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Photoinduced interfacial chiral modes in threefold topological semimetal
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We investigate the chiral electronic modes at the interface between two regions of a threefold topological
semimetal, which is illuminated by left and right handed elliptically polarized waves. The radiation effects on
the band structure of semimetal are analyzed by using Floquet theory. Two distinct solutions of the interface
modes are found with the chirality depending on the phase of the irradiation. We also consider the anomalous
Hall response, which is attributed to the interband contribution between the dispersionless flat band and conic
bands.
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I. INTRODUCTION

Recently, the possibility of manipulating the electronic
band structure by applying a time-dependent periodic per-
turbation in the form of irradiation/light has received much
attention, especially after the proposals of light induced topo-
logical phase transition [1–10] (the Floquet topological insu-
lator), which has also been confirmed by experiments [11–13].
There is also a series of works [14–18] predicting phototun-
able Weyl nodes. Apart from these, optical pumping can also
be used to control the spin and the valley degree of freedom
in Dirac materials [19–22], which is the key requirement for
the spin and valleytronics. Moreover, electromagnetic field
can play the key role in 0 − π phase transition in Joseph-
son current in a normal-superconductor-normal (NSN) hybrid
junction made of silicene [23] and Weyl semimetal [24].

Topological semimetals with multiple bands have recently
been predicted [25,26]. These materials are also known as
multifold semimetals and can be described by the higher
number (more than two) of band crossing degeneracy, which
differs itself from the linear dispersion at the nodal band-
touching points in Weyl semimetal. Several experiments
[27–30] have also confirmed the existence of such multifold
semimetals. It has recently been found that multifold fermions
are very promising in exhibiting the quantized photogalvanic
effect [31,32]. The signature of multifold bands in such mate-
rials has also been explored in optical conductivity [33].

We particularly focus on threefold semimetal, which can
be considered as the three-dimensional (3D) analog of the
two-dimensional (2D) dice lattice [34,35]. One of the distinct
features of threefold semimetal is the existence of the disper-
sionless flat band, which has some unusual consequences in
transport signature [36–38]. The effects of light/irradiation
in the 2D dice lattice [21,39,40] have been investigated very
recently. On the other hand, much less attention has been paid
for 3D threefold semimetal in the context of its interaction
with irradiation. It can be easily anticipated that shedding light
can induce a mass term and subsequently opens a gap in the
band dispersion, irrespective of the dimensionality. However,
apart from the gap opening, irradiation can also induce a mo-

mentum shift along the extra dimension and that shifting can
be manipulated in opposite directions in two different regions
of the materials by controlling the phase of the irradiation. In
this paper, we follow this route to induce opposite momentum
shifting in two different regions by shedding irradiation with
opposite phase. The effect of irradiation is included by means
of Floquet theory [41] under the limit of high-frequency
expansion (Floquet-Magnus expansion). We find that there
exist two chiral interfacial surface modes and calculate the
anomalous Hall conductivity induced due to irradiation.

The occurrence of analogous optical interfacial surface
modes is a well-studied topic [42]. In optics, the interface
of two optically active isotropic media with opposite sign
of the gyrotropic coefficient supports unidirectional surface
electromagnetic waves [43–45].

The remainder of the paper is presented as follows. Sec-
tion II discusses the linearized Hamiltonian of the three-band
model and its band dispersion with the effect of irradiation.
The dispersion relations of chiral modes localized at the
interface where the irradiation changes phase are obtained in
Sec. III. Section IV is devoted to calculation of the anomalous
Hall conductivity and the transparency region for irradiation.
Finally, we summarize and conclude in Sec. V.

II. THE MODEL AND FLOQUET THEORY

We start with the Hamiltonian, that describes the groups of
space groups 199 and 214 materials as [25,33]

H3 f = v

⎡
⎣ 0 eiφkz e−iφky

e−iφkz 0 eiφkx

eiφky e−iφkx 0

⎤
⎦, (1)

where φ is a real parameter, v is the Fermi velocity, and we
use c = kB = h̄ = 1 throughout the calculations. We consider
only a single nodal point in the first Brillouin zone. The band
is nondegenerate except at k = 0, unless φ = nπ/3 with n
being an integer. Another noticeable point is that for π/3 <

φ < 2π/3 the Hamiltonian is adiabatically connected to the
one with φ = π/2. The Hamiltonian at this point can be
written as H3 f = vk · S with Sx,y,z being the generators of
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FIG. 1. Left: A sketch of the energy dispersion for threefold
semimetals for kz = 0. Right: A schematic sketch of the setup.
Two regions are illuminated by the elliptically polarized irradiation
of opposite handedness. Irradiation results in the domain wall at
which parameter γ = γ0[2�(x) − 1] changes sign. The interface
where γ = 0 is shown by the blue plane at x = 0. The domain wall
hosts unidirectional electronic modes, with the chirality indicated by
arrows in this plane.

the rotation group SO(2) in the pseudospin-1 representation
defined as

S = i

⎡
⎣ 0 êz −êy

−êz 0 êx

êy −êx 0

⎤
⎦. (2)

We shall keep φ = π/2 throughout the whole paper. The
energy spectrum is given by dispersive bands E± = ±vk and
a dispersionless flat band E0 = 0, which is shown in the left
panel of Fig. 1. This is a 3D analog of a 2D dice lattice.

Let us now consider that the system is subjected to an
external time-dependent periodic perturbation, moving along
the z direction as shown by the arrow sign in the right panel
of Fig. 1, which is described by a vector potential A(t ) =
[Ax sin(�t ), Ay sin(�t − δ), 0]. Here � is the frequency of
the irradiation and δ is the phase. The Hamiltonian describing
threefold semimetal in the presence of radiation can be written
by utilizing the Peierls substitution k → k − eA(t ), where
e < 0 is the electron charge, as

H3 f (t ) = H3 f + V (t ), (3)

with

V (t ) = −ev[SxAx sin(�t ) + SyAy sin(�t − δ)]. (4)

The above Hamiltonian can be solved by using Floquet the-
ory which states that the system under the time-dependent
periodic perturbation exhibits a complete set of solutions
of the form ψ (r, t ) = φ(r, t )e−iεt where φ(r, t ) = φ(r, t + T )
and T is the periodicity of the field, the corresponding
Floquet states [41]. It resembles the Bloch theorem in the
momentum space. The Floquet eigenstates can be inserted
into the time-dependent Schrödinger equation to obtain the
Floquet eigenvalue equation as HF

3 f φ(r, t ) = εφ(r, t ) with
HF

3 f = H3 f (t ) − i∂t .
The Floquet eigenstates can be further expressed in

Fourier form as φ(r, t ) = ∑
n φn(r, t )ein�t , where n denotes

the Fourier components or Floquet side bands. To obtain the
Floquet energy spectrum, the Floquet Hamiltonian has to be
diagonalized in the basis of the Floquet side band n. However,

in such case one must restrict the side band index by setting a
cutoff. On the other hand, for the high-frequency regime of the
field, an effective Hamiltonian can be obtained by following
Floquet-Magnus expansion up to the second order in field
amplitude as [41]

H̃3 f � H3 f + [V+,V−]

�
, (5)

where the second term describes the irradiation induced cor-
rection with

Vm = 1

T

∫ T

0
V (t )e−im�t dt . (6)

The effective Hamiltonian can be further simplified to

H̃3 f � H3 f + Szvγ , (7)

where γ = ve2(2�)−1AxAy sin δ. For linear polarizations,
γ = 0. Note that the extra term in Eq. (7), Szvγ , causes a
momentum shift along the kz direction that can be further
seen in the energy spectrum of the irradiated system as E± =
±v

√
(kz + γ )2 + k2

x + k2
y .

III. INTERFACIAL MODES

In this section, we obtain the chiral modes propagating
along the interface between two regions with different γ ,
following the analogy with optical evanescent modes [44].
The two regions of the material exposed to the external
irradiation are schematically shown in Fig. 1. The phase factor
of the wave is adjusted in such way that γ changes sign in two
regions as

γ = γ0[2�(x) − 1], (8)

where γ0 = ve2AxAy/2�, �(x) is the step function, and
∂γ /∂x = 2γ0δ(x). We seek a solution of equation H̃3 f � =
E� in the form � = [ψ1, ψ2, ψ3]T ei(kyy+kzz), which explicitly
gives

iv

⎡
⎢⎣

0 kz + γ −ky

−kz − γ 0 −i∂x

ky i∂x 0

⎤
⎥⎦� = E�. (9)

It is instructive to rewrite the above equation as

∂2ψ2

∂x2
+ U (x)ψ2 =

{
k2

y + [kz + γ (x)]2 − E2

v2

}
ψ2, (10)

where U (x) = 2γ0vkyδ(x)/E . The above equation resembles
the one-dimensional (1D) Schrödinger equation in a delta
potential, which supports a bound state provided γ0vky/E >

0. By utilizing the continuity conditions for the wave function
at the interface x = 0, one obtains an equation to determine
the dispersion relation

∑
s=±

[
k2

y + (kz + sγ0)2 − E2

v2

]1/2

= 2γ0
vky

E
. (11)

165302-2



PHOTOINDUCED INTERFACIAL CHIRAL MODES IN … PHYSICAL REVIEW B 100, 165302 (2019)

-10 0 10
vk y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E

-10 0 10
vk y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

k
z
= 2

k
z
= 3

k
z
= 4

(a) (b)E1

E2 (k z= 0)

E2 (k z= 1)

FIG. 2. At fixed γ0 > 0 (the energies are measured in the units
of vγ0 and lengths in γ −1

0 ) in the model of abrupt interface, the
chiral interface modes given by the solution of Eq. (10) for two
different momenta (a) kz � 1, where the dispersion of the chiral
mode Eq. (12a) stays intact, E1 = vky, while the flat band Eq. (12b)
given by E2(kz = 0) acquires the curvature at kz �= 0, and (b) kz > 1,
where the mode Eq. (12a) disappears.

Two solutions of this equation exist provided inequality
vkyγ0/E > 0 holds:

E1 = vkysgnγ0, (12a)

E2 = vkyγ0√
k2

y + k2
z

. (12b)

The first solution exists provided |γ0| � |kz|, while the second
is determined in the region k2

y + k2
z > |γ0kz|. Note that the

chirality of the modes is defined by the sign of parameter γ0.
The first dispersion is chiral and independent of kz explicitly
but bounded in the region kz ∈ [−|γ0|, |γ0|], while the second
one becomes flat at kz = 0, as shown in Fig. 2(a). At finite
values of momenta kz the second mode acquires a curvature
with ky and this curvature increases further with kz as shown in
Fig. 2(b). For completeness we present the solution of Eq. (11)
for finite kz in Fig. 2. This figure contains two subplots in
which Fig. 2(b) is for kz > 1 and Fig. 2(a) is for kz � 1.

The wave function, which corresponds to the eigenvalue
E1,2, is proportional to �1,2 ∝ e−x/�1,2;+ at x > 0 and �1,2 ∝
ex/�1,2;− at x < 0. The localization lengths are given by �1,± =
|kz ± γ0|−1 and �2,± = |k2

y + k2
z ± γ0kz|−1

√
k2

y + k2
z . Know-

ing the expression for �(x), one can show that, for the most
interesting low-energy mode Eq. (12a), the pseudospin 〈Sx〉 ∝
�†Sx� = 0 and 〈Sy〉 ∝ sgn(γ0) on both sides of the interface,
while the z component changes sign as 〈Sz〉 ∝ sgn(kyγ0x).

So far we have addressed the scenario for an abrupt inter-
face between two regions. However, in the realistic case, the
interface may not be always abrupt but rather smooth, which
may be modeled as

γ (x) = γ0 tanh(x/L), (13)
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FIG. 3. At fixed γ0 and n = 0, the effect of smooth boundary on
the dispersionless flat band and dispersive chiral modes are shown
for different widths of the boundary.

where L is the typical barrier width. This yields
the Schrödinger equation ∂2

x ψ2 + [U0sech2(x/L) −
2kzγ0 tanh(x/L)]ψ2 = (k2

y + k2
z + γ 2

0 − E2/v2)ψ2, with U0 =
vky

E
γ0

L + γ 2
0 . For simplicity at kz = 0, by following the

standard solution [46] one obtains the equation

E2

v2
− k2

y − γ 2
0 = − 1

4L2
[
√

1 + 4L2U0 − (2n + 1)]2, (14)

where n ∈ W is bounded from above by the condition n <

(−1 +
√

1 + 4L2U0)/2. Additionally, the smooth boundary
also restricts the localized states through U0 > 0. The number
of allowed levels increases with the increase of L|γ0|. The
effect of the smooth boundary is plotted in Fig. 3 which
shows that the band Eq. (12b) is affected by L. However,
the spectrum of the chiral mode Eq. (12a) exists at n = 0
and remains insensitive to the nature of the interface and
is hence topological in nature. The modes which reside in
n > 0 are sensitive to the boundary details and nontopological
in nature. For n2 + n > γ 2

0 L2 one obtains low-energy chiral
mode E � γ0Lvky

n(n+1) , while when n2 + n < γ 2
0 L2 there is one

more mode E � vγ0 − 2nvky(1 + 1+n
2γ0L ). We also note that the

possible effects of finite thickness (Lz) along the direction
of propagation of light can be qualitatively captured by dis-
cretizing the momentum in this direction as kz = nzπ/Lz with
nz ∈ Z. We have also assumed that the thickness of the system
along the z direction is much larger than 1/|γ0| and, hence,
the amplitude and phase of the light are too weak to be con-
sidered. Finally we quickly comment here about the possible
effects of kz �= 0 on the smooth boundary solution. In such
case, the effective confining potential around the interface is
deformed and weakened, which can allow some of the modes
(depending on E and kz) to penetrate inside the bulk.

The basic recipe of engineering such interfacial modes
is the momentum shift along the kz direction by applying
irradiation. It is worthwhile to mention at this stage that the
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topological electronic 1D chiral mode was predicted on the
2D surface of a 3D topological insulator (TI) [47] and optical
modes bound at the domains in optical isomer systems [44].
The irradiation induced band-gap opening on the surface of
the 3D TI plays the key role there. The present paper is based
on 3D materials, where the external irradiation results in the
momentum shift along the extra dimension.

IV. ANOMALOUS HALL RESPONSE

Let us now briefly discuss signatures of the irradiation in
the response function. We particularly focus on anomalous
Hall conductivity, which is exclusively attributed to the irradi-
ation unlike longitudinal conductivity.

We should mention here that the expression for the current-
current operator in the presence of the intense ac background
has been formulated with the Floquet method in [1,48]. It was
shown that the time-averaged operator can be written in terms
of the Green’s function, where the energies are replaced with
the Floquet quasi-energies

xy(ωm)= tr
∑

n

T
∫

d3k

(2π )3
G(iωn + iωm, k) jxG(iωn, k) jy,

(15)
where the Green’s function is given by

G(iωn, k) = [iωn + μ − vS · k]−1

= M0(k)

iωn + μ
+ 1

2

∑
s=±

1 − M0(k) − isM1(k)

iωn + μ − svk
,

(16)

with μ is the chemical potential. The fermionic and bosonic
Matsubara frequencies are denoted by ωn and ωm, respectively
with n, m ∈ Z . The different components of the Green’s func-
tion are given by

M0(k) = 1

k2

⎡
⎣ k2

x kxky kxkz

kxky k2
y kykz

kxkz kykz k2
z

⎤
⎦ (17)

and

M1(k) = 1

k

⎡
⎣ 0 kz −ky

−kz 0 kx

ky −kx 0

⎤
⎦. (18)

The first term in Eq. (16) corresponds to the dispersionless flat
band whereas the second term corresponds to the conic bands.
The components of the current density operator are given by
jα = e∂H̃3 f /∂kα. At zero temperature, using k =

√
k2
⊥ + k2

z ,∫
d3k

(2π )3 ... = ∫ �reg−γ0

−�reg−γ0

dkz

2π

∫ d2k⊥
4π2 ... with �reg introduced for the

correct definition of the kz integral, and performing analytical
continuation iωm → ω + iδ, it is straightforward to arrive at
the anomalous Hall conductivity σxy = limω→0 xy(ω)/iω as

σxy = e2γ0

2π2
, (19)

which is two times larger than anomalous Hall conductivity
in the Weyl semimetal due to the doubling of the topolog-
ical charge. The sign of σxy depends on the phase of the
incident radiation. The anomalous Hall response can be also

interpreted through the topological invariant (Chern number)
which can be easily obtained by considering the Brillouin
zone as a cube made of a number of 2D slabs in the x-y
plane in momentum space. The z component of the Berry
curvature for the conical bands ±v|k + γ êz| is given by
±(kz + γ )/|k + γ êz|3, which can be integrated out in mo-
mentum space to get the Chern number C = ±sgn(kz + γ )
(the flat band is trivial).

Note that it is the contribution between the dispersionless
flat band and conic band which causes such result. The
inter- or intra-conic-band transition does not contribute to
the anomalous Hall conductivity, as the corresponding matrix
element vanishes in the polarization operator in Eq. (15). We
also mention here that the above formalism is well justified
as long as we treat the irradiated Hamiltonian via Floquet-
Magnus high-frequency approximation, where only the two
nearest side bands are taken into account. It is instructive to
adjust the chemical potential near to the band touching point
in order to avoid any interference of higher Floquet side bands.
To capture higher side bands, one must consider beyond
high-frequency approximation and Floquet Green’s-function
approach for transport study [1].

For completeness, we also comment on the diagonal com-
ponents of the polarization matrix at zero temperature and
wave vector, which reduces to

xx = ω2
m

6π2v

[
ln

�2

μ2 + ω2
m

+ μ2

ω2
m

]
, (20)

where � is the energy cutoff and the diamagnetic contribution
has been subtracted. The effect of the flat band is to render
the valence to conduction interband transitions, which leads
to the imaginary component already at ω = μ. This is in
contrast to the ω = 2μ condition in 3D Weyl semimetals.
The transparency region to the external irradiation can be
estimated by considering the conditions for the zero imaginary
part and positive real components of the dielectric function.
These require frequencies of the incident wave to be confined
in the interval

μ > ω � αμ

(1 + α2 ln |�/μ
√

1 − α2|)1/2
, (21)

with α = N/(6π2vε0) in which ε0 is the permittivity of free
space and N is the number of threefold band touching points.

V. DISCUSSION AND CONCLUSIONS

Let us estimate the parameters of the model. Typically, one
can use the standard parameters of irradiation in the high-
frequency limit as evA = 0.1–1 eV and 0.1 < evA/� < 1.
Under this regime, we can estimate vγ0 = v2e2AxAy/2� ≈
0.5(eAv/2) = 0.12 eV. The frequency � can be estimated to
be ≈200 THz for eAv = 0.5 eV, which gives the wavelength
of the irradiation as 1.2 μm.

To summarize, we present a theoretical proposal of engi-
neering a unidirectional mode propagating along the inter-
face between two regions of threefold semimetal. The band
structure of such material in the presence of the irradiation is
obtained within the Floquet theory in the high-frequency limit
treating external field as a perturbation within the Floquet-
Magnus expansion.
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It is shown that time-dependent periodic perturbation, in
the form of an elliptically polarized field in the x-y plane,
can cause a momentum shift along the kz direction in the
electronic band structure. By utilizing several sources of
irradiation, domain walls might be realized in the material at
which the phase factor of the field changes. It is found that the
interface between two regions, exposed to the irradiation with
opposite phase, can host a unidirectional Fermi-arc mode in
addition to a dispersionless flat mode. The anomalous Hall
conductivity and frequency interval at which the material

becomes transparent to irradiation by evaluating the dielectric
tensor are discussed. Finally, it is also noted that spin orienta-
tion along the normal to the interface is zero while in the plane
of the interface it flips across the interface.
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