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We investigate the electronic physics of layered Ni-based trichalcogenide NiPX3 (X = S, Se), a member of
transition metal trichalcogenides (TMTs) with the chemical formula ABX3. These Ni-based TMTs distinguish
themselves from other TMTs as their low energy electronic physics can be effectively described by the two eg

d orbitals. The major band kinematics is characterized by the unusual long-range effective hopping between
two third nearest-neighbor (TNN) Ni sites in the two-dimensional Ni honeycomb lattice so that the Ni lattice
can be equivalently viewed as four weakly coupled honeycomb sublattices. Within each sublattice, the electronic
physics is described by a strongly correlated two-orbital graphene-type model that results in an antiferromagnetic
(AFM) ground state near half-filling. We show that the low energy physics in a paramagnetic state is determined
by the eight Dirac cones which locate at K , K ′, K

2 , and K ′
2 points in the first Brillouin zone with a strong AFM

fluctuation between two K (K ′) and K ′
2 ( K

2 ) Dirac cones and carrier doping can sufficiently suppress the long-
range AFM order and allow other competing orders, such as superconductivity, to emerge. The material can be
an ideal system to study many exotic phenomena emerged from strong electron-electron correlation, including a
potential d ± id superconducting state at high temperature.
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I. INTRODUCTION

Since the discovery of graphene [1] a decade ago, two-
dimensional (2D) materials have been a research frontier
for both fundamental physics and practical device applica-
tions [2,3]. Transition metal trichalcogenides (TMTs) with
the chemical formula ABX3 (X = S, Se, Te), which were
known more than a century ago [4,5], are layered van der
Waals (vdW) materials. Recently, this family of materials
has attracted great research attention as potential excellent
candidates to explore 2D magnetism for novel spintronics
applications.

All the members in the family of ABX3 materials are
built on a common structural unit, (P2X6)4− (X=S, Se, Te)
anion complex. However, the cation atom A is rather flexible,
ranging from vanadium to zinc (A = V, Cr, Mn, Fe, Co,
Ni, Zn, etc.) in the row of the 3d transition metal, partial
alkaline metal in group-II, and some other metal ions. As
shown in Figs. 1(a) and 1(b), the cation is coordinated with
six chalcogen anions to form an octahedra complex. In the
two-dimensional layer, the cation forms a graphene-type hon-
eycomb lattice. The transition metal trichalcogenides exhibit
a variety of intriguing magnetically ordered insulating states
[6]. Recently, under high pressure, FePSe3 can also become a
superconductor [7].

Among this family of materials, the Ni-based trichalco-
genides can carry intriguing electronic physics, such as strong
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charge-spin coupling [8], because of the following reasons.
First, as the transition metal cation and chalcogen anions form
an octahedral complex, the 3d orbitals of the transition metal
are divided into high energy eg and low energy t2g groups.
In the case for Ni which has eight electrons in the 3d shell,
the t2g orbitals are fully occupied and the two eg orbitals
are half-filled as shown in Fig. 1(c). The t2g orbitals are
inactive. The Ni-based trichalcogenides should be described
by a relatively simpler low energy effective model than other
materials. Second, unlike a two-dimensional square lattice,
a honeycomb lattice easily exhibits a Dirac-cone type of
energy dispersion [9]. Near half-filling, both a one-orbital
model, such as graphene [1], and two-orbital models [10,11]
in the honeycomb lattice are featured with Dirac points near
Fermi energy. With the strong electron-electron correlation
in the 3d orbitals, the Ni-based trichalcogenide thus can be
a candidate of strongly correlated Dirac electron systems.
It is worth mentioning that a recent major research effort
has aimed to increase the electron-electron correlation in
graphene [12], in which flat bands have to be engineered to
observe correlation effects because of p orbitals. Finally, both
density functional theory (DFT) calculation and experimental
measurements have suggested that the Ni honeycomb lattice
forms the zigzag antiferromagnetic insulating ground state
featured as double parallel ferromagnetic chains being anti-
ferromagnetically (AFM) coupled [6,13]. The material offers
a promising platform to study the interplay between the low
energy Dirac electronic physics and the magnetism. Such an
interplay is believed to be responsible for many important

2469-9950/2019/100(16)/165405(11) 165405-1 ©2019 American Physical Society

https://orcid.org/0000-0001-7996-6198
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.165405&domain=pdf&date_stamp=2019-10-04
https://doi.org/10.1103/PhysRevB.100.165405


GU, ZHANG, LE, LI, XIANG, AND HU PHYSICAL REVIEW B 100, 165405 (2019)

P

S/Se

M

ge

2gt

8d

(a) (c)

(b)

x

y M

FIG. 1. (a) The crystal structures of the monolayer NiPX3 (X =
S, Se) (space group P − 31m). (b) The top view of the monolayer
NiPX3. (c) The octahedral crystal field splitting of Ni atoms.

phenomena, for example, high temperature superconductivity
in both cuprates and iron-based superconductors [14,15].

In this paper we show that the Ni-based TMTs are Dirac
materials with strong electron-electron correlation. Their low
energy electronic physics can be entirely attributed to the two
eg d orbitals with a band kinematics dominated by the unusual
“long-range” hoppings between two third nearest-neighbor
(TNN) Ni sites in the Ni honeycomb lattice. Thus, the original
Ni lattice can be divided into four weakly coupled honeycomb
sublattices. Within each sublattice, the electronic physics is
described by a strongly correlated two-orbital graphene-type
model. The couplings between four sublattices, namely, the
nearest-neighbor (NN) and the second NN (SNN) hoppings
in the original lattice, can be adjusted by applying external
pressure or chemical methods. In the absence of the strong
electron-electron correlation, the low energy physics is de-
termined by the eight Dirac cones which locate at K (K ′)
and three nonequivalent pairs of K

2 ( K ′
2 ) points in the first

Brillouin zone. In the presence of strong electron-electron
correlation, strong AFM interactions arise between two NN
sites within each honeycomb sublattice. Namely, in view of
the original honeycomb lattice, the strong AFM interactions
only exist between two TNN sites. Near half-filling, Dirac
cones are gapped out by the long-range AFM order. Using
the standard slave-boson approach, we show that the doping
can sufficiently suppress the long-range AFM order. In a wide
range of doping, a strong AFM fluctuation can exist between
the Dirac cones and a d ± id superconducting state can be
developed.

It is interesting to make an analogy between the above
results and those known in high temperature superconductors,
cuprates, and iron-based superconductors. For the latter, it is
known that the dominant AFM interactions are between two
NN sites in cuprates and between two SNN sites in iron-based
superconductors, which are believed to be responsible for
the d-wave and the extended s-wave pairing superconducting

states, respectively [14–16]. All these AFM interactions are
generated through superexchange mechanism. Thus, the Ni-
based TMTs, having the AFM interactions between two TNN
sites, can potentially provide the ultimate piece of evidence
to settle superconducting mechanism in unconventional high
temperature superconductors.

This paper is organized as follows. In Sec. II we briefly
review transition metal phosphorous trichalcogenides and
specify our DFT computation methods for magnetism and
band structures. In Sec. III we analyze the band structure of
the paramagnetic states, derive the tight-binding Hamiltonian,
and discuss the low energy physics near Fermi surfaces. In
Sec. IV we calculate the magnetic states of the materials and
derive the effective magnetic exchange coupling parameters.
In Sec. V we use the slave-boson mean-field method to derive
the phase diagram upon doping and discuss the possible
superconducting states. In the last section, we make summary
and discussion.

II. TRANSITION METAL PHOSPHOROUS
TRICHALCOGENIDES

The MPX3 metal phosphorous trichalcogenides (M = Mg,
Sn, Sc, Mn, Fe, Co, Ni, Cd, etc. and X = S, Se) are a famous
family of 2D van der Waals (vdW) materials [2,3]. The
bulk MPX3 crystal consists of AA-stacked or ABC-stacked
single-layer assemblies which are held together by the vdW
interaction. The vdW gap distance of the MPX3 with 3d
transition metal elements is about 3.2 Å, much wider than
the well studied MoS2-type 2D vdW materials [17], which
indicates that the vdW interaction in MPX3 is relatively weak.
The monolayer structure of MPX3 is constructed by MX6

edge shared octahedral complexes. Similar to the MoS2-type
MX2 materials, the monolayer MPX3 can be considered as
the monolayer MX2 with one third of M sites substituted by
P2 dimers, i.e., MPX3 can be considered as M2/3(P2)1/3X2.
Thus, the triangle lattice in MX2 transforms to the honeycomb
lattice in MPX3 with the P2X4−

6 anions being located at the
center of the honeycomb. The P-P and P-X bond lengths indi-
cate that the P-P and P-X bonds are covalent bonds in P2X2−

6
anions. As the transition metal atoms are in an octahedral
environment, the five d orbitals are split into two groups, eg

and t2g, as shown Fig. 1(c).
With the weak vdW interaction, the essential electronic

physics in MPX3 is determined within a monolayer. In fact,
the atomically thin FePS3 layer has been experimentally syn-
thesized [18]. In this paper we mainly study the electronic
physics in the monolayer MPX3 structures. Without further
specification, our study and calculations are performed in the
monolayer structures as shown in Figs. 1(a) and 1(b).

Our DFT calculation is performed for the monolayer
MPX3 structures together with built-in 20 Å thick vacuum
layers. We employ the Vienna ab initio simulation package
(VASP) code [23] with the projector augmented wave (PAW)
method [24] to perform the DFT calculations. The Perdew-
Burke-Ernzerhof (PBE) [25] exchange-correlation functional
was used in our calculations. Throughout this work, the
kinetic energy cutoff (ENCUT) is set to be 500 eV for ex-
panding the wave functions into a plane-wave basis and the �-
centered k mesh is 16 × 16 × 1 for the nonmagnetic unit cell.
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TABLE I. The optimized and experimental structural parameters for MPX3 (space group P−31m). The optimized results are in the lowest
energy magnetic states. The AFM-zigzag/stripy order slightly breaks hexagonal symmetry.

System a (Å) M-X (Å) P-X (Å) P-P (Å) M-X-M (deg)

MnPS3, opt (AFM-Neel) 6.05 2.60 2.04 2.21 84.3
MnPS3, exp [19] 6.08 2.63 2.03 2.19 83.9
FePS3, opt (AFM-zigzag) 5.87/5.94 2.47/2.51/2.56 2.04/2.05 2.20 83.2/90.6
FePS3, exp [19] 5.94 2.55 2.02 2.19 84.7
CoPS3, opt (AFM-stripy) 5.77 2.34 2.08/2.09 2.19 90.8/90.9
CoPS3, exp [20] 5.91 2.51 2.04 2.17 85.5
NiPS3, opt (AFM-zigzag) 5.82 2.44 2.05 2.18 87.1/87.2
NiPS3, exp [21] 5.82 2.50 1.98 2.17 84.4
NiPSe3, opt (AFM-zigzag) 6.17 2.54 3.45/3.46 2.22 89.1/89.4
NiPSe3, exp[22] 6.13 2.61 2.09 2.24 85.2

The energy convergence criterion is 10−6 eV. All structures
are fully relaxed while forces are minimized to less than
0.01 eV/Å with the lowest energy magnetic states. The op-
timized and experimental structural parameters of the MPX3

are listed in Table I. In the study of an effective Hamiltonian,
we employ Wannier90 [26] to calculate the hopping parame-
ters of the tight-binding model. In the study of magnetism of
MPX3, the GGA plus on-site repulsion U method (GGA+U )
in the formulation of Liechtenstein et al. [27] is employed
to describe the associated electron-electron correlation ef-
fect. The effective Hubbard U (Ueff) is defined by Ueff =
U − JHund. In order to describe different magnetic orders,
we build 2 × 1 × 1 supercell and the k mesh is 8 × 16 × 1,
correspondingly.

III. ELECTRONIC BAND STRUCTURES AND THE
TIGHT-BINDING MODEL FOR Ni-TRICHALCOGENIDES

In Fig. 2 we plot the band structures of NiPS3 and NiPSe3,
which are similar to each other. From Fig. 2 it is clear that the
five d-orbital bands are divided into two groups separated by a
large crystal field splitting energy. The groups at the high and
low energy are attributed to the two eg and three t2g orbitals,
respectively. The bands from t2g orbitals are completely filled
while the four bands from the two eg orbitals are close to
half-filling. This is consistent with the fact that the Ni2+

cations are six-coordinated with an octahedral geometry and
the d8 configuration in Ni2+ contributes two electrons to the

FIG. 2. Electronic band structures of (a) NiPS3 and (b) NiPSe3.
The orbital characters of bands are represented by different colors.

two eg orbitals. The physics near Fermi energy is controlled
by the two eg dxz/yz orbitals. It is also worth noting that the
contribution of the S/Se-p orbitals is considerable, especially
near � point, which indicates strong d-p hybridization. As
shown in Fig. 2, d-p hybridization is stronger in NiPSe3 than
in NiPS3.

Similar to the single orbital band structure in graphene,
the two eg orbital bands are featured by Dirac points as well.
Here, there are eight Dirac points which locate at K and K ′
points, as well as around K/2 and K ′/2 points along �-K
line as shown in Fig. 2. These Dirac points are rather robust.
To show the robustness, we analyze the symmetric character
of the bands, namely, their irreducible representations. The
two crossing bands along �-K line belong to A1 and A2

irreducible representations, and the bands at K points belong
to E irreducible representation. Thus, the Dirac points are
protected by the symmetry as the bands belong to different
representations.

In order to capture the two-dimensional electronic physics
near the Fermi level, we construct the tight-binding Hamil-
tonian based on the two eg orbitals. The Hamiltonian can be
written as

H0 =
∑

k

ψ
†
k hkψk, (1)

where the basis ψ
†
k = (a†

xk, a†
yk, b†

xk, b†
yk ) and

hk =
(

ωk − μ γk

γ
†
k ωT

k − μ

)
, (2)

with μ being the chemical potential and

ωk =
∑

j

e−ik·a2j T SNN
j , (3)

γk =
∑

j

e−ik·a1j T NN
j + e−ik·a3j T TNN

j . (4)

Here a†
xk (b†

yk ) is the electron annihilator operator of orbital
xz (yz) in the usual A (B) sublattice of the honeycomb lattice
and vectors a1, a2, a3 are the first, second, and third neighbor
vectors. T i

j = C3 jT iC−1
3 j is the ith neighbor hopping matrix

via the bond along i j bond direction, and C3 j is the threefold
rotation operation to the i j direction relative to the initial
setting. T i(i = NN, SNN, TNN) is the hopping matrix with
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TABLE II. The NN, SNN, and TNN hopping parameters and
the bandwidths for NiPS3 and NiPSe3; xz and yz represent the band
indexes of the hopping parameters. The bandwidths are from DFT
results.

NiPS3 NiPSe3

tNN
xzxz (eV) −0.054936 −0.059669

tNN
yzyz (eV) −0.026945 −0.001719

tSNN
xzxz (eV) 0.020904 0.034843

tSNN
yzyz (eV) −0.017221 −0.017351

tSNN
xzyz (eV) 0.006165 0.014114

tTNN
xzxz (eV) −0.017912 −0.021366

tTNN
yzyz (eV) 0.232421 0.218275

eg bandwidth (eV) 1.13 1.23

the direction marked in Fig. 3(a):

T i =
(

t i
xzxz t i

xzyz

−t i∗
xzyz t i

yzyz

)
. (5)

By the lattice symmetry, tNN
xzyz = tTNN

xzyz = 0. We will use eV
as the energy unit for all hopping parameters. The results
of NiPS3 and NiPSe3 are similar, as shown in Table II. The
explicit formula of the Hamiltonian is given in Appendix A.
Here we focus on the results of NiPS3.

It is interesting to notice that the leading term in the
above Hamiltonian is tTNN

yzyz , the TNN σ -bond hoppings as
shown in Fig. 3(a), which is almost one order of magnitude
larger than the other hopping parameters, namely, the NN
and SNN hopping parameters. Thus, we can consider these
TNN hoppings as the dominant hopping parameters and treat
other hoppings as perturbations. In Fig. 4(a) we plot the band
dispersion with only the TNN hopping parameters. With only
these TNN hoppings, the original Ni honeycomb lattice is
divided into four decoupled sublattices as shown in Fig. 3(b).
Within each honeycomb sublattice, the model is identical to
the one previously studied in an ultracold atomic honeycomb
lattice with two degenerate p orbitals [10,11]. As shown in
Fig. 4(a), there are two completely flat bands and two disper-
sive bands. The flat bands stem from the localized binding
and antibinding molecular orbitals [10]. The two dispersive

(b)(a)

FIG. 3. (a) The three NN, SNN, and TNN hopping parameters
marked by the green, brown, and black dashed arrows, respectively,
and the zigzag AFM order with on-site red/blue arrows indicating
spin up/down. (b) The four honeycomb sublattices.
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FIG. 4. The effect of different hopping parameters on the band
structure and Dirac points. (a) The band dispersion with only the
leading TNN hopping tTNN

yzyz . (b) The band dispersion with all hopping
parameters: the green, purple, and black arrows represent the motion
of the band and Dirac points by increasing the NN, SNN, and TNN
hopping parameters, respectively.

bands create the eight Dirac points. With only these TNN
hoppings, the second pair of Dirac points are exactly located
at K/2 and K ′/2 points. This pair is simply created through
the Brillouin zone folding because of the sublattice structure.
Thus, the presence of the two pairs of Dirac points underlines
the sublattice structure.

The dominance of the tTNN
yzyz in NiPX3 can be understood

from the lattice chemistry. The Ni-eg orbitals are strongly
coupled with S/Se-p orbitals. These effective hoppings are
mediated through the central P2X4−

6 anion. For the NN hop-
pings, two NN Ni atoms are in two edge shared MX6 octahe-
dral complexes. As the Ni-X-Ni angle is close to 90◦, the NN
indirect hopping through X is very small. The SNN effective
hopping is mediated by two S/Se atoms which separately lo-
cate in the top and bottom layers. The coupling between these
two S/Se atoms is weak due to the long distance around 3.8
Å between them, which explains the weak SNN hoppings. By
contrast, the TNN σ hopping parameter is mediated through
two S/Se atoms in the same layer.

The effects of other hopping parameters on Dirac points
and band structures are indicated in Fig. 4(b), in which the
arrows represent the motion of Dirac points and band struc-
tures when the corresponding hopping parameters increase.
More specifically, the weak third neighbor π -bond hoppings
tTNN
xzxz neither affect the Dirac cones at K and K/2, nor the

band degeneracy points at � and M. They only affect the flat
bands in Fig. 4(a) far away from Fermi energy. The flat bands
turn to disperse when tTNN

xzxz increases. Therefore, in the weak
hopping region, the low energy physics near Fermi surfaces
are not affected by the third neighbor π -bond hoppings. The
weak second nearest-neighbor hoppings, tSNN

xzxz and tSNN
yzyz , shift

the Dirac points at K/2 and K vertically. By increasing these
hoppings, the two Dirac points shift in opposite directions by
a shift ratio equal to 3 as indicated by the purple arrows in
Fig. 4(b). The weak NN hoppings tNN

xzxz and tNN
yzyz do not affect

the Dirac cone at K because of the symmetry protection from
the C3, time reversal, and inversion symmetries. However, it
drags the K/2 Dirac cone along �-K line as indicated by the
green arrows in Fig. 4(b). Band crossing points D3 and D4 are
also dragged along the direction indicated by the green arrows
in Fig. 4(b).

The Fermi surfaces at the different doping levels are shown
in Fig. 5. Without the SNN hoppings, the model gives Dirac
semimetals at half-filling. Thus, the tiny pockets at half-filling
shown in Fig. 5 stem from very small SNN hoppings. Due to
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FIG. 5. Fermi surfaces and nesting vectors. The electron pockets
and hole pockets are marked by red and green, respectively. The
insets from top to bottom are Fermi surfaces at three doping levels,
0.1 (electron), −0.1 (hole), and 0.5 (electron) per Ni atom with
respect to the half-filling, corresponding to formula x = (n − 4)/2
with n the total electrons in each unit cell. In (a), nesting vectors Q1

and Q2 are depicted.

charge conservation, the area of electron pockets at K/2 are
three times smaller than those hole pockets at K . In principle,
with very small hole doping, strong nesting can take place
between the electron and hole pockets at K and K ′/2, respec-
tively, but not at K and K/2, by taking into consideration of
the shapes of Fermi pockets. By increasing hole (electron)
doping, both pockets at K and K/2 become hole (electron)
pockets. When the doping reaches around 0.3 carriers per
Ni atoms, there is a Lifshitz transition of Fermi surfaces,
namely, the two pockets emerging together to become one
Fermi surface.

From the above Fermi surface topology, we can consider
the possible Fermi surface nesting in a paramagnetic state.
Near half-filling, the nesting vector is given by Q1 = G/2,
half of the reciprocal lattice vector, as highlighted in Fig. 5.
This vector is exactly the ordered magnetic wave vector in
the AFM zigzag state. We calculate the spin susceptibility
under random phase approximation (RPA), with the same
method and notations specified in literature [28,29]. The result
is plotted in Fig. 6 for several different doping levels. Clearly
the susceptibility peak emerges at M (Q1) near half-filling.
Below the critical doping at the Lifshitz transition, the peak
is well preserved, indicating the existence of strong AFM
fluctuations. For a two-dimensional honeycomb lattice with
hexagonal symmetry, there are six type-II van Hove (VH)
saddle points near K/2 at the doping level of 0.35 electron per
Ni atom. These type II VH singularities with an insufficiently
nested Fermi surface (FS) result in the divergence of spin sus-
ceptibility at Gamma point, as shown in Fig. 6(d). Generally,
doping close to type-II VH singularity, triplet pairing could
compete with singlet pairing in the system [30].

IV. MAGNETIC EXCHANGE COUPLING PARAMETERS
AND THE AFM ZIGZAG STATE

Without doping, MPX3 are known to be magnetic insula-
tors [2,3,13,31]. As the magnetic moments are localized at
the transition metal atoms, the magnetism can be captured by
an effective Heisenberg model with local magnetic moments.
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FIG. 6. Bare (dashed blue line) and RPA (solid red line) spin
susceptibility for different doping levels: (a) half-filling, (b) 0.1,
(c) −0.1, and (d) 0.35 (Liftshiz point where K and K/2 pockets
connect). Here the on-site energy U = 0.3 eV and Hund’s coupling
Jh = 0.2U is adopted, similar to Ref. [28]. Resonance apexes appear
around the nesting vector Q1 (M) and Q2 (K/2) marked in Fig. 5.

As the effect of the spin-orbital coupling is generally small
for eg orbitals, we expect an isotropic Heisenberg model.
Furthermore, from the lattice structure, it is obvious that the
minimum effective model should include NN, SNN, and TNN
magnetic exchange coupling parameters. Namely, the model
can be written as

H = J1

∑
〈i j〉NN

�Si · �S j + J2

∑
〈i j〉SNN

�Si · �S j + J3

∑
〈i j〉TNN

�Si · �S j . (6)

To extract the magnetic exchange coupling parameters, we
consider the following four different magnetic states: the fer-
romagnetic (FM) state, the AFM Neel state, the AFM zigzag,
and the AFM stripy for MPS3 (M = Mn, Fe, Co, Ni) which
have been synthesized experimentally. Those four magnetic
ordering arrangements are shown in the review [2]. The AFM
zigzag state is shown in Fig. 3(a). The results are shown in
Table III. We find that the AFM Neel state is favored for
MnPS3 and the AFM zigzag state is favored for CoPS3 and

TABLE III. The calculated ground state magnetic orders, mag-
netic moments, and the band gaps for monolayer MPS3 (M = Mn,
Fe, Co, Ni) using GGA+U (Ueff = 0 or 4 eV).

Ueff = 0 Ground state magnetic order Moment (μB) Gap (eV)

MnPS3 AFM Neel 4.23 1.32
FePS3 AFM zigzag 3.30 0.02
CoPS3 AFM zigzag 2.18 0.25
NiPS3 AFM zigzag 1.08 0.71

Ueff = 4 eV Ground state magnetic order Moment (μB) Gap (eV)

MnPS3 AFM Neel 4.52 2.27
FePS3 AFM Neel 3.57 1.96
CoPS3 AFM zigzag 2.58 1.83
NiPS3 AFM zigzag 1.46 1.88
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FIG. 7. (a) The band structure of NiPS3 in the AFM zigzag state. (b) J3 superexchange AFM interactions in MPS3 (M = Mn, Fe, Co, Ni),
which are extracted from the GGA+U calculations with the values Ueff = (0, 1, 2, 3, 4) eV.

NiPS3, which is generally consistent with the experimental
results in bulk MPS3 materials [6,32]. For FePS3, the AFM
zigzag state is favored when Ueff < 2 eV. Our DFT calculation
can give the insulating states even without considering Ueff.
With Ueff in GGA+U method, all four monolayer transi-
tion metal phosphorous trisulfides become AFM insulators,
as shown in Table III. As a typical example, we plot the
insulating band structure in the AFM zigzag state for NiPS3

in Fig. 7(a). The Mn, Fe, Co, and Ni atoms are in high spin
states and the magnetic moments slightly increase as Ueff

increases. For bulk materials, the experimental band gaps are
3.0, 1.5, and 1.6 eV for Mn, Fe, and Ni-based compounds,
respectively [2]. As shown in Table III, the calculated band
gaps by GGA+U at Ueff = 4 eV are quantitatively close to the
experimental values. Our calculated magnetic exchange pa-
rameters are also consistent with Wildes et al.’s experimental
results [33–35]. For NiPS3, the agreement can be quantitative.
In our calculation, the J1, J2, and J3 of NiPS3 are −3.41,
−0.22, and 14.24 meV with Ueff = 4 eV. In Lancon et al.’s
experimental paper [35], the reported values are −1.9, 0.1,
and 6.9 meV. However, the experimental values count each
pair twice so that we need to divide the calculated values by a
factor of 2 in order to compare with the experimental values,
which results in a quantitative agreement.

The classical energies of the four different magnetic states
for the effective Heisenberg model are given by

EFM = S2(6J1 + 12J2 + 6J3) + E0,

EAFM-Neel = S2(−6J1 + 12J2 − 6J3) + E0,
(7)

EAFM-zigzag = S2(2J1 − 4J2 − 6J3) + E0,

EAFM-stripy = S2(−2J1 − 4J2 + 6J3) + E0.

From the calculated energies of these states, we can extract
the effective magnetic exchange interactions. Those MPS3

compounds are in the high-spin states, so we take the spin
values to be the high spin of the atoms for simplicity. For
example, the Ni2+ ion has two unpaired electrons, so the
spin S = 1. The results are listed in Table IV. Some similar
results have been obtained previously [13]. Our calculation
are generally consistent with these previous calculations [13].

Here we pay special attention to the values in NiPX3. As
shown in Table IV, for NiPX3, among the three magnetic
exchange coupling parameters, J3 is one order of magnitude
larger than the other two parameters. Moreover, J3 is strongly
AFM while J1 and J2 both are weakly FM. These qualitative
features are independent of Ueff. The dominance of J3 over the
other two further confirms the extracted physical picture of the
weakly coupled four sublattices as shown in Fig. 3(b) based on
the hopping parameters in the electronic band structure.

J3 stems from so-called AFM super-superexchange inter-
action [6,31]. In Fig. 7(b) we plot the values of J3 as a
function of M (M = Mn, Fe, Co, Ni). In Fig. 7(b), it is clear
that J3 reaches the maximum value in NiPX3, which can be
easily understood as the hall-filling of eg orbitals maximize
the super-superexchange interaction.

V. THE TWO-ORBITAL t-J MODEL AND DOPING
PHASE DIAGRAM FOR NiPX3

From the above analysis and the known experimental facts
[6], it is clear that NiPX3 must belong to strongly correlated
electron systems. The bandwidth of the two eg orbitals is only

TABLE IV. The calculated exchange interaction parameters J1,
J2, and J3 for monolayer MPS3 (M = Mn, Fe, Co, Ni) and NiPSe3

using GGA+U (Ueff = 0 or 4 eV).

Ueff = 0 J1 (meV) J2 (meV) J3 (meV)

MnPS3 3.67 0.35 1.62
FePS3 −15.65 1.17 7.93
CoPS3 −17.41 9.92 3.04
NiPS3 −5.52 −0.38 45.50
NiPSe3 −9.26 −0.08 42.98

Ueff = 4 eV J1 (meV) J2 (meV) J3 (meV)

MnPS3 1.39 0.09 0.56
FePS3 1.39 0.15 1.32
CoPS3 −0.47 −0.19 2.96
NiPS3 −3.41 −0.22 14.24
NiPSe3 −3.62 0.51 16.06
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about 1 eV, much less than the band gaps in their AFM zigzag
states. Moreover, as we showed above, the experimental band
gaps are close to the theoretical results when we take Ueff ∼
4 eV, which is much larger than the bandwidth as well. Thus,
the magnetic order is caused by the strong electron-electron
correlation.

Following the standard argument, NiPX3, just like many
other strongly correlated electron systems, must be a Mott
insulator. As Ueff is much larger than the bandwidth, we can
take the large U limit to derive a t-J type of model. For NiPX3,
a minimum two-orbital t-J model can be written as

HtJ = P̂H0P̂ +
∑

i j

HJ,〈i j〉, (8)

where P̂ is the projection operator to remove the double
occupancy and HJ,〈i j〉 is the effective interaction. In a two-
orbital model, in general, we should consider a spin-orbital
Kugel-Khomskii type of superexchange interactions [36,37].
However, here, because the hopping is dominated by the TNN
σ couplings, in the first order approximation, the leading
interaction can be derived as

HJ,〈i j〉 = J3
(
Si,ī j · S j,ī j − 1

4 ni,ī jn j,ī j

)
, (9)

where 〈i j〉 is a TNN link, and Si,ī j and ni,ī j are the spin and
density operators of the electron located at the orbital which
participates σ hopping through the 〈i j〉 link at the ith site,
respectively.

Before we present a full mean-field calculation for the
above model, we would like to qualitatively argue possible
superconducting states. By decoupling the J3 AFM interaction
in the pairing channel, the Bogoliubov–de Gennes (BdG)
Hamiltonian in Nambu space �

†
k = (ψ†

k↑, ψT
k̄↓) for a uniform

superconducting state can be generally written as

hBk =
(

hk �k

�
†
k −hT

k̄

)
, �k =

(
0 	k

	T
k̄

0

)
, (10)

with k̄ ≡ −k and hk given in Eq. (2). Here the general form of
pairing matrix is

	k =
∑

j

e−ik·a3 j 	 je
ilθ j , (11)

where θ j is the angle of the TNN vector a3 j , 	 j is the two-
orbital pairing matrix on bonds connected by a3 j , and l is the
angular momentum quantum number of the order parameter,
with (l = 0,±2, . . . ) representing (s, d, . . . ) waves in the
singlet pairing channels.

If we only consider the σ bond hoppings, the electronic
structure is identical to an isotropic one-orbital honeycomb
model. In this case the real space pairing matrices reduce
to a constant number 	 j ∼ 	0 and the true gap can be
represented with G(k) = √

max(|	k|2, |	k̄|2). The 	k for the
d ± id wave and the extended s wave can be explicitly written
as

	s
k = 	0[e2iky + 2e−iky cos (

√
3kx )], (12)

	d±id
k = −	0

[
e2iky + 2e−iky cos

(√
3kx ± 2π

3

)]
. (13)

FIG. 8. (a) and (b) The amplitude distributions of the supercon-
ducting gap G(k) of the d ± id-wave and the extended s-wave states,
respectively. (c) and (d) The density of states in the d ± id-wave
and the extended s-wave states at a doping level, n = 3.8 and 4.2,
respectively, by taking 	0 = 0.3 and J3 = 40 meV.

In Figs. 8(a) and 8(b) we draw the one-orbital d ± id wave
and the extended s wave gap distribution. The d ± id pairing
gap peaks locate at K (K ′) and K (K ′)/2 while the s pairing
gap has peaks around � and M. At low doping, the Fermi
surfaces are around K (K ′) and K (K ′)/2 as seen from Fig. 2.
Thus, following the general argument given in [14], known
as the Hu-Ding principle, the d ± id-wave pairing is favored
over the s-wave pairing as the former would open a much
bigger superconducting gap on the Fermi surfaces to save
more energy than the latter.

Although the analytic formula for the gap cannot be ob-
tained, this above analysis can be extended to the two-orbital
model. In Figs. 8(c) and 8(d) we numerically calculate the
density of states of the d ± id-wave and s-wave superconduct-
ing states in the full two-orbital model by assuming the pairing
amplitudes 	0 in both states are identical in all the σ bonds. It
is clear that the d ± id state has much bigger superconducting
gap than the s-wave state at low doping. Moreover, The
s-wave pairing state can be gapless while the d ± id state has a
full gap, which stems from the mismatch of the s-wave pairing
momentum form factor with the normal state Fermi surfaces,
the essential idea behind the Hu-Ding principle [14]. With a
very large doping level, the Lifishitz transition of the Fermi
surfaces merges pockets around M and �. As a result, the
s-wave pairing can become highly competitive. However, in
this region, the AFM fluctuation also becomes very weak so
that the superconductivity likely vanishes.

Our slave-boson mean-field result on the pairing symmetry
is consistent with the above analysis. Here we report the
magnetic and superconducting phase diagram from the U (1)
slave-boson mean field for the model in Eq. (8) [38,39].
The method has been shown to provide correct qualitative
information of the phase diagram as a function of doping.
The slave-boson measures the electron occupancy and leads to
the renormalization of hopping amplitude [40]. The detailed
procedure is given in Appendix B. An illustration of the
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FIG. 9. The phase diagram under doping. (a) The sketch of a
typical magnetism versus superconductivity phase diagram. (b) The
zigzag magnetic order parameter and d ± id pairing strength as
doping increases in the two-orbital model calculated by the slave-
Boson mean field with J3 = 40 meV. When the electrons per unit
cell n = 4.2 (xc1 = 0.1), zigzag antiferromagnetic order parameter
vanishes. As the doping increases, the superconductivity order pa-
rameter decreases and vanish around n = 4.7 (xc2 = 0.35). The hole
doped phase diagram is almost symmetric for magnetic phase, while
superconductivity vanished around n = 3.4 (0.3 hole doping).

phase diagram is sketched in Fig. 9(a) with the doping vs
temperature. At low doping x < xc1, the system would stay
in antiferromagnetic state. Between two critical doping levels
xc1 < x < xc2, it is the superconducting phase. Near the quan-
tum critical point, there might be coexistence of magnetism
and superconductivity, or some other rich intertwined orders.

Our mean-field calculation results are plotted in Fig. 9(b).
Here we adopt J3 = 40 meV ∼ tTNN

yzyz /6. The density n = 4
represents half-filling and the doping level of x electron per
Ni atom corresponds to n = 4 + 2x. Owing to the orbital
selective exchange, the long-range AFM zigzag order van-
ishes around the doping level of 0.1 electron per Ni atom
(n = 4.2) away from half-filling. If we take J3 = 80 meV,
this critical doping value increases 0.2 per Ni atom (n = 4.4),
which is similar to the mean-field result in cuprates [38]
by the same method. Superconducting order parameters also
decreases as doping increase. When the doping reaches 0.35
per Ni atom (n = 4.7), the superconducting order parameter
	0 becomes too small to have any physical meaning. In
all these doping region with superconductivity, d ± id-wave
pairing is energetically favorable over the extended s wave. It
is worth mentioning that the phase diagram is slightly asym-
metric between the hole and electron doped region. The mag-
netism is almost symmetric, vanishing around xc1 ≈ ±0.1,
and the superconductivity decreases slightly faster with hole
doping.

VI. DISCUSSION

In summary, we have shown that the Ni-based TMTs are
close to a strongly correlated quadruple-layer graphene and
are Dirac materials described by a two-orbital model with
the strong electron-electron interaction. The main electronic
kinematics and magnetic interactions exist with unusual long-
range distance between two third nearest-neighbor Ni atoms,
which stems from the super-superexchange mechanism. With
this underlining electronic structure, the materials provide a
simple and ideal playground to investigate strong correlation
physics.

The two-orbital model can be viewed as a natural extension
of the single orbital model in the conventional high tempera-
ture superconductors, cuprates. Recently, materials with both
active eg orbitals have gained much attention. Ba2CuO3+δ

[41], synthesized under high pressure, is likely an extremely
heavy hole doped cuprate. As the Jahn-Teller distortion of
the CuO6 octahedron causes a shorter Cu-O bond along the c
axis than the in-plane ones, both eg orbitals become important
[42]. The single CuO2 layer grown by MBE also has a similar
electronic structure [43]. In La2Ni2Se2O3, a recent theoret-
ically proposed candidate of Ni-based high temperature su-
perconductors [44], the low energy physics is also attributed
to the two eg orbitals of Ni atoms. If the superconductivity
is determined to arise in the two-orbital model, the Ni-based
TMTs, together with these materials, can provide us much
needed information to solve the elusive mechanism of high
temperature superconductivity.

Comparing with recent artificial graphene systems, in
which new bands are created to reduce the kinetic energy
so that the effect of the weak electron-electron correlation
can arise in the standard graphene [12], the Ni-based TMTs
are simply in the other limit (Mott limit) with the strong
electron-electron correlation. We can consider to increase
the kinetic energy, namely the bandwidth, to enter the Mott
transition critical region. In general, the bandwidth can be
increased by applying pressure or by atom substitutions.
During these processes, the angles between Ni-S/Se-Ni can
be changed greatly as well, which can lead to different in-
triguing physics. For example, in this case, more spin-orbital
superexchange interaction terms may be important, which can
lead to exciting interplay between orbital and spin degrees of
freedom.

Experimentally, MPX3 compounds have been doped with
charge carriers, especially via intercalation by lithium, as
they were candidates for battery materials [45,46]. However,
intercalation is essentially a bulk process and may not be
easily applied to the exfoliated monolayers that are considered
here. Recently, modern gating technology can induce carriers
to a variety of two-dimensional materials [47]. The monolayer
Ni-based TMTs can be an important playground for this
modern technology.
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APPENDIX A: THE EXPLICIT FORM OF EFFECTIVE HAMILTONIAN

The tight-binding effective Hamiltonian H0 in Eq. (1) is a 4 × 4 matrix. The explicit form of its elements is given by

H11 = tSNN
xzxz

(
2 cos kx + cos

kx

2
cos

√
3ky

2

)
+ 3tSNN

yzyz cos
kx

2
cos

√
3ky

2
,

H12 = tSNN
xzxz

(
−

√
3 sin

kx

2
sin

√
3ky

2

)
+ tSNN

yzyz

(√
3 sin

kx

2
sin

√
3ky

2

)
+ i

[
4tSNN

xzyz sin
kx

2

(
cos

kx

2
− cos

√
3ky

2

)]
,

H13 = 1

2

((
tNN
xzxz + 3tNN

yzyz

)
cos

kx

2
cos

ky

2
√

3
+ [

2tNN
xzxz + (

tTNN
xzxz + 3tTNN

yzyz

)
cos kx

]
cos

ky√
3

+ 2tTNN
xzxz cos

2ky√
3

)

− i

2

{(
3tNN

xzxz + tNN
yzyz

)
cos

kx

2
− 2 cos

ky

2
√

3

[(
3tTNN

xzxz + tTNN
yzyz

)
cos kx + 2

(
2tNN

yzyz − 2tTNN
yzyz cos

ky√
3

)]}
sin

ky

2
√

3
,

− i

2

{(
tNN
xzxz + 3tNN

yzyz

)
cos

kx

2
− 2 cos

ky

2
√

3

[(
tTNN
xzxz + 3tTNN

yzyz

)
cos kx + 2

(
tNN
xzxz − 2tTNN

xzxz cos
ky√

3

)]}
sin

ky

2
√

3
,

H14 =
√

3

2

((
tNN
xzxz − tNN

yzyz

)
sin

kx

2
sin

ky

2
√

3
+ (

tTNN
xzxz − tTNN

yzyz

)
sin kx sin

ky√
3

)

+
√

3i

2

((
tNN
xzxz − tNN

yzyz

)
cos

ky

2
√

3
+ 2

(
tTNN
yzyz − tTNN

xzxz

)
cos

kx

2
cos

ky√
3

)
sin

kx

2
,

H22 = tSNN
yzyz

(
2 cos kx + cos

kx

2
cos

√
3ky

2

)
+ 3tSNN

xzxz cos
kx

2
cos

√
3ky

2
,

H24 = 1

2

((
3tNN

xzxz + tNN
yzyz

)
cos

kx

2
cos

ky

2
√

3
+ [

2tNN
yzyz + (

3tTNN
xzxz + tTNN

yzyz

)
cos kx

]
cos

ky√
3

+ 2tTNN
yzyz cos

2ky√
3

)

− i

2

[(
3tNN

xzxz + tNN
yzyz

)
cos

kx

2
− 2 cos

ky

2
√

3

((
3tTNN

xzxz + tTNN
yzyz

)
cos kx + 2

(
tNN
yzyz − 2tTNN

yzyz cos
ky√

3

))]
sin

ky

2
√

3
, (A1)

with H23 = H14, H33 = H11, H34 = H∗
12 and H44 = H22 by

symmetry. These hopping parameters are given in Table II in
the main text.

APPENDIX B: FORMULATION OF THE
SLAVE-BOSON MEAN FIELD

We provide the detailed procedure for the slave-boson
mean-field method on the Hamiltonian Eq. (8). In our two-
orbital model, the two eg orbitals are degenerate so that they
have the identical occupancy. In the slave-boson approxima-
tion [40], the same occupancy for all the orbitals leads to the
same renormalization for all the hopping interaction. Namely,
we have

P̂H0P̂ =
∣∣∣n

4
− 1

∣∣∣H0, (B1)

in which n = 4 ± 2x, x is the doped electron (+) or hole
(−) per atom. n = 4 represents the half-filling, where the
kinetic energy vanishes and the Hamiltonian reduces to pure
Heisenberg exchange interaction. The exchange term HJ,〈i j〉 in
Eq. (8) can be decoupled into superconducting and magnetic
channels.

In the superconducting channel, it is

−J3

2

∑
i j

(〈	†
i j〉	i j + 	

†
i j〈	i j〉) + Es, (B2)

with pairing matrix 	
†
i j ≡ σa†

iī j,σ
a†

jī j,σ̄
with aiī j,σ =

cos θi jaix,σ + sin θi jaiy,σ and the constant part

Es =J3

2

∑
i j

(〈	†
i j〉〈	i j〉 + niī j,σ n jī j,σ ), (B3)

with the spin indices σ̄ = −σ = ±1 and link i j the TNN
bond. The same spin coupling density term niī j,σ n jī j,σ
term in Es would be decoupled as bond hopping
〈a†

iī j,σ
a jī j,σ 〉aiī j,σ a†

jī j,σ
according to the approach in literature

[38]. Those bond hopping terms effectively renormalize
the third neighbor σ -bond hoppings to affect the position
and shape of Fermi surface. The hopping parameters and
Fermi surfaces will be renormalized as the doping varies
in our model. Thus as a simple illustrating of the phase
diagram under slave-boson method, those bond hopping
terms would be simply taken as the density correlation. Put
the renormalized hopping and decoupled exchange terms
together, in the two-orbital momentum space, we obtain∑

k �
†
k hBk�k + Es with hBk given in Eq. (10).

In the magnetic channel, the J3 dominated spin exchange
interaction prefers the zigzag AFM state as shown in Fig. 3.
In the mean-field level, the magnetic order in the zigzag
pattern is given by 〈Si〉 = (−1)i2 m0ẑ with i = i1a21 + i2a22.
It is important to point out that as only the σ bond orbitals are
considered, the spin exchange is orbital selective. That is to
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say, the spin operator Si,ī j = 1
2 a+

iī jμ
σμνaiī jν with σ the vector

of three Pauli matrices. As a result〈
Sz

i,ī j

〉 = cos2 θī jmixx + sin2 θī jmiyy

+ cos θī j sin θī j (mixy + miyx ), (B4)

with miαβ ≡ 〈σ (a†
iασ aiβσ )〉/2 = (−1)i2 mαβ . Up to a constant

term, HJ,〈i j〉 is decoupled as∑
HJ,〈i j〉 =

∑
k

σa†
kασ

M2αβak+Q1βσ , (B5)

with Q1 = G2/2 marked in Fig. 5 as the ordered magnetic
wave vector. The scattering matrix from k to k + Q1 in eg

orbitals space is

M2 = −3J3

16

(
3mxx + myy mxy + myx

mxy + myx mxx + 3myy

)
. (B6)

Defining �
†
Mk = (�†

k , �
†
k+Q1

), the mean-field Hamiltonian
can be written as

H =
∑

k∈rBZ

(�†
MAk�Mk + tr(hk + hk+Q1 ) − 8μ) + Esm,

(B7)

with rBZ representing the reduced Brillouin zone due to the
magnetic cell and Ak is a 16 × 16 matrix as

Ak =
(

hBk I2
⊗

I2
⊗

M2

I2
⊗

I2
⊗

M†
2 hBk+Q

)
, (B8)

Esm

N
=3J3

2
	2

0 + 3J3

8

[
3m2

xx + 3m2
yy + 2mxxmyy

+ (mxy + myx )2 + n2]. (B9)

In Ak , the first I2 is for particle-hole space and the second
is for A-B sublattice. The hBk is given in Eq. (10). The
self-consistency of the chemical potential is also taken into
consideration for a fixed doping. It is easy to show that

nk + nk+Q1 = 8 + tr(�〈�Mk�
†
Mk〉)

= 8 − tr[�Uk f (�k )U †
k ], (B10)

in which � is the 16 × 16 stagger matrix � ≡ −I2
⊗

σ3
⊗

I4,
U †

k AkUk = �k , diagonalizes the Ak , and f (�k ) is the Fermi
distribution function.

It is worth mentioning that the numerical result indicates
slight difference between the intraorbital magnetic orders mxx

and myy due to the rotation symmetry breaking in the AFM
zigzag state. The interorbital magnetic orders mxy and myx are
very small and can be ignored in the mean-field solution.
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