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Evolution of two-time correlations in dissipative quantum spin systems:
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We consider the evolution of two-time correlations in the quantum XXZ spin chain in contact with an
environment causing dephasing. Extending numerically exact, time-dependent matrix product state techniques to
consider the dynamics of two-time correlations within dissipative systems, we uncover the full quantum behavior
for these correlations along all spin directions. Together with insights from adiabatic elimination and kinetic
Monte Carlo, we identify three dynamical regimes. For initial times, their evolution is dominated by the system
unitary dynamics and depends on the initial state and the Hamiltonian parameters. For weak spin-spin interaction
anisotropy, after this initial dynamical regime, two-time correlations enter an algebraic scaling regime signaling
the breakdown of time-translation invariance and the emergence of aging. For stronger interaction anisotropy,
these correlations first go through a stretched exponential regime before entering the algebraic one. Such complex
relaxation arises due to the competition between the proliferation dynamics of energetically costly excitations
and their motion. As a result, dissipative heating dynamics of spin systems can be used to probe the entire
spectrum of the underlying Hamiltonian.
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I. INTRODUCTION

Two-time correlations are powerful tools to capture the
fundamental dynamical features of many-body systems both
in and away from equilibrium. These correlation functions are
of the form 〈B(t2)A(t1)〉, where A and B are operators, t1 and
t2 are two different times, and 〈. . . 〉 = tr(ρ . . . ) is the average
over the density matrix ρ of a given system. Numerous
experimental techniques have been developed to probe these
correlations, measuring the response of many-body systems
[1–6].

Theoretically, two-time correlations have been studied in
isolated many-body quantum systems (i.e., not in contact with
an environment), both in and far from equilibrium. These
correlations provide information on various spectral features
such as collective excitations and bound state and are one of
the few observables capturing properties of aging dynamics of
classical spin glasses [7]. However, for large open many-body
quantum systems (i.e., in contact with an environment), eval-
uating out-of-equilibrium two-time correlations has proven
extremely challenging. Most works have instead focused on
characterizing the nonequilibrium dynamics of open systems
by considering the universal scaling behavior of simpler ob-
servables or the propagation of single-time correlations [8,9]
by using various approximate approaches to evaluate two-time
correlations [10–16], by focusing on a specific initial time
[17], or by considering small many-body quantum systems
[18].

Here we evaluate, in a numerically exact manner, the
evolution of both the two-time correlations along the z spin
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direction, 〈Sz
l (t2)Sz

l+d (t1)〉, and along the ± spin directions,
〈S+

l (t2)S−
l+d (t1)〉, in a quantum XXZ spin-1/2 chain in contact

with a memoryless environment causing dephasing. Sz
l and S±

l
are the spin-1/2 operators in the z and ± directions at site l .

The XXZ spin-1/2 chain is a paradigmatic model of
theoretical quantum many-body physics. This model is par-
ticularly well suited to investigate new phenomena and can
be considered as a foundational building block to which
various coupling terms can be added. We employ it to gain
insights into the interplay of interaction effects and dissipative
couplings. While spin chains were at first thought to be mostly
relevant in the context of solid-state physics, e.g., in organic
materials [19], recent experimental advances have made it
possible to engineer these systems using ultracold atomic
gases in optical lattices [20–25] and Rydberg states [26].
For example, various aspects of the quantum spin dynamics
occurring in XXZ spin-1/2 chains, such as the motion of
magnons and spin transport, have been investigated using cold
atomic gases in optical lattices (see Ref. [27] and references
therein). Furthermore, an environment coupling causing de-
phasing does arise in cold atomic gases in optical lattices
or in Rydberg atoms due to the presence of fluctuating light
fields [28–30], and this effect can be enhanced by tailoring
the application of such fields.

Previous theoretical works on the XXZ spin-1/2 chain with
dephasing had solely focused on the evaluation of equal-time
correlations along the ±-spin directions [31], identifying an
algebraic regime similar to the one found for interacting
bosons in contact with a dissipative environment causing
dephasing [32,33]. Additionally, in the classical limit, for
large interaction anisotropies, the 〈Sz

l (t )Sz
l (0)〉 correlations

were shown to display a stretched exponential behavior [13].
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We developed here a variant of the numerically exact time-
dependent variational matrix product state (t-MPS) technique
[34,35] applicable to two-time correlation in open systems
taking conservation laws into account. Using this approach,
we uncover the full quantum behavior of these correlations
along both the z and the ± spin directions when the evolution
of the spin system begins from an excited state such as the
Néel |↑,↓,↑,↓, . . . ,↑,↓〉 or the single domain wall state
| ↑, . . . ,↑,↑,↓,↓, . . . ,↓〉.

We identify three interesting dynamical regimes signaled
by changes in the behavior of the two-time correlations along
the z spin direction. The first regime, identified at initial
times, is dominated by the system unitary dynamics. This
regime depends significantly on the initial state and on the
Hamiltonian parameters, and, for weak dissipation, resembles
the dynamics of the isolated system. The second regime, iden-
tified both numerically and analytically, is characterized by an
algebraic scaling: for distances d � 1, the normalized correla-
tions are proportional to (t2/t1)−3/2, signaling the emergence
of aging dynamics with broken time-translation invariance.
In this particular case, this aging regime finds its origin in
the presence of underlying diffusive processes. Finally, in
the third regime, correlations evolve following a stretched
exponential, a behavior typically associated with glasses or
systems exhibiting hierarchical separation of timescales. This
regime, which we identify over a wide range of t1 using nu-
merically exact simulations, occurs only for sufficiently strong
interaction anisotropies when the evolution begins from initial
states with occupied energy levels well separated from others.
The evolution of these two-time correlations is governed
by the competition between the nucleation (or annihilation)
dynamics of energetically costly excitations and their motion,
two processes occurring on very different timescales.

We interpret our numerically exact numerical findings
using adiabatic elimination and kinetic Monte Carlo, from
which the scaling properties can be predicted, and find the
observed dynamics to closely relate to the spectrum of the
spin Hamiltonian. Monitoring the dynamics of two-time cor-
relations induced by dissipative heating can thus be used to
characterize spin systems as it reveals features spanning the
entire spectrum of the underlying Hamiltonian. Let us also
mention that the two-time correlations along the ± spin direc-
tion decay exponentially and therefore exhibit a completely
different behavior from which the regimes mentioned earlier
cannot be inferred.

II. INTERPLAY OF UNITARY AND
DISSIPATIVE DYNAMICS

To investigate the nonequilibrium dynamics of two-time
correlations in an open quantum system, we consider a spin-
1/2 chain under the effect of local dephasing noise. In this
system, the evolution of the density operator ρ is described by
the Lindblad master equation

∂ρ

∂t
= − i

h̄
[HXXZ, ρ] + D(ρ). (1)

The first term on the right-hand side describes the unitary
evolution due to the XXZ spin-1/2 Hamiltonian,

HXXZ =
L−1∑
j=1

[
Jx

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + JzS
z
jS

z
j+1

]
,

where Jx and Jz are the exchange couplings along the different
spin directions, Sα

j is the α-direction spin operator at site
j, and L is the length of the chain. Similar setups can be
readily realized in state-of-the-art ultracold atom experiments
[28–30]. The isolated XXZ spin chain is solvable by Bethe
ansatz and is known to present three distinct phases [36]: for
−1 � Jz/Jx � 1, the easy plane anisotropic phase is gapless,
while Jz/Jx < −1 presents a gapped ferromagnetic phase, and
Jz/Jx > 1 hosts a gapped antiferromagnetic phase. The second
term on the right-hand side of Eq. (1) describes the dephasing
noise in Lindblad form,

D(ρ) = γ

L∑
j=1

(
Sz

jρSz
j − 1

4
ρ

)
,

where γ is the dissipation strength. This term induces spin
fluctuations and eventually drives the system towards the
infinite temperature state, the unique steady state of the model.
If not stated otherwise, we consider here a system initially
prepared in the Néel state and investigate its dynamics as the
system is coupled to the environment and starts to undergo
dephasing. We access, in a numerically exact manner, the full
quantum dynamics of this dissipative system by extending the
currently available t-MPS techniques to the study of two-time
correlations taking good quantum numbers into account. Our
analysis is carried out using an implementation of t-MPS built
upon the ITensor library [37]. The density matrix operator
is represented as a pure state in an enlarged Hilbert space,
and the evolution of the two-time correlations is implemented,
adapting the approach used to obtain their equilibrium thermal
counterparts [38,39]. Taking good quantum numbers into
account [9,40] enables us to follow the numerically exact
evolution for sufficiently long times (see Appendix D for the
technical details).

To gain analytical insights into the evolution of this system,
we employ adiabatic elimination, valid for times larger than
1/γ , to capture the dominant dissipative dynamics in the
limit where h̄γ � Jz. We focus primarily on the two-time
correlations along the z-spin direction given by

h̄2 Cd (t2, t1) = 〈
Sz

L
2
(t2)Sz

L
2 +d

(t1)
〉
,

where d is the distance between two spins, as they provide the
most insights into the dynamical properties of the system, and
we also investigate the corresponding equal-time correlations.

III. EMERGENCE OF THREE DISTINCT
DYNAMICAL REGIMES

As hinted earlier, we find the normalized two-time correla-
tions along z-spin direction to present three distinct dynamical
regimes depending on the dissipation strength, h̄γ /Jx, and the
interaction anisotropy, Jz/Jx. For weak dissipation, the initial
time regime is governed by the system unitary dynamics.
For strongly interacting systems, the dynamics is typically
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FIG. 1. Initial quasiunitary and intermediate stretched exponen-
tial regimes. Logarithm of the two-time correlation h̄2Cd (t2, t1) =
〈Sz

L
2

(t2)Sz
L
2 +d

(t1)〉 for d = 1 (upper panel) and d = 0 (lower panel)

vs the time difference t2 − t1 (t-MPS data for L = 48). For weak
dissipation, the initial time regime is dominated by the system unitary
dynamics (dashed gray line). The dephasing noise damps out the
oscillations commonly present in the unitary evolution. Following
this initial regime, for sufficiently strong coupling anisotropy Jz/Jx ,
the two-time correlations follow a stretched exponential: the linear
slopes indicate the presence of this regime. The thin dotted lines are
fits in the linear regions. The data has been obtained for a Trotter time
step of �tJx/h̄ = 0.025 and a truncation error of ε = 10−12.

characterized by oscillations due to the opening of a gap
in the energy spectrum. Such dynamics, illustrated by the
gray dotted lines in Fig. 1, is damped by the dephasing.
The other curves shown in Fig. 1 will be discussed in detail
later.

After this initial unitarylike evolution, the system enters a
scaling regime where the two-time correlations break time-
translation invariance as they do not depend on t2 − t1. This
regime, which occurs at later times for stronger interaction
strengths, is exemplified in Fig. 2 where the correlations
for d = 1 are shown. For d = 1, the normalized two-time
correlations scale as ∼(t2/t1)−3/2, and one can see that there
is a regime for which curves with different t1, γ , and Jz nicely
collapse on top of each other. As this region is characterized
by the slow algebraic relaxation of correlations and by a
dynamical scaling that is solely a ratio of t2/t1, this system
presents emergent aging dynamics. In this regime, the nu-
merical convergence of the MPS method is very good up to
long times such that the algebraic scaling can be accurately
extracted (see the comparison curve in the lower panel of
Fig. 2 and Appendix D for further details). As for d = 0,
we find in this case that the two-time correlations also scale
algebraically; however, they do not depend solely on a t2/t1
ratio. As explained in the Appendix, these scaling regimes
arise when t1 lies within an interval where the equal-time
correlations along the z-spin direction decay algebraically.

FIG. 2. Scaling regime for the two-time correlations. (Upper
panel) Scaling collapse for the normalized two-time correlations be-
tween neighboring sites h̄2Cd=1(t2, t1) = 〈Sz

L
2

(t2)Sz
L
2 +1

(t1)〉 calculated

using t-MPS. The black solid line is a guide to the eye and highlights
the (t2/t1)−3/2 algebraic regime. (Lower panel) Comparison between
the two-time correlations obtained from t-MPS and adiabatic elim-
ination. For large h̄γ /Jz ratios, adiabatic elimination describes two-
time correlations over the whole range of t2/t1, whereas for smaller
ratios, the analytical approach successfully captures the long-time
(t2/t1)−3/2 scaling but fails to describe the initial dynamics. The
calculations are preformed for a system length L = 80, a Trotter
time step �tJx/h̄ = 0.025, and a truncation error ε = 10−12. For
comparison, the line “purification convergence” is shown for L =
90, �tJx/h̄ = 0.0125, ε = 10−13.

To identify the origin of the scaling regime, we use many-
body adiabatic elimination [32,41] to develop a set of differen-
tial equations capturing the evolution around the dissipation-
free subspace (see Appendixes A–C for more details). Then,
resorting to the quantum regression theorem [42,43], we find
the two-time correlations along the z spin direction to obey the
following differential equations:

∂

∂τ

〈
Sz

j (t1 + τ )Sz
j+d (t1)

〉 =
∑

l

G j,l
〈
Sz

l (t1 + τ )Sz
j+d (t1)

〉
,

where τ = t2 − t1, Gj,l = D
2 (δ j+1,l + δ j−1,l − 2δ j,l ), D =

J2
x

h̄2γ
, and the initial condition, 〈Sz

j (t1)Sz
j+d (t1)〉, is the solution

of the equal-time correlations at t1 [see Eq. (B1) of Appendix
B]. While these equations are in principle valid only for Jz = 0
and more complicated expressions are obtained for finite Jz,
we find that for sufficiently large h̄γ /Jz their solution and in
particular the extracted scaling coincide well with the t-MPS
results. As illustrated in Fig. 2(b), for large h̄γ /Jz, adiabatic
elimination describes two-time correlations over the whole
range of t2/t1, while for smaller ratios, this analytical approach
describes well the long-time (t2/t1)−3/2 scaling but fails to
capture the initial dynamics. The overall good agreement
between the t-MPS simulations and the adiabatic elimination
approach within the scaling regime points to the diffusive
nature of the propagation of the two-time correlations under
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the action of dephasing. One should also note that this regime
is also present if the initial state is not the Néel state but is in-
stead made of larger domains with alternating magnetization.

Finally, the aging dynamics displayed by the correlations
in the z spin direction should be contrasted with the evolution
of the two-time correlations along the other spin directions.
For the latter, the evolution leaves the dissipation-free sub-
space through the application of the lowering/rising oper-
ator S±

l+d at t1. As a consequence, the dissipator strongly
alters the evolution, and these correlations decay exponen-
tially as a function of t2 − t1: 〈S+

i (t2)S−
j (t1)〉 ∝ e−β(γ )(t2−t1 ),

where β is a function of the dissipative strength γ (see
Ref. [12]).

Another interesting regime occurs solely at larger values
of the interaction anisotropy Jz/Jx and for particular initial
states. As shown in Fig. 1, for intermediate values of the time
difference, t2 − t1, we find the two-time correlations along the
z direction to follow a stretched exponential: log |Cd (t2, t1)| ∼
(t2 − t1)νd , where νd depends on the system parameters. We
checked that this regime persists at least for distances up to
d = 9 in a system of size L = 48. This regime originates via
the occurrence of nucleation events of energetically costly
excitations. For the disordered XXZ model, using classical
approximations, a similar regime displaying a stretched expo-
nential decay was previously identified for the special case of
t1 = 0 where the two-time correlation reduces to the single-
time staggered magnetization [13]. In comparison, here we
identify this regime for actual two-time correlation functions
over a wide range of t1 using numerically exact simulations
within the t-MPS formalism (see Fig. 1). Interestingly, even
for large interaction anisotropy, this stretched exponential
regime gives way to the scaling regime discussed above at
larger t2/t1 ratios. These two contiguous regimes are displayed
in Figs. 1 and 2 for the parameters t1Jx = 5h̄, h̄γ = 10Jx and
Jz = 2Jx.

The mechanism behind the crossover between the stretched
exponential and the algebraic regimes can be inferred by
considering the proliferation of excitations caused by the
dephasing noise. We expect the stretched exponential regime
to be dominant only if well-separated timescales exist for the
nucleation (or annihilation) of an excitation and for its motion.
This separation typically occurs only for states on the lower
and upper bounds of the spectrum of the XXZ model (see the
well-separated energy bands at the boundaries of the spectrum
in the inset of Fig. 3).

As the dissipative evolution brings the system into the
infinite-temperature state, where all Hamiltonian levels are
equally occupied, we expect the stretched exponential to
show up only in the initial dynamics when the states at the
boundaries of the spectrum are predominantly occupied. This
situation explains the presence of the crossover from the
stretched exponential to the algebraic regime seen in Figs. 1
and 2 (upper panels) for the parameters t1Jx = 5h̄, h̄γ = 10Jx,
and Jz = 2Jx, where the initial state is the classical Néel state
which, for Jz > 0, lies near the lower edge of the energy
spectrum. The time interval over which this regime occurs
increases in width with the anisotropy strength, since for large
interaction anisotropies, the difference between the intra and
interband rates grows towards the edge of the spectrum. If
the initial state is the Néel state, for d = 1 we observe that
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FIG. 3. Hierarchical dynamics. By increasing the number of
domain walls (DW, see sketch in the figure) in the initial state, the
dynamics of the two-time correlation function evolves faster from a
regime where it follows a stretched exponential towards an algebraic
region. The full quantum evolution obtained by t-MPS is shown
for L = 64, Jz = 10Jx, h̄γ = 2Jx , and t1Jx = 5h̄. The inset shows
the overlap (blue circles) of initial states with different numbers
of domain walls with the energy eigenstates (gray vertical lines)
of HXXZ computed with exact diagonalization for a system of size
L = 12 (with open boundary conditions) and Jz = 10Jx . The results
have been computed using a Trotter time step of �tJx/h̄ = 0.025 and
a truncation error of ε = 10−12.

its region of existence terminates approximately when the
two-time correlation becomes zero for the first time.

To test this further, we consider different initial states with
zero total magnetization and a well-defined number of domain
walls. For the XXZ spin chain with Jz > 0, we first consider
the state with one domain wall, which should have the largest
energy among this subset of states. As illustrated in the inset
of Fig. 3, for a system of L = 12 sites with a large interaction
anisotropy one finds, using exact diagonalization, that the
state with one domain wall has indeed strong overlap with
only the most excited levels of the system and that these
levels are all well separated from the others by energy gaps.
The dephasing dynamics will then deexcite this state, but the
rate of deexcitation to lower bands will be small compared to
the rate to change this state within its own band. In contrast,
considering the state with five domain walls, we find that it
overlaps with levels located near the center of the Hamiltonian
spectrum, where the energy bands are not well separated
(see inset of Fig. 3). In fact, for larger system sizes, these
bands will get closer and closer together. In this case, there
is no pronounced separation of scale between the intra- and
interband rate and the stretched exponential regime will be
absent.

Comparing evolutions originating from states with increas-
ing number of domain walls in Fig. 3, we find that the two-
time correlations enter the stretched exponential regime only
when the dissipative evolution begins from a state on the outer
edge of the spectrum that is well separated in energy from
the other states (thanks to strong interactions), confirming the
picture detailed earlier. For initial states located within the
center of the spectrum, where no clear separation of energy
scales between the band gaps and bandwidths is present, the

165144-4



EVOLUTION OF TWO-TIME CORRELATIONS IN … PHYSICAL REVIEW B 100, 165144 (2019)

evolution quickly enters the algebraic regime. Thus, using the
initial state as a knob, one can tune the system dissipative
dynamics and unveil features of the entire underlying Hamil-
tonian spectrum.

IV. CONCLUSION

Considering the evolution of two-time correlations, we
highlighted the extremely rich and intricate physics at play in
strongly interacting systems in contact with an environment.
Using a numerically exact approach, we evaluated these cor-
relations along all spin directions, extending dissipative MPS
to two-time correlations. We showed that their evolution is
nontrivially affected by the presence of a dissipative coupling,
even leading to the breakdown of time-translation invariance.
Perhaps most importantly, we demonstrated that the dissipa-
tive heating dynamics reveals fundamental spectral features
of the underlying Hamiltonian. This finding paves the way to
the development of nonequilibrium techniques to probe the
spectrum of strongly correlated many-body systems.
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APPENDIX A: ADIABATIC ELIMINATION FORMALISM

At sufficiently large times, irrespective of the spin-spin
interaction strength, the dissipation-free subspace will be
reached. While this subspace is highly degenerate with respect
to the dissipator, the Hamiltonian can possibly lift this de-
generacy. In order to understand the nonequilibrium dynamics
taking place, we perform adiabatic elimination, revealing how
spin-flip–induced virtual excitations around the dissipation-
free subspace affect the evolution of the system. For the
system under study, in the presence of periodic boundary
conditions, the dissipation-free subspace can be written down
as ρ0 = ∑

	σ ρ0,	σ |	σ 〉〈	σ |, where the different spin configura-
tions are labeled within the z-component basis such that 	σ =
(σ1, σ2, . . . , σL ) with σl = ±1/2. For times larger than 1/γ ,
the density matrix evolution is then effectively described by
the set of differential equations

∂ρ0,	σ
∂t

=
L∑

j=1

J2
x γ

2[(Jzα j )2 + (h̄γ )2]
δσ j ,σ̄ j+1 (ρ0,	σ j − ρ0,	σ ),

where α j = 2(σ j−1σ j + σ j+1σ j+2), 	σ j is the spin configura-
tion 	σ with swapped spins at site j, and j + 1 and σ̄ j = −σ j .

APPENDIX B: EQUAL-TIME CORRELATIONS

Within adiabatic elimination, the equal-time correlations
can be calculated in two different ways. Using kinetic
Monte Carlo, we can solve numerically for ρ0 and then

compute the correlations, while in a second approach, valid
for h̄γ � Jz, we use the differential equation found above
for ρ0 to write down a set of coupled differential equations
for h̄2Cj, j+d (t1, t1) = 〈Sz

j (t1)Sz
j+d (t1)〉. Together with periodic

boundary conditions, these equations take the form

∂

∂t1
Cj, j±1(t1, t1) = D

2
(Cj∓1, j±1 + Cj, j±2 − 2Cj, j±1),

∂

∂t1
Cj, j+d (t1, t1) = D

2
(Cj+1, j+d + Cj−1, j+d + Cj, j+d+1

+ Cj, j+d−1 − 4Cj, j+d ), for |d| > 1,

(B1)

where D = J2
x

h̄2γ
and here Cl,l+d stands for Cl,l+d (t1, t1). If the

system is initially prepared in the Néel state, the correlations
are translationally invariant, Cd (t1, t1) = Cj, j+d (t1, t1), with
the equations

∂

∂t1
C±1(t1, t1) = D(C±2 − C±1),

∂

∂t1
Cd (t1, t1) = D(Cd+1 + Cd−1 − 2Cd ), for |d| > 1,

and one should note that Cd = C−d . To solve this system of
differential equations, it is advantageous to redefine the equal-
time correlations such that the evolution for all distances is
described by a differential equation of the same form. To do
so, we redefine the correlations as C̃d (t1, t1) = Cd (t1, t1) for
d � 1 and C̃d+1(t1, t1) = Cd (t1, t1) for d � −1, implying that
C̃d (t1, t1) = C̃−d+1(t1, t1) for d � 1. One can then write down
a diffusion equation for C̃d with diffusion constant D and
periodic boundary condition

∂

∂t1
C̃d (t1, t1) = D(C̃d+1 + C̃d−1 − 2C̃d ),

valid for − L
2 + 2 � d � L

2 . This equation can be solved ana-
lytically in terms of the modified Bessel functions In(x) and
has for the solution

C̃d (t1, t1) = 1

4
e−2Dt1

×
(

−Id (2Dt1)+
L
2∑

j=− L
2 +2

(−1) jsgn( j)Id− j (2Dt1)

)
.

For d � 1, in the limit where L � 1, the equal-time correla-
tions take the form

Cd (t1, t1) = (−1)d

4
e−2Dt1

d−1∑
j=1−d

(−1) j I j (2Dt1), (B2)

and, furthermore, in the long-time limit, Dt1 � 1, when
In(x) ∼ ex/

√
2πx, these correlations simplify to

Cd (t1, t1) ∼ − 1√
64πDt1

.

Therefore, equal-time correlations scale in time as t−1/2
1 , in

agreement with t-MPS simulations as seen in Fig. 4(a). In
fact, due to the form of the differential equations, one can
infer that equal-time correlations propagate diffusively under
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FIG. 4. Equal-time correlations. The upper panel shows the ap-
proach of a regime with diffusive dynamics for the normalized
equal-time correlations, |Cd (t1, t1)/Cd (0, 0)|, for spins separated by
different distances d where h̄2Cd (t1, t1) = 〈Sz

L
2

(t1)Sz
L
2 +d

(t1)〉. The thin

dotted black line is a guide to the eye highlighting the scaling at
long times. The lower panel compares the full quantum evolution
of the density matrix, with a kinetic Monte Carlo simulation of the
evolution within the dissipation-free subspace, and with the solution
obtained by solving the differential equations presented at Eq. (B1).
Parameters are h̄γ = 2Jx, L = 80, and Jz = 2Jx .

the action of the dephasing environment. In Fig. 4(b), one
sees that all three methods, kinetic Monte Carlo, analytical
adiabatic elimination, and t-MPS, predict the same scaling
behavior at large times. While parallel, the analytical curve
appears slightly below the two other ones; this discrepancy
arises as obtaining an analytical solution requires one to set
Jz = 0. However, even for finite Jz, the agreement between the
analytical and the two other solutions gets better as the ratio
h̄γ /Jz increases.

APPENDIX C: TWO-TIME CORRELATIONS

The long-time scaling of two-time correlations can also be
understood analytically. In this case, to make progress, one
needs to resort to adiabatic elimination and also make use of
the quantum regression theorem [42,43]. As within adiabatic
elimination, for times larger than 1/γ and for h̄γ � Jz, the
evolution of 〈Sz

j (t )〉 is governed by the linear differential
equation

∂

∂t1

〈
Sz

j

〉 = D

2

L∑
l=1

(δ j+1,l + δ j−1,l − 2δ j,l )
〈
Sz

l

〉 =
L∑

l=1

Gj,l
〈
Sz

l

〉
,

(C1)

and the quantum regression theorem states that the two-time
correlation functions

h̄2Cj, j+d (t1 + τ, t1) = 〈
Sz

j (t1 + τ )Sz
j+d (t1)

〉
should be described by the differential equations

∂

∂τ
Cj, j+d (t1 + τ, t1) =

L∑
l=1

Gj,l Cl, j+d (t1 + τ, t1),

where Gj,l are the same matrix elements as in Eq. (C1).
Assuming once again spatial translation invariance, this set
of equations reduces to a smaller set of diffusive equations for
Cd (t1 + τ, t1) with diffusion constant D

2 ,

∂

∂τ
Cd (t1 + τ, t1) = D

2
(Cd+1 + Cd−1 − 2Cd ),

where Cl stands for Cl (t1 + τ, t1). Solving this set of differen-
tial equations, we find the two-time correlations along the z
direction to evolve as

Cd (t2, t1) = e−D(t2−t1 )

L
2∑

d ′=− L
2 +1

Cd ′ (t1, t1) Id−d ′ (D(t2 − t1)),

where t2 = t1 + τ . Then, using as initial conditions Cd (t1, t1)
obtained in Eq. (B2) for d � 1 together with Cd=0(t1, t1) =
1
4 and C−d (t1, t1) = Cd (t1, t1), we find for d � 0, in the limit
L � 1, that the two-time correlations can be rewritten in the
more amenable form

Cd (t2, t1) = 1

4
e−D(t2−t1 )Id (D(t2 − t1))

− 1

4
δ0,d e−D(t2+t1 )I0(D(t2 + t1))

+ (−1)d

4
(1 − δ0,d ) e−D(t2+t1 )

×
d−1∑

j=1−d

(−1) j I j (D(t2 + t1)) + Gd (t2, t1), (C2)

where

Gd (t2, t1) = e−D(t2−t1 )
∞∑

d ′=1

Cd ′ (t1, t1)

× (Id+d ′ (D(t2 − t1)) − Id+d ′−1(D(t2 − t1))).
(C3)

Using this expression, we then evaluate the scaling of the
normalized two-time correlations in the limit Dt2 � Dt1 � 1.
While for the first three terms of Eq. (C2), we simply expand
In(x) for large x, for Gd (t1, t2), we also need to take the
continuum limit in order to carry out analytically the sum over
d ′. This additional limit amounts to approximate Cd ′ (t1, t1) in
Eq. (C3) as

Cd ′ (t1, t1) ∼ −1

4

1√
2π (2Dt1)

e− 1
2

d ′2
2Dt1 .

For |d| � 1, the normalized two-time correlations therefore
scale as

Cd (t2, t1)

Cd (t1, t1)
∼ −

√
2

(
t2
t1

)− 3
2

×
(

1 + 1√
π

(Dt1)−
1
2 − 1

4
(Dt1)−1

)
.

Thus, for very large Dt1, only the leading contribution remains
and the normalized two-time correlations scale as∣∣∣∣Cd (t2, t1)

Cd (t1, t1)

∣∣∣∣ ∼
√

2

(
t2
t1

)− 3
2

, |d| � 1,
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which is in agreement with the results obtained from t-MPS.
This result highlights that aging dynamics can emerge from
diffusive processes triggered by dephasing noise. Finally,
for d = 0, where C0(t1, t1) = 1

4 , the long-time limit of the
normalized two-time correlation scales as

C0(t2, t1)

C0(t1, t1)
∼ 1√

2π
(Dt1)−

1
2

(
t2
t1

)− 3
2

×
(

1 + 1√
π

(Dt1)−
1
2 − 1

4
(Dt1)−1

)
.

Consequently, on-site two-time correlations break time-
translational invariance and scale algebraically; however, to
leading order, these correlations do not solely depend on the
ratio t2/t1 and thus do not display aging.

APPENDIX D: EVOLUTION OF THE PURIFIED DENSITY
MATRIX WITHIN THE TIME-DEPENDENT MATRIX

PRODUCT STATE (t-MPS) METHOD

In this section we demonstrate that the representation
of quantum states in terms of matrix product states (MPS)
[35] offers a well-controlled way to efficiently encode the
quantum many-body density matrix of interacting open quan-
tum systems and to simulate dissipative Lindblad dynamics
numerically [9,40]. By introducing a second copy of the
original Hilbert space H, the density matrix can be rewritten
as a pure state in the superspace H ⊗ H. This concept is
known from the representation of mixed states appearing in
finite temperature simulations [35,38,44], but there are a few
important differences. Here we purify the basis |	σ 〉 〈	σ ′| of the
density matrix using the prescription

|σ1, σ2, . . . σL〉 〈σ ′
1, σ

′
2, . . . σ

′
L| −→ |σ1σ

′
1σ2σ

′
2 . . . σLσ ′

L〉〉,
where | . . .〉〉 denotes a purified state including two different
spin species {σl , σ

′
l }. The first species labeled by σ and

the second species labeled by σ ′ are arranged alternately in
position. Thus the density matrix in the new basis is written as

ρ =
∑
	σ,	σ ′

ρ	σ ,	σ ′ | 	σ 〉 〈	σ ′| −→

|ρ〉〉 =
∑
	σ, 	σ ′

ρ	σ ,	σ ′ |σ1σ
′
1σ2σ

′
2 . . . σLσ ′

L〉〉.

The coefficients of the purified density matrix state can be
written in the MPS form as

ρ	σ ,	σ ′ = Mσ1 Mσ ′
1 Mσ2 Mσ ′

2 . . . MσL Mσ ′
L .

We consider product states as initial states in this work; thus
the corresponding MPS representation of the purified initial
density matrix is exact with bond dimension equal to 1. Never-
theless, this purification step can also be generalized to states
with finite bond dimension accompanied with a subsequent
compression scheme [45],

L = − i

h̄

(
HXXZ ⊗ I + I ⊗ HT

XXZ

)

+ γ

L∑
l=1

(
Sz

l ⊗ Sz
l − 1

4
I ⊗ I

)
, (D1)

where I is the identity operator acting on Hilbert space H
and HT

XXZ is the transpose of the Hamiltonian. We understand
the tensor product in a way such that the first component
is acting on the spins 	σ and the second on the spins 	σ ′. In
the model under study, the original Hamiltonian acts on the
nearest-neighbor sites and the jump operators are localized
to a single site. Consequently, spins σl and σl+1 as well as
spins σ ′

l and σ ′
l+1 are coupled via a next-nearest-neighbor

interaction due to the Hermitian part of the evolution [the
first and second terms in Eq. (D1)] while spins σl and σ ′

l are
coupled via a nearest-neighbor interaction through the dissi-
pative part Sz

l ⊗ Sz
l [the third term in Eq. (D1)]. We extend the

concept of t-MPS techniques for Hamiltonian dynamics with
next-nearest-neighbor interactions to the dissipative evolution
of purified density matrices by splitting the Lindbladian into
a sum of terms each covering in total four sites. We regroup
these four-site contributions for the Trotter evolution as

L =
L
2∑

l=1

L2l−1 +
L
2 −1∑
l=1

L2l ≡ Lodd + Leven, (D2)

with

Ll = − i

h̄

[
Jx

2

(
S+

l S−
l+1 ⊗ I + S−

l S+
l+1 ⊗ I

− I ⊗ S+
l S−

l+1 − I ⊗ S−
l S+

l+1

)
+ Jz

(
Sz

l Sz
l+1 ⊗ I − I ⊗ Sz

l Sz
l+1

)

+ γ

{(
Sz

l ⊗ Sz
l − 1

4
I ⊗ I

)

+ δl,L−1

(
Sz

L ⊗ Sz
L − 1

4
I ⊗ I

)}]
.

In analogy to Eq. (D1), the tensor products combining four
operators should be interpreted such that the first part of the
tensor product acts on the spins 	σ and the second part on the
spins 	σ ′. We approximate the time evolution operator by the
second-order Suzuki-Trotter decomposition [46]

eL�t = eLodd�t/2eLeven�t eLodd�t/2 + O(L�t3).

The Lindblad evolution can then be computed similarly to the
standard t-MPS algorithm by a sequence of gate applications
followed by a compression according to a truncation scheme.
Taking the two possible spin directions of each site into
account, the contraction of the four-site time evolution gates
with the MPS increases the dimension of the two outer bonds
of the selected four sites from m to 22m. The dimension of
the central bonds increases from m to 24m and a subsequent
compression is needed.

For unitary systems, strategies have been developed to
take good quantum numbers into account in order to improve
the performance of t-MPS algorithms and slow down the
growth of the MPS bond dimension [35]. Here, we extend this
approach to dissipative systems by exploiting the conservation
of the equivalent of the total magnetization in the purified
superspace Mtot = ∑L

l=1 (Sz
l ⊗ I + I ⊗ Sz

l ) by the Lindblad
evolution within one single symmetry block. This enables us
to investigate the long-time behavior of the considered two-
time correlation functions. The encoding of the conservation
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FIG. 5. Convergence analysis for the stretched exponential
regime. We present data for the logarithm of the two-time corre-
lations as a function of the difference between the two application
times for three parameter sets labeled a, b, and c, where (t1,aJx/h̄,
h̄γa/Jx , Jz,a/Jx ) = (5, 2, 1), (t1,bJx/h̄, h̄γb/Jx , Jz,b/Jx ) = (5, 10, 2),
and (t1,cJx/h̄, h̄γc/Jx , Jz,c/Jx ) = (5, 2, 40). (Upper panel) Comparing
results for different system sizes L and time step �t = 0.025h̄/Jx

and truncation weight ε = 10−12, shows that, up to the considered
time t2, the boundary effects are absent for L � 32. (Middle panel)
Varying the truncation weight for the different parameter sets for
system size L = 80 and time step �t = 0.025h̄/Jx , the data collapses
to the same curve for ε � 10−12. (Lower panel) Different time steps
for system size L = 80 and truncation error ε = 10−12 demonstrates
that a time step of �tJx/h̄ = 0.05 is sufficiently small to simulate the
full quantum evolution in the time interval considered.

laws in the dissipative MPS algorithm is more involved than
in its unitary counterpart. In particular, the calculation of ex-
pectation values needs to be performed in a clever way using a
transformation as described in the following in order to remain
numerically manageable. In the framework of purification,
the trace representation of expectation values translates to the
following scalar product [47]:

〈A〉 = tr(Aρ)

tr(ρ)
= 〈〈1|A|ρ〉〉

〈〈1|ρ〉〉 , with |1〉〉 =
L⊗

l=1

∑
σl =±1/2

|σlσl〉〉.

Restricting the state |1〉〉 to a single quantum number sector
can result in strongly entangled many-body states, which
are not efficiently representable in MPS form. To solve this
problem we introduce a unitary transformation acting on each
of the second spin species such that the total magnetization
is distributed equally over all individual pairs of two spin
species which contribute to |1〉〉. For the symmetry sector with
zero magnetization (Mtot = 0), one possible transformation is

FIG. 6. Convergence analysis for the scaling regime. We investi-
gate the t-MPS convergence for the normalized two-time correlation
function as a function of the ratio of the two application times
(t2/t1) for three different parameter sets labeled by a, b, and c with
(t1,aJx/h̄, h̄γa/Jx , Jz,a/Jx ) = (10, 10, 2), (t1,bJx/h̄, h̄γb/Jx , Jz,b/Jx ) =
(5, 10, 2), and (t1,cJx/h̄, h̄γc/Jx , Jz,c/Jx ) = (5, 16, 2). We conduct a
convergence analysis analogous to the one shown on Fig. 5. We
consider the system size in the upper panel, the truncation error in
the middle panel, and the time step in the lower panel. From this
analysis, we conclude that the simulation results are converged for
L � 48, ε � 10−10, and a time step of �tJx/h̄ = 0.05.

given by U = ⊗L
l=1 (Il ⊗ 2/h̄Sx

l ), which transforms the state
|1〉〉 to

U |1〉〉 =
L⊗

l=1

[| ↑↓〉〉 + | ↓↑〉〉].

This decomposition of |1〉〉 into spin triplets offers a very effi-
cient MPS representation with an alternating bond dimension
of 2 and 1. Finally, with this transformation all operators in-
cluding the Lindbladian superoperator and the density matrix
need to be transformed accordingly,

L −→ U†LU

|ρ(t = 0)〉〉 −→ U |ρ(t = 0)〉〉.
To evolve the system in time, we apply the four-sites gates
on the transformed initial density matrix, and observables are
subsequently measured.

In the following we discuss the accuracy of results ob-
tained from the t-MPS algorithm. To this end we present
convergence analyses for the stretched exponential region as
summarized in Fig. 5 as well as for the scaling regime in
Fig. 6. As we are aiming to understand the behavior of the
system in the thermodynamic limit, we need to guarantee the
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absence of boundary effects by verifying the consistency for
different system sizes L (see upper panel in Figs. 5 and 6).
Furthermore, the compression of the MPS by truncating the
low end of the singular value spectrum of the density matrix
plays an important role. This approximation is controlled by
the sum of truncated singular values known as the truncation
weight ε, which is fixed to a very small value, resulting in
an estimate of the MPS with an accuracy close to machine
precision (see middle panel in Figs. 5 and 6). Finally, the
convergence with regard to the time step �tJx/h̄ needs to

be monitored in order to confirm the validity of the Suzuki-
Trotter decomposition (see lower panel in Figs. 5 and 6).
Observing the results in Fig. 5, we conclude that considering
the system of size L = 32, a truncation weight of ε = 10−12

and a time step of �tJx/h̄ = 0.05 is sufficient to confirm the
stretched exponential regime. The convergence curves shown
in Fig. 6 show that a system size of L = 48, a truncation
weight of ε = 10−10, and a time step of �tJx/h̄ = 0.05 is
sufficient to compute the considered two-time correlations in
the time interval relevant for the scaling dynamics.
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