
0.3, respectively.

very less contribution is obtained toward circular current,
which is associated with the confining of electrons within the
ring geometry. At these resonant energies, dephasing makes
a suppression of peak heights which is clearly reflected by
comparing the curves shown in Fig. 8(c) (zoomed region for a
specific energy window across E = −2). Across the energies
E =∼ ±0.8, other many interesting features are observed and
they become more fascinating in presence of dephasing. To
reveal these facts, now focus on the spectra given in Figs. 8(b)
and 8(e), those are zoomed versions of T -E spectra over a
selective energy window for ordered and disordered cases,
respectively. For W = 0, antiresonance appears around at E =
±0.8 in the absence of dephasing, where the transmission
probability drops exactly to zero. This is the generic behavior
of an asymmetrically connected interferometric geometry, and
has also been been discussed in other contemporary works
[5,6,54]. The antiresonant states disappear as long as dephas-
ing leads are included (η �= 0), and the most interesting thing
is that the height of the transmission peaks gets increased with
η [see Fig. 8(b)]. This enhancement of transmission leads to
the reduction of circular current, as expected. The situation
is somewhat complicated when W is finite. Looking carefully
into Fig. 8(e), it is seen that for the two neighboring peaks, the
effect of η is completely opposite. For one peak, the height
decreases with η, while it gets increased for the other one.
This is solely associated with the interplay between disorder
and dephasing. As a result of this, there is a finite possibility to
have phase reversal of Jc at some typical energies which yields
higher circular current, instead of its conventional reduction.

2. Size dependence and effect of ring-electrode interface geometry

As quantum interference has significant impact on such
properties (i.e., nature of circular current), it is therefore
important to know how Jc depends on the system size as well
as different ring-drain configurations. This section essentially
focuses on that.

Figure 9 describes the dependence of Jc on ring size N .
To have maximum contribution on Jc, we couple the source
and drain electrodes in the most asymmetric configuration.
A pronounced oscillation with N is observed both for the
dephasing-free ring (red curve) and the ring with dephasing
(green, blue, and magenta curves). The oscillation is solely

FIG. 10. Effect of ring-to-drain configuration on Jc at some
typical values of η for the bias voltage 0.4 V, where (a) N = 38
(even) and (b) N = 39 (odd). Starting from the half-length of the
ring, we move the drain electrode toward the end site of the ring.
Here, we fix W = 0. The meanings of four different colored curves
are the same as described in Fig. 9.

associated with the quantum interference among electronic
waves passing through different arms of the junction. Interest-
ingly, what we see at lower dephasing strength (η = 0.1, 0.2),
Jc gets much higher peak in most of the cases compared to
the dephasing-free ring, which clearly proves that one can get
much higher circular current in presence of dephasing and it
persists up to a reasonable ring size. For large enough η, as
the interference effect gets reduced, the overall envelope of
Jc gradually decreases which is reflected by comparing the
curves shown in Fig. 9.

Figure 10 describes the dependence of ring-to-drain config-
uration on Jc. Two different cases are considered depending
on the ring size N , odd and even; those are presented in
Figs. 10(a) and 10(b), respectively. Starting from the half-
length of the ring, we gradually move the drain electrode
toward the N th site of the ring to examine the characteristics of
Jc. All these results are computed for a typical energy E = 0,
although any other energy can also be selected. Both for even
and odd N , an oscillating nature is obtained, and the amplitude
of oscillation strongly depends on the oddness and evenness
of N .

So eventually what we get from Figs. 9 and 10 that,
Jc is significantly influenced by quantum interference effect
involving ring-electrode junction configuration and dephasing
parameter η.

3. Critical roles of η and W on circular current density

In order to have more clear signature of η on Jc, we show
the dependence of |Jtyp

c | as a function of η by varying it
in a wide range, considering a ring of size N = 8. Three
different cases are considered depending on ND, and the
results are presented in Fig. 11. |Jtyp

c | is obtained by taking the
“maximum” absolute value of Jc over the full allowed energy
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FIG. 11. Variation of |Jtyp
c | as a function of dephasing strength

for three different drain-ring positions, considering an eight-site
perfect ring. The voltage bias is the same as taken in Fig. 10.

window. In all the three cases, the overall signature of |Jtyp
c |-η

curve looks identical, which suggests that for large enough
η, circular current is no longer available. This is essentially
because of the fact that for large η, phase randomization
becomes so strong which nullifies the effect of quantum
interference.

Finally, we concentrate on Fig. 12, where the critical
role of impurities on |Jtyp

c | is shown. The interplay between
dephasing (η) and disorder (W ) is very interesting as clearly
reflected in the spectra. For η = 0, |Jtyp

c | increases suddenly
and also rapidly decreases with W , and it shows some irreg-
ular oscillation. With increasing η, the fluctuation gradually
decreases and almost ceases to zero for higher η. This
is expected as quantum fluctuations get diminished with η

because of the phase randomization. The key feature is that
here an enhancement of current density is observed, that

FIG. 12. Role of disorder on |Jtyp
c | for a symmetrically connected

junction considering the same bias as taken in Fig. 10. The oscillation
in current density gradually decreases with η. The ring size is kept
unchanged as taken in Fig. 11.

will provide higher circular current, with impurity strength,
which is no longer possible in the case of transport current
(viz., the junction current) for the conventional disordered
systems.

B. In presence of spin-dependent interaction

Following the above analysis, now we can explain the
spin-dependent phenomena and examine the critical role of
dephasing, disorder, and ring-to-electrode junction configura-
tions, etc., as the basic mechanisms are already discussed for
the interaction-free ring nanojunction.

To discuss spin-dependent features, we need to include
spin-dependent scattering effect [39,55–59] in the system and
that can be done in several ways. For instance, by considering
a magnetic quantum ring or by using a Rashba ring, or
by some other ways. In our discussion, we concentrate on
the magnetic quantum ring where the ring contains finite
magnetic moments having strength hi at each lattice site, and
their orientations can be described by the polar and azimuthal
angles θi and ϕi, respectively, as used in a conventional
polar coordinate system. Due to these magnetic sites, a spin-
dependent interaction �hi · �σ appears in the Hamiltonian which
yields an effective site energy term [39,55,56] (εi − �hi.�σ ).
The rest part of the Hamiltonian will be unchanged. Here,
�σ (=σx, σy, σz) is the Pauli spin vector, and we assume
σz is diagonal. Instead of magnetic quantum ring, one can
also use Rashba ring or a junction with other kinds of spin-
dependent scattering mechanisms, and the Hamiltonian will
be changed accordingly. Our mathematical description can be
well applied for any such systems.

In what follows, we present our results for the spin-
dependent case. For this entire section we choose hi = h,
θi = θ , and ϕi = 0 for all sites i, as a matter of simplification.

1. Spin-dependent circular current, circular current densities, and
spin circular current

Let us start with the spin-dependent circular current [I↑
and I↓, evaluated by using Eq. (15)] in a perfect magnetic
quantum ring. The results are shown in Fig. 13 for some
typical values of dephasing strength η considering a six-site
ring where the drain electrode is connected at the fifth site.
Several noteworthy features are observed from the spectra
Fig. 13. At first glance, we see that for a wide bias window
the current becomes zero, and the other notable thing is that
here both the increasing and decreasing natures of current
with voltage can be obtained. This reduction of current with
bias is not usually observed for the case of conventional
transport current, which always gets enhanced, provided NDR
effect [60] is not there. We explain these phenomena as
follows. The circular current is computed by integrating the
current density over a suitable energy window associated with
finite-bias voltage. For a specific bias when no energy level
appears in the energy window, no contribution will be there
which results in vanishing current. With increasing the bias,
the energy window gets wider, and now if any energy level
falls within this window, a finite current appears. When more
energy levels are accommodated, all of them contribute and
a net current is the sum of all these contributing energy
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FIG. 13. Iσ -V characteristics for different η considering a six-site
magnetic quantum ring with θ = π/4, h = 0.5, and W = 0. We
connect the drain at site number 5 (i.e., ND = 5). Here, the red,
green, blue, and magenta lines correspond to η = 0, 0.1, 0.2, and
0.3, respectively.

channels, which thus can be either mutually canceled with
each other or may be a finite one, as different energy channels
are contributing current in different directions (+ve and −ve).
Here, it is important to note that unlike conventional transport
current, circular current can have both positive and negative
signs depending on the contributing currents.

Along with the above facts, more interesting patterns are
also observed when we include impurities in the system.
To reveal these facts, look into the spectra given in Fig. 14
where the up- and down-spin currents are shown for a six-site
disordered ring setting W = 0.5. For a wide voltage, bias
currents are very small, associated with the appearance of the
contributing energy channels, and beyond that regime, current
increases rapidly with the bias. The notable thing is that for
a large voltage region, the magnitudes of both I↑ and I↓ in
the disordered ring are very large compared to the perfect
one, which can be clearly noticed by comparing the spectra
shown in Figs. 13 and 14. This is solely associated with the
current density profile of the junction. For the ordered case
the resonant picks and dips are comparatively symmetric than
the disordered one. More symmetric picks and dips naturally
produce lesser net current. Thus, to have higher circular
current, we need to have more asymmetric current density
profile. So, what emerges from Fig. 14 is that, in presence
of disorder, higher spin-dependent current can be obtained in
different voltage windows. At the same time, it is also possible
to have one phase of current (+ve or −ve) for a wide bias
voltage.

FIG. 14. Same as Fig. 13 with W = 0.5.

From the variations of I↑ and I↓, as given in Figs. 13 and
14, an obvious question arises as to how spin circular current
Is(= I↑ − I↓) varies as a function of bias voltage. The answer
is given in Fig. 15, where we show the variation of spin
current for the same junction setup as taken in Fig. 14. The
interplay between the disorder and environmental dephasing
is undoubtedly interesting. The complete phase reversal along
with enhancement of spin current can be achieved by selec-
tively choosing the bias voltage and other physical parameters
describing the system.

From the above discussion it is now clear that a situation
may happen when in one arm the up-spin current dominates
the down-spin current, whereas the phenomenon gets reversed
in the other arm. The best performance can be achieved
when the less contributing spin currents are fully suppressed,
so that different arms will carry pure spin currents without
mixing between I↑ and I↓. Under this situation, information
can be transferred selectively through different segments of a
nanojunction having multiple paths. Figure 16 describes such
a possibility, where we show the variation of |I↑| − |I↓| in
the two different arms at some typical values of dephasing

FIG. 15. Dependence of spin circular current (Is = I↑ − I↓) on
bias voltage V for the identical setup as taken in Fig. 14. The four
different colored curves have the identical meaning as prescribed in
Fig. 13.

165408-10



BIAS-INDUCED CIRCULAR SPIN CURRENT: EFFECTS … PHYSICAL REVIEW B 100, 165408 (2019)

FIG. 16. Difference between up- and down-spin currents in up-
per and lower arms of the ring as a function of bias voltage for a
symmetrically connected six-site ring at different values of η. Here,
we choose W = 0.5, h = 0.5, and θ = π/4. Different colored curves
represent the similar meaning as prescribed in other figures.

strength η, where the meaning of different colored curves is
the same as described earlier. The dephasing factor affects the
current in different ways in the two arms. In the upper arm,
the magnitude of |I↑| − |I↓| gets increased with η, while an
opposite scenario is noticed in the other arm. These features
are reflected in the net circular spin current.

2. Polarization coefficient

Finally, we discuss the phenomenon of polarization coef-
ficient P that is calculated by using Eq. (16) to understand
which one among I↑ and I↓ dominates for different input
conditions. The results are shown in Fig. 17. Let us first con-
centrate on Fig. 17(a). It is clearly seen that the polarization
is significantly influenced by the dephasing strength η. For a
fixed drain position, P can be changed in a wide range, and in
some cases it may even reach to 100%. At the same time, for

FIG. 17. (a) Polarization coefficient P as a function of η. The
physical parameters are: N = 6, W = 0.5, h = 0.5 and θ = π/6.
Here we set ND = 5 and compute the currents at 0.5 V. (b) P as a
function of ND for a 40-site ring with η = 0. Here the bias voltage is
fixed at 0.25 V. All the other parameters are same as in (a).

a fixed η, a complete phase reversal of P can also be made
by altering the drain position ND. Thus, the interplay between
the environmental dephasing and ring-to-electrode junction
configuration is extremely important to have the polarization
or more precisely to characterize spin-dependent circular
currents. The role of ND is further examined by changing it
in a wider range considering a bigger ring [see Fig. 17(b)].
The overall conclusion remains the same. Under certain input
conditions, we can have net circular current completely due to
one component among I↑ and I↓), circumventing the mixing
between them.

VI. CONCLUDING REMARKS

We have proposed a concept of bias-induced circular cur-
rents in a ring nanojunction in presence of impurities and
environmental dephasing where dephasing is introduced in the
form of Büttiker probes, that may open up the possibilities of
designing spintronic devices and proper spin regulation. We
have given a detailed theoretical prescription for calculating
spin-dependent current density satisfying all the conservation
rules in presence of phase randomizing leads. Our analysis can
be generalized in any system with any kind of spin-dependent
scattering. The theoretical prescription in presence of phase
randomizing leads has not been discussed, even in the context
of charge circular current, so far in literature to the best of our
knowledge.

We have critically examined the characteristic features
of current densities, branch currents, circular currents, and
polarization both in absence and presence of spin-dependent
interaction, and discussed thoroughly the interplay between
the impurities and dephasing on these quantities. The key
findings are summarized as follows:

(i) The energy levels for which electronic transmission is
very high, close to the ballistic nature, the contribution toward
circular current is too small due to less confining within the
loop.

(ii) Even for the disordered case, a high degree of en-
hancement in current along with the phase reversal is possible
with η. Although for large enough η current should vanish due
to complete phase randomization.

(iii) The circular current is highly sensitive to the ring-
electrode junction configuration. A pronounced oscillation
has been observed.

(iv) Finally, from the analysis of polarization co-efficient
P, it can be inferred that under certain physical conditions
circular current is possible purely due to I↑ or I↓, avoiding
any mixing between them.
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APPENDIX A: COUPLED EQUATIONS TO CALCULATE
TRANSMISSION PROBABILITY AND CURRENT DENSITY

IN ABSENCE OF SPIN DEGREE OF FREEDOM,
CONSIDERING THE BÜTTIKER PROBES AS THE INPUT

LEADS

For the setup presented in Fig. 3, let us consider the lead-1
(Büttiker probe) as the input lead. Under this situation, the
coupled equations are expressed as follows:

(E − ε0 − Vb)τ(B1→S)e
ik(S)a = tSc(1,B1)

+ t0τ(B1→S)e
2ik(S)a,

(E − ε − Vb)c(1,B1) = tSτ(B1→S)e
ik(S)a

+ tCc(2,B1),(
E − ε − 2

3
Vb

)
c(2,B1) = tCc(1,B1) + tCc(3,B1)

+ η(1 + ρ(B1)),(
E − ε − 1

3
Vb

)
c(3,B1) = tCc(2,B1) + tCc(4,B1)

+ ητ(B1→B2)e
ik(B2)a,

(E − ε)c(4,B1) = tCc(3,B1)

+ tDτ(B1→D)e
ik(D)a,

(E − ε0)τ(B1→D)e
ik(D)a = tDc(4,B1)

+ t0τ(B1→D)e
2ik(D)a,(

E − ε0 − 2

3
Vb

)
(1 + ρ(B1)) = ηc(2,B1) + t0(e−ik(B1)a

+ ρ(B1)e
ik(B1)a),(

E − ε0 − 1

3
Vb

)
τ(B1→B2)e

ik(B2)a = ηc(3,B1)

+ t0τ(B1→B2)e
2ik(B2)a.

(A1)

Similarly, the coupled equations for the other Büttiker probe
(viz., lead-2), which can act as the input lead, are as follows:

(E − ε0 − Vb)τ(B2→S)e
ik(S)a = tSc(1,B2)

+ t0τ(B2→S)e
2ik(S)a,

(E − ε − Vb)c(1,B2) = tSτ(B2→S)e
ik(S)a

+ tCc(2,B2),(
E − ε − 2

3
Vb

)
c(2,B1) = tCc(1,B2) + tCc(3,B2)

+ ητ(B2→B1)e
ik(B1)a,(

E − ε − 1

3
Vb

)
c(3,B2) = tCc(2,B2) + tCc(4,B4)

+ η(1 + ρ(B2)),

(E − ε)c(4,B2) = tCc(3,B2)

+ tDτ(B2→D)e
ik(D)a,

(E − ε0)τ(B2→D)e
ik(D)a = tDc(4,B2)

+ t0τ(B2→D)e
2ik(D)a,(

E − ε0 − 2

3
Vb

)
τ(B2→B1)e

ik(B1)a = ηc(2,B2)

+ t0τ(B2→B1)e
2ik(B1)a,(

E − ε0 − 1

3
Vb

)
(1 + ρ(B2)) = ηc(3,B2) + t0(e−ik(B2)a

+ ρ(B2)e
ik(B2)a). (A2)

So, bond current densities between the sites i and i + 1, when
the Büttiker probes B1 and B2 are taken as input leads, are

J(i→i+1,B1) = (2e/h̄)Im[tC C∗
(i,B1)C(i+1,B1)]

(2e/h̄)(1/2)t0 sin(k(B1)a)

= 2 Im[tC C∗
(i,B1)C(i+1,B1)]

t0 sin(k(B1)a)
(A3)

and

J(i→i+1,B2) = (2e/h̄)Im[tC C∗
(i,B2)C(i+1,B2)]

(2e/h̄)(1/2)t0 sin(k(B2)a)

= 2 Im[tC C∗
(i,B2)C(i+1,B2)]

t0 sin(k(B2)a)
, (A4)

respectively.

APPENDIX B: COUPLED EQUATIONS TO CALCULATE TRANSMISSION PROBABILITY AND CURRENT DENSITY IN
PRESENCE OF SPIN DEGREE OF FREEDOM, CONSIDERING THE SOURCE AS THE INPUT LEAD

For the junction configuration given in Fig. 3, the set of coupled equations, in presence of spin degree of freedom, considering
source S as the input lead where electrons with up spin are injected, can be expressed as follows:

[(
E 0
0 E

)
−

(
ε0 + Vb 0

0 ε0 + Vb

)](
1 + ρ↑↑(S)

ρ↑↓(S)

)

=
(

t0 0
0 t0

)(
e−ika + ρ↑↑(S)eik(S)a

ρ↑↓(S)eik(S)a

)
+

(
tS 0
0 tS

)(
c↑↑(1,S) 0

0 c↑↓(1,S)

)
,

[(
E 0
0 E

)
−

(
ε + Vb 0

0 ε + Vb

)](
c↑↑(1,S) 0

0 c↑↓(1,S)

)

=
(

tS 0
0 tS

)(
1 + ρ↑↑(S)

ρ↑↓(S)

)
+

(
tC 0
0 tC

)(
c↑↑(2,S) 0

0 c↑↓(2,S)

)
,
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[(
E 0
0 E

)
−

(
ε + 2

3Vb 0
0 ε + 2

3Vb

)](
c↑↑(2,S) 0

0 c↑↓(2,S)

)

=
(

tC 0
0 tC

)(
c↑↑(1,S) 0

0 c↑↓(1,S)

)
+

(
tC 0
0 tC

)(
c↑↑(3,S) 0

0 c↑↓(3,S)

)
+

(
η 0
0 η

)(
τ↑↑(S→B1)eik(B1)a

τ↑↓(S→B1)eik(B1)a

)
,

[(
E 0
0 E

)
−

(
ε + 1

3Vb 0
0 ε + 1

3Vb

)](
c↑↑(3,S) 0

0 c↑↓(3,S)

)

=
(

tC 0
0 tC

)(
c↑↑(2,S) 0

0 c↑↓(2,S)

)
+

(
tC 0
0 tC

)(
c↑↑(4,S) 0

0 c↑↓(4,S)

)
+

(
η 0
0 η

)(
τ↑↑(S→B2)eik(B2)a

τ↑↓(S→B2)eik(B2)a

)
,

[(
E 0
0 E

)
−

(
ε 0
0 ε

)](
c↑↑(4,S) 0

0 c↑↓(4,S)

)

=
(

tC 0
0 tC

)(
c↑↑(3,S) 0

0 c↑↓(3,S)

)
+

(
tD 0
0 tD

)(
τ↑↑(S→D)eik(D)a

τ↑↓(S→D)eik(D)a

)
,

[(
E 0
0 E

)
−

(
ε0 0
0 ε0

)](
τ↑↑(S→D)eik(D)a

τ↑↓(S→D)eik(D)a

)

=
(

tD 0
0 tD

)(
c↑↑(4,S) 0

0 c↑↓(4,S)

)
+

(
t0 0
0 t0

)(
τ↑↑(S→D)e2ik(D)a

τ↑↓(S→D)e2ik(D)a

)
,

[(
E 0
0 E

)
−

(
ε0 + 2

3Vb 0
0 ε0 + 2

3Vb

)](
τ↑↑(S→B1)eik(B1)a

τ↑↓(S→B1)eik(B1)a

)

=
(

η 0
0 η

)(
c↑↑(2,S) 0

0 c↑↓(2,S)

)
+

(
t0 0
0 t0

)(
τ↑↑(S→B1)e2ik(B1)a

τ↑↓(S→B1)e2ik(B1)a

)
,

[(
E 0
0 E

)
−

(
ε0 + 1

3Vb 0
0 ε0 + 1

3Vb

)](
τ↑↑(S→B2)eik(B2)a

τ↑↓(S→B2)eik(B2)a

)

=
(

η 0
0 η

)(
c↑↑(3,S) 0

0 c↑↓(3,S)

)
+

(
t0 0
0 t0

)(
τ↑↑(S→B2)e2ik(B2)a

τ↑↓(S→B2)e2ik(B2)a

)
. (B1)

Similarly, for the down-spin incidence the equations are

[(
E 0
0 E

)
−

(
ε0 + Vb 0

0 ε0 + Vb

)](
ρ↓↑(S)

1 + ρ↓↓(S)

)

=
(

t0 0
0 t0

)(
ρ↓↑(S)eik(S)a

e−ika + ρ↓↓(S)eik(S)a

)
+

(
tS 0
0 tS

)(
c↓↑(1,S) 0

0 c↓↓(1,S)

)
,

[(
E 0
0 E

)
−

(
ε + Vb 0

0 ε + Vb

)](
c↓↑(1,S) 0

0 c↓↓(1,S)

)

=
(

tS 0
0 tS

)(
ρ↓↑(S)

1 + ρ↓↓(S)

)
+

(
tC 0
0 tC

)(
c↓↑(2,S) 0

0 c↓↓(2,S)

)
,

[(
E 0
0 E

)
−

(
ε + 2

3Vb 0
0 ε + 2

3Vb

)](
c↓↑(2,S) 0

0 c↓↓(2,S)

)

=
(

tC 0
0 tC

)(
c↓↑(1,S) 0

0 c↓↓(1,S)

)
+

(
tC 0
0 tC

)(
c↓↑(3,S) 0

0 c↓↓(3,S)

)
+

(
η 0
0 η

)(
τ↓↑(S→B1)eik(B1)a

τ↓↓(S→B1)eik(B1)a

)
,

[(
E 0
0 E

)
−

(
ε + 1

3Vb 0
0 ε + 1

3Vb

)](
c↓↑(3,S) 0

0 c↓↓(3,S)

)

=
(

tC 0
0 tC

)(
c↓↑(2,S) 0

0 c↓↓(2,S)

)
+

(
tC 0
0 tC

)(
c↓↑(4,S) 0

0 c↓↓(4,S)

)
+

(
η 0
0 η

)(
τ↓↑(S→B2)eik(B2)a

τ↓↓(S→B2)eik(B2)a

)
,

[(
E 0
0 E

)
−

(
ε 0
0 ε

)](
c↓↑(4,S) 0

0 c↓↓(4,S)

)

=
(

tC 0
0 tC

)(
c↓↑(3,S) 0

0 c↓↓(3,S)

)
+

(
tD 0
0 tD

)(
τ↓↑(S→D)eik(D)a

τ↓↓(S→D)eik(D)a

)
,
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[(
E 0
0 E

)
−

(
ε0 0
0 ε0

)](
τ↓↑(S→D)eik(D)a

τ↓↓(S→D)eik(D)a

)

=
(

tD 0
0 tD

)(
c↓↑(4,S) 0

0 c↓↓(4,S)

)
+

(
t0 0
0 t0

)(
τ↓↑(S→D)e2ik(D)a

τ↓↓(S→D)e2ik(D)a

)
,

[(
E 0
0 E

)
−

(
ε0 + 2

3Vb 0
0 ε0 + 2

3Vb

)](
τ↓↑(S→B1)eik(B1)a

τ↓↓(S→B1)eik(B1)a

)

=
(

η 0
0 η

)(
c↓↑(2,S) 0

0 c↓↓(2,S)

)
+

(
t0 0
0 t0

)(
τ↓↑(S→B1)e2ik(B1)a

τ↓↓(S→B1)e2ik(B1)a

)
,

[(
E 0
0 E

)
−

(
ε0 + 1

3Vb 0
0 ε0 + 1

3Vb

)](
τ↓↑(S→B2)eik(B2)a

τ↓↓(S→B2)eik(B2)a

)

=
(

η 0
0 η

)(
c↓↑(3,S) 0

0 c↓↓(3,S)

)
+

(
t0 0
0 t0

)(
τ↓↑(S→B2)e2ik(B2)a

τ↓↓(S→B2)e2ik(B2)a

)
. (B2)

The factors τσσ ′ and ρσσ ′ used in these expressions correspond to the transmission and reflections amplitudes, respectively, for
an electron with spin σ which is transmitted and/or reflected as spin σ ′.
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