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Nematic spin liquid phase in a frustrated spin-1 system on the square lattice
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Frustration in quantum spin systems promote a variety of novel quantum phases. An important example is
the frustrated spin-1 model on the square lattice with the nearest-neighbor bilinear (J1) and biquadratic (K1)
interactions. We provide strong evidence for a nematic spin liquid phase in a range of K1/J1 near the SU(3)-
symmetric point (J1 = K1), based on the linear flavor-wave theory and extensive density matrix renormalization
group calculation. This phase displays no spin dipolar or quadrupolar order, preserves translational symmetry
but spontaneously breaks C4 lattice rotational symmetry, and possesses fluctuations peaked at the wave vector
(π, 2π/3). The spin excitation gap drops rapidly with system size and appears to be gapless, and the nematic
order is attributed to the dominant (π, 2π/3) fluctuations. Our results provide a novel mechanism for electronic
nematic order and, more generally, open up a new avenue to explore frustration-induced exotic ground states.
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I. INTRODUCTION

The spin-1/2 Heisenberg models represent a prototype for
quantum magnetism. Such models can realize exotic phases of
matter if frustration becomes dominant. One of the intriguing
phases is the elusive quantum spin liquid (QSL) [1,2]. Stim-
ulated by experimental findings of spin-liquid-like antiferro-
magnets, frustrated spin-1/2 Heisenberg models have been
studied extensively and QSLs have been found in realistic
models (see Ref. [2] and references therein).

Spin-1 systems are also of extensive interest in the search
of novel quantum phases [3–12]. Different phases in spin-
1 systems have been considered to understand the exotic
magnetism and nematic order of the iron-chalcogenide su-
perconductor [13–16]. The QSLs with high symmetries have
also been proposed in the cold atom systems with multiple
flavors of fermions and a large Hubbard interaction [17–19].
In particular, the non-Abelian chiral spin liquid states, which
can realize topological quantum computation [20], have been
sought for a long time in different spin-1 models [21–23]. In
experiment, spin-liquid-like behaviors have been reported in
several spin-1 compounds, including triangular (NiGa2S4 [24]
and Ba3NiSb2O9 [25,26]) and honeycomb (6HB-Ba3NiSb2O9

[27]) antiferromagnets. Theoretical and experimental discov-
eries motivate the search of QSL in spin-1 systems. However,
since quantum fluctuations are reduced for larger spin and it
seems hard for geometric frustration alone to destroy mag-
netic order, new ingredients are highly desired.

For spin-1 (or higher) systems, biquadratic interactions are
also allowed in addition to the bilinear ones. The competition
between the two types of interactions represents an added
form of frustration, which is particularly strong when the two
interactions are comparable. If they have the same magnitude,
the system has an enlarged SU(3) symmetry [28,29]. This
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symmetry gives rise to a large classical degeneracy of different
magnetic dipolar and quadrupolar orders, which may lead
to novel phases when quantum fluctuations are incorporated
[30]. One of the outstanding questions is whether proximity
to an SU(3) symmetry promotes any spin liquid phase. We
remark that, to date, evidence for spin liquid states in spin-1
models has been scarce [15] and the model studies incorporat-
ing the SU(3) symmetry have only found conventional orders
[10,29,31–35].

In this paper, we study the quantum phases near the SU(3)
point (J1 = K1) of the spin-1 bilinear-biquadratic model on
the square lattice, which has the Hamiltonian

H =
∑
〈i, j〉

J1Si · S j + K1(Si · S j )
2. (1)

Here, Si is the spin-1 operator at site i, and J1, K1 are
the nearest-neighbor bilinear and biquadratic interactions. We
use linear flavor-wave theory (LFWT) to show that, over a
range of parameters including the SU(3) point, a (π, 2π/3)
nematic and antiferroquadrupolar (AFQ23) order is energet-
ically competitive, albeit ultimately unstable. Then we carry
out density matrix renormalization group (DMRG) studies on
cylinder geometry with circumference up to 9. Surprisingly,
we identify the system near the SU(3) point as a spin liquid
phase without any spin dipolar, quadrupolar, or valence-bond
crystal (VBC) order. Equally important, this phase is found
to possess a lattice nematic order with spontaneously broken
C4 rotational symmetry. We study the low-lying excitations of
this nematic liquid phase in different aspects, which suggest
possible gapless nature of the spin triplet excitation spectrum
and lead to a qualitative understanding for the dominating
(π, 2π/3) fluctuations and, by extension, the origin of the
nematic order.

It should be noted that the square-lattice model defined by
Eq. (1) contains a delicate interplay between the three-flavor
spin degrees of freedom and the bipartite nature of the lattice
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[29]. Previous semiclassical studies using a site-factorized
wave function [28,29] found the SU(3) point as the boundary
between the Néel AFM phase (AFM2) and a “semiordered
phase” with infinitely degenerate ground states. For the SU(3)
model, the inclusion of quantum fluctuations at the level of
LFWT reported a ground state with three-sublattice mag-
netic order (AFM3) at momentum q = (2π/3, 2π/3) [29,31];
such an order has also been suggested by numerical calcula-
tions [29,31,32]. Nonetheless, both the LFWT [31] and the
Schwinger boson mean-field [32] calculations had difficulties
in obtaining a finite value of the AFM3 order parameter, which
suggests that strong fluctuations may result in a novel phase
beyond the grasp of mean-field or flavor-wave theories.

This paper is organized as follow. In Sec. II, we extend the
LFWT to study more possible magnetic dipolar and quadrupo-
lar orders. We emphasize a possible nematic order from the
fluctuations of the AFQ23 order. In Sec. III, we show our
extensive DMRG results, which characterize the intermediate
phase near the SU(3) point as a nematic spin liquid. The large-
size data strongly support the absent magnetic dipolar and
quadrupolar order, but the existence of a spontaneous lattice
rotational symmetry breaking. In Sec. IV, we further discuss
the nature of the intermediate phase. Our results exclude the
existence of a Haldane-like phase but suggest a gapless spin
liquid state with emergent Fermi points. In Sec. V, we show
the DMRG phase diagram of the SU(3) model with additional
third-neighbor biquadratic interaction K3, which reveals a
region of the AFM3 phase, which has been suggested as the
ground state of the SU(3) model. Our results are summarized
in Sec. VI.

II. FLAVOR WAVE THEORY CALCULATION

First of all, we use LFWT to study the vicinity of the
SU(3) point and consider different competing orders with
finite stiffness. The similar calculations have been done for the
AFM3 and the AFQ3 order [32]. Inspired by DMRG results,
we explore more possible states here.

A. General formalism of the flavor wave theory

Depending on the nature of the orders that we consider
(either a magnetic or quadrupolar order), we choose either
the time-reversal invariant basis of the SU(3) fundamental
representation or the usual spin Sz basis, respectively, which
can be related by

|x〉 = i|1〉−i|1̄〉√
2

, |y〉 = |1〉+|1̄〉√
2

, |z〉 = −i|0〉, (2)

where we abbreviate |Sz = ±1〉 ≡ | ± 1〉 (|Sz = 0〉 ≡ |0〉)
and |1̄〉 ≡ | − 1〉. The |x〉, |y〉, and |z〉 are the time-reversal
invariant basis and are more convenient for performing the fla-
vor wave theory calculations for the quadrupolar orders, while
the other basis in Sz are more suitable for the magnetic orders.
For the flavor wave theory, we associate 3 Schwinger-bosons
at each site i, biα , to the states of Eq. (2), where b†

iα|vac〉 = |α〉
with |vac〉 being the vacuum state of the Schwinger bosons
and α = x, y, z or 0, 1, 1̄ depending on the nature of the
orders that we consider. The bosons satisfy a local constraint∑

α b†
iαbiα = 1. Therefore the model Hamiltonian Eq. (1) can

FIG. 1. Illustration of (a) the AFQ3 order and (b) the AFQ23 or-
der. In both figures, the different sublattices are denoted by different
colors. The dashed box includes the sites in an unit cell.

be rewritten as

H =
∑

i,δn,α,β

[Jnb†
iαb jαb†

jβbiβ + (Kn − Jn)b†
iαb†

jαb jβbiβ ].

Following the usual procedure of the spin-wave theory calcu-
lation, we introduce different local rotations for each sublat-
tice in different orders. For AFQ orders, we introduce⎛

⎝aix

aiy

aiz

⎞
⎠ =

⎛
⎝ cos θi sin θi 0

− sin θi cos θi 0
0 0 1

⎞
⎠

⎛
⎝bix

biy

biz

⎞
⎠, (3)

which preserve the local constraint with biα → aiα . We as-
sume that at each site only one flavor of bosons aix con-
denses, and we replace a†

ix and aix by (M − a†
iyaiy − a†

izaiz )
1
2 ,

with M = 1 in the present case. A 1/M expansion up to
the quadratic order of the bosons ay and az followed by an
appropriate Holstein-Primakoff transformation allows us to
extract the ground state energy. For magnetic orders, we make
local rotations at each site i to align each spin at different sites
along |1〉, and replace a†

i1 and ai1 by (M − a†
i0 − a†

i1̄
)

1
2 , and

follow the same procedure above to perform a 1/M expansion
up to the quadratic oder of the bosons a0 and a1̄.

B. Results of the flavor-wave theory calculation

Within the flavor-wave calculation up to the quadrupolar
orders, we consider the (2π/3, 2π/3) AFQ (AFQ3) order,
which is a three-sublattice order as shown in Fig. 1(a), where
the red, green, and blue bars represent the sites occupied by
only bx, by, bz bosons. We also consider the AFQ23 order,
whose unit cell contains the 2 × 3 sublattice structure as
shown in Fig. 1(b). This state has been ignored in previous
study [32]. The consideration of the AFQ23 order is motivated
by the DMRG results, which find the dominant structure
factor at (2π/3, π ), instead of (2π/3, 2π/3), on the finite-
size system near the SU(3) model. We remind that this AFQ23
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FIG. 2. Phase diagrams of the spin-1 bilinear-biquadratic model
Eq. (1) obtained based on the energetics within linear flavor-wave
theory. (a) The upper panel is the phase diagram with J1 > 0, K1 >

0. Bottom panel gives the reduction of the order parameter ap-
proaching the phase boundary. We remark that the reduction of
the AFQ3 moment always diverges indicating that the linear flavor
wave calculations in that regime may not be reliable. (b) The phase
diagram based on the flavor-wave theory calculation for different
couplings. The FM refers to the ferromagnetic phase, AFQ3 refers
to the AFQ phase ordered at q = (2π/3, 2π/3), FQ refers to the
ferroquadrupolar phase with the ordering at q = (0, 0), and AFM2
corresponds to the Néel AFM order. The dashed line is the SU(3)
line, which is precisely the boundary between AFQ3 and AFM2 and
that between FQ and FM.

order eventually is suppressed at the thermodynamic limit. For
the magnetic order, we consider the ferromagnetic order (FM)
and the Néel AFM order (AFM2).

We leave the details of the calculations to Appendix A and
discuss the obtained results here. For J1, K1 > 0, the phase di-
agram based on the energetics is illustrated in the upper panel
in Fig. 2(a). The result based on the energetics is qualitatively
consistent with the previous exact diagonalization result with
a small system size (up to 20 sites) [29,31]. Furthermore,
we calculate the order parameters for the different orders,
i.e. on-site magnetization 〈S〉 for the AFM2 order and the
z-boson density 〈a†

z az〉 = M − ∑
α=x,y〈a†

αaα〉 for the AFQ3
order, which dictate the reduction of the ordered moments due
to the quantum fluctuations. As illustrated in the bottom panel

in Fig. 2(a), for the AFM2 we find that the order parameter
is gradually reduced toward the SU(3) point. For K1/J1 � 1,
we find that for both AFQ3 and AFQ23 orders the reduction
of the order moment is always divergent due to the presence
of gapless lines in the boson dispersions. The divergence of
the reduction of the order moment was also found previously
at the SU(3) point within the flavor-wave theory calculations
[32], and here we illustrate that the divergence for AFQ3 not
only occurs at the SU(3) point but in the whole regime for
K1/J1 � 1. For a general case of J1 and K1 taking both signs,
we obtain the phase diagram in Fig. 2(b). We remark that
the phase diagrams in Fig. 2 solely based on the energetics
within the flavor-wave theory are qualitatively consistent with
the previous results [29].

C. Nematic order: indications from flavor wave theory

We note that, in addition to the previously studied AFM3
and AFQ3 orders [29,31], the AFM23 and AFQ23 orders at
q = (π, 2π/3)/(2π/3, π ) can also be locally stabilized in our
calculation. In particular, for K1/J1 � 1, the AFQ23 order is
degenerate at the mean-field level with the AFQ3 order; it has
higher energy than the latter only as a result of zero-point
fluctuations. The AFQ23 order is of particular interest because
it is accompanied by a nematic order. As we have mentioned
that the corrections to the quadrupolar order parameters by
quantum fluctuations are divergent in the whole parameter
regime including the SU(3) point. Nonetheless, the quantum
correction to the nematic order is finite. What emerges is that
the static orderings of both AFQ23 and AFQ3 are destroyed
by quantum fluctuations but, if the fluctuating order of the
AFQ23 type remains important, a static nematic order can still
be stabilized, as we will demonstrate using DMRG.

III. LARGE-SCALE DMRG SIMULATION

A. DMRG phase diagram

We establish quantum phases based on DMRG [36,37]
calculations on cylindrical geometry by keeping up to 4000
SU(2) states with truncation error below 1 × 10−5 (see more
details in Table I of Appendix B). We mainly study the rect-
angular cylinder (RC) with the periodic boundary conditions
in the y direction and the open boundaries in the x direction,
which are denoted as RCLy-Lx with Ly up to 9 and Lx up to
36 (Ly and Lx are the number of sites in the two directions).
We have also calculated the RC12-36 cylinder for the SU(3)
model by keeping up to 8000 SU(2) states. The results are
consistent with those on the RC6 and RC9 cylinders. In our
calculation, we set J1 = 1 as the energy scale. Since DMRG
calculation may be strongly affected by finite-size effects, we
have also studied other geometries and boundary conditions
(see results and discussion in Appendix B).

Previous studies found an AFM2 phase for K1 � 0.75
and an AFM3 phase for 0.75 � K1 � 1.0 [29,31,32]. Recent
iPEPS simulation also reported a small Haldane phase above
K1 � 0.75, between the AFM2 and AFM3 phase [12]. We
show our phase diagram in Fig. 3(a). We find an AFM2
phase for K1 � 0.75 and a disordered phase for 0.75 � K1 �
1.4. We characterize the phases using spin and quadrupo-
lar order parameters m2

S (q) = 1
N2

s

∑
i, j〈Si · S j〉eiq·(ri−r j ) and
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FIG. 3. (a) Quantum phase diagram of spin-1 bilinear-
biquadratic Heisenberg model on the square lattice obtained from
our DMRG calculations. The disordered regime around the SU(3)
point is indicated in red shading. (b) and (c) are the spin (m2

S) and
quadrupolar (m2

Q) order parameters at four dominant momenta as a
function of K1, which are obtained from the middle Ly × 2Ly sites
on the long cylinders with Ly = 6, 9.

m2
Q(q) = 1

N2
s

∑
i, j〈Qi · Q j〉eiq·(ri−r j ) (Qi is the quadrupolar op-

erator [38]), where the sites i, j are chosen over the middle
Ns = Ly × 2Ly sites in order to avoid edge effects [39]. In
Figs. 3(b) and 3(c), we show the peaks of both orders at
four dominant momenta as a function of K1. At K1 � 0.75,
the AFM2 order m2

S (π, π ) drops sharply, suggesting a first-
order transition with vanished AFM2 order, which agrees
with previous result [29]. In Fig. 4, we demonstrate magnetic
and quadrupolar orders for larger K1. For K1 � 1.4, the AFQ
order m2

Q at q = (2π/3, 2π/3) starts to enhance and the AFM
order is still vanished, which suggests an emergent AFQ3
order and agrees with previous result [29]. In this work, we
will focus on the most intriguing regime for the intermediate
0.75 � K1 � 1.4.

In this intermediate phase, we find that the choice of
cylinder geometry is important in DMRG calculation: (1) On
the RC cylinder, circumference should be the multiple of 3,
i.e., Ly = 3n (n is an integer), to accommodate the dominant
structure factor at q = (π, 2π/3) as shown in Figs. 3–5.
(2) We note that the shifted cylinders used in Ref. [32],
which connect the top site of the ith column to the bottom
site of the (i + 1)th column, favor the momentum 2π/3 but
frustrate the momentum π . We compare the bulk energy of

FIG. 4. Spin (m2
S) and quadrupolar (m2

Q) order parameters at
momenta (π, 2π/3) and (2π/3, 2π/3) as a function of K1(K1 �
0.8), which are obtained from the middle Ly × 2Ly sites on the long
cylinders with Ly = 9.

FIG. 5. Spin and quadrupolar orders for the SU(3) model.
(a) Momentum dependence of spin (m2

S) and quadrupolar (m2
Q)

orders on RC9, which are obtained from the middle 9 × 18 sites.
(b) Finite-size scaling of the ordering peaks at q = (π, 2π/3) and
(2π/3, 2π/3) with Ly = 3, 6, 9. The lines are guides to the eye.

the SU(3) model on the RC and shifted cylinders, showing
that the RC cylinders with Ly = 3n have the lowest energy.
For example, the energy per site on the RC9 is around
−0.652, which is close but ≈5% lower than that of the AFM3
state on the shifted RC8 cylinder (−0.625 from Ref. [32]).
Therefore, we focus on the unrestricted RC cylinders with
Ly = 3, 6, 9, which can harbor the momenta at both (π, 2π/3)
and (2π/3, 2π/3). We also compare our energy of the SU(3)
model with that in the iPEPS simulation. For the ground-state
energy of the SU(3) model, our DMRG result on the largest
size Ly = 9 is −0.652, and the iPEPS energy by keeping the
most bond dimension D = 20 is −0.6504 [40], showing the
good performance of our DMRG results.

B. Identification of the disordered nematic phase

For 0.75 � K1 � 1.4, we study the finite-size scaling of
order parameters on the RC3, RC6, and RC9 cylinders. We
find that both spin and quadrupolar orders decay fast and
properly extrapolate to vanish in the thermodynamic limit,
as shown in Fig. 5(b) for the SU(3) point (see Fig. 11 in
Appendix B for other K1). Thus we find no formation of either
a spin or quadrupolar order in the intermediate phase.

Next, we examine the lattice translation symmetry by
calculating the nearest-neighbor dipolar bond energy 〈Si · S j〉
and quadrupolar bond energy 〈Qi · Q j〉. We find that the
bond energy differences along the x direction all decay quite
fast from the edge to the bulk, leading to the translationally
uniform bond energy in the bulk as shown in Figs. 6(a) and
6(b) on RC6 (the same for RC3 and RC9). The uniform
bond energy indicates the preserved translational symmetry,
precluding the possibility of a VBC order. Note that the
absence of the VBC order on the square lattice is different
from the kagome and honeycomb SU(3) models, in which
the ground states have been identified as breaking lattice
symmetries [33–35].

We now turn to analyze the nematic order. In Figs. 6(a)
and 6(b), one can see a strong anisotropy between horizontal
and vertical bond energies. We define the nematic order
parameters σ1 and σQ as σ1 ≡ 1

Nm

∑
i[〈Si · Si+x̂〉 − 〈Si · Si+ŷ〉]

[41] and σQ ≡ 1
Nm

∑
i[〈Qi · Qi+x̂〉 − 〈Qi · Qi+ŷ〉] [13] (x̂ and

ŷ denote the unit vectors along the two directions, Nm is
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FIG. 6. Lattice rotational symmetry breaking in the disordered
phase. (a) and (b) are the nearest-neighbor 〈Si · S j〉 and 〈Qi · Q j〉 for
the SU(3) model in the bulk of RC6. (c) Nematic order parameters σ1

and σQ as a function of K1 on RC6 and RC9. (d) Finite-size scaling
of σ1 and σQ for the SU(3) model with Ly = 3, 6, 9.

the number of sites of the two columns in the middle of
cylinder). The results of σ1 and σQ versus K1 are illustrated
in Fig. 6(c). Upon the transition at K1 � 0.75, both σ1 and σQ

grow dramatically. Since finite-size scaling of nematic order
has been shown as an efficient method to identify the lattice
C4 symmetry breaking for different quantum phases in DMRG
calculation [42], we extrapolate our data as shown in Fig. 6(d),
which clearly obtain nonzero σ1 and σQ in the thermodynamic
limit. Our results indicate that the C4 symmetry breaking
occurs spontaneously and is not the result of the cylindrical
lattice geometry.

In order to further characterize the nature of the disordered
phase, we calculate the spin gap �T with �S = 1, 2 (S is
the total spin quantum number) as well as the spin-singlet
gap in the bulk of a long cylinder by sweeping the excited
states in the bulk [43]. The two spin gaps �S = 1, 2 have
the same value at the SU(3) point, as anticipated from the
SU(3) symmetry (see Fig. 12 in Appendix B). Limited by
the system size on the RC3 and RC6, we do not perform
finite-size scaling for the gaps. However, we remark the fast
drop of the gaps from RC3 to RC6, with the singlet gap
reducing from 1.853 to 0.285 (more than 80%) and the triplet
gap from 2.028 to 0.774 (more than 60%), which suggests
either tiny or vanishing gaps in the thermodynamic limit.

IV. DISCUSSION ON THE NATURE
OF THE DISORDERED PHASE

According to the Lieb-Schultz-Mattis-Hastings theorem
[44,45], this spin-1 disordered phase can be either a gapped
quantum paramagnet with a unique ground state, a gapped
topological spin liquid, or a gapless spin liquid. We carefully
study these possibilities here.

A. Space anisotropic model

First of all, we study the space anisotropic model with
K1x/J1x = K1y/J1y (J1x, K1x and J1y, K1y are the couplings
along the x and y directions), as shown in the inset of Fig. 7(b).
We set J1x = 1.0 as energy scale and for a given K1x, we vary
J1y and K1y. With equal interchain and intrachain couplings,
the system is the studied isotropic model. Without interchain
couplings, the system reduces to decoupled spin-1 chains
which is in the gapped Haldane phase for K1x/J1x < 1 [4].

We thus focus on the regime 0.75 < K1x/J1x � 1, and
increase the interchain couplings J1y, K1y. Near the isotropic
model, there is no long-range magnetic order (red symbols in
Fig. 7), as is expected in the spin liquid phase. In the interme-
diate interchain couplings, we find that the spin correlations
clearly show an emergent AFM order with slowly decaying
correlations as shown by the blue symbols in Fig. 7. Therefore
we find that the disordered phase in the isotropic model is not
smoothly connected to the Haldane phase, strongly suggesting
that the disordered phase we found is not an adiabatic exten-
sion of the 1d limit of weakly coupled Haldane chains. We
note that a Haldane phase has been proposed in a very small
region above the transition at K1/J1 � 0.75 in Ref. [12]. It
may be possible that a Haldane-like phase exists in a narrow
parameter regime between the Néel magnetic order phase and
the nematic spin liquid phase found here, although we have
not found evidence thereof in our DMRG results.

B. Possible a gapless spin liquid with emergent Fermi points

Furthermore, we take advantage of the established method-
ology in gapped spin-1/2 spin liquids, where one can test the
spinon topological sector by removing or adding a spin-1/2 on
each open edge of cylinder [43]. We follow this prescription
by adding or removing a spin-1 site on each open edge of the
RC3 and RC6 cylinders to detect possible spinon sector in the
disordered phase. However, we do not find near-degenerate
spinon sector (see Fig. 14 in Appendix B), which does not
support a gapped spin liquid.

The numerical results and the discussions above motivate
us to consider a gapless phase. If the gapless spin liquid
possesses a Fermi surface formed by the emergent or strongly
renormalized degrees of freedom [46], mS (q) and mQ(q)
should show singular peaks at q = kn̂

FR − kn̂
FL, where kFR/L

are the locations of the Right/Left patches of the Fermi
surface perpendicular to an observation direction n̂. On the
Ly-leg ladder with periodic boundary conditions along the ŷ
direction, there are Ly lines cutting through the momentum
space. As the fingerprints of the ladder descendant of the
2D Fermi surface, we expect to see the singular behavior at
qi = ki

FR − ki
FL, where i = 1, 2, . . . , Ly corresponding to the

ith line and ki
FR/L represent the Right/Left Fermi points of

the Fermi surface intersecting the line. However, the DMRG
results in Fig. 5 show that on a nineleg cylinder m2

S (q) and
m2

Q(q) only possess rather broad (instead of singular) peaks,
indicating that there is no emergent Fermi surface.

For an alternate route to study the gapless nature, we
calculate the von Neumann entanglement entropy by dividing
the system to two subsystems and computing the eigenvalues
λi of the reduced density matrix, which leads to the entropy
S = −∑

i λi ln λi. We find that the entropy as a function of
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FIG. 7. Logarithmic-linear plots of spin-spin correlations as a function of the distance on the RC6 cylinder for coupling chains with
different intrachain and interchain bilinear-biquadratic interactions: J1x = 1.0, (a) K1x = 0.8 and J1y/J1x = K1y/K1x = 0.4, (b) K1x = 0.9 and
J1y/J1x = K1y/K1x = 0.5, (c) K1x = 1.0 and J1y/J1x = K1y/K1x = 0.4.

the subsystem size lx is invariant, which does not show any
logarithmic correction that is expected for a Fermi surface
(see Fig. 8). These results suggest that a spinon Fermi surface
is absent [47] and, instead, emergent Fermi points are more
likely. For such a state on finite size system, the Fermi points
of spinon may not be touched and the entropy would be
flat with growing subsystem length. Due to the limitation
of system size, this issue certainly requires further scrutiny
such as variational Monte Carlo calculation with Gutzwiller
projected parton constructions.

In the frame of gapless spin liquid, the nematic nature can
be understood based on the low-energy gapless fluctuations.
For low-energy description, the spin operator can be expressed
as S j ∼ eiq·r jSq + H.c., where the vector q is the wave vector
associated with the gapless excitations. The bond energy oper-
ator can be expressed as Bδ = S j · S j+δ ∼ eiq·δSqS−q + H.c.,
where δ is the unit vector corresponding to (1,0) or (0,1). The
difference between the bond energies along x̂ and ŷ directions

FIG. 8. von Neumann entanglement entropy versus the subsys-
tem length lx for the SU(3) model on the RC3-24 and RC6-24
cylinders.

is �B ≡ Bx − By = (eiqx − eiqy )Sq · S−q + H.c. For a vector
q with unequal magnitudes of x and y components, such as
q = (π, 2π/3) in this model, 〈�B〉 
= 0 leads to a nonzero ne-
matic order. The bond-energy associated with the quadrupolar
moments shows a similar effect.

We stress that this mechanism for the nematic order op-
erates not only for static order such as the AFQ23, but also
for fluctuations of such order. Our DMRG calculations have
indeed found the (π, 2π/3) fluctuations at Ly-leg ladder near
the SU(3) point, shown in Figs. 3–5. The precise origin of this
wave vector (π, 2π/3)/(2π/3, π ) remains to be understood,
but it is already hinted at by the local stability of such an order
within the semiclassical analysis described earlier. In addition,
the tendency towards dominant fluctuations of such a wave
vector arises from a coupled-chain picture of the gapless spin
liquid: 2π/3 is twice of the parton “Fermi wave vector” for an
SU(3) chain, which is associated with the 1/3-filling in terms
of the partons, and π reflects the nearest-neighbor coupling
being the interchain coupling that is relevant in the RG sense
(see Appendix C).

V. DISCOVERING THE AFM3 PHASE

In previous numerical calculation of the SU(3) model [32],
the ground state has been found as an AFM3 magnetic order
state. In our study, we identify the ground state of the system
as a spin liquid state. However, on the TC cylinder (see
Appendix B) and the shifted RC cylinder that was used in
Ref. [32], the system indeed favors an AFM3 order. Although
the spin liquid state has the lower energy than the AFM3
state, the AFM3 order seems to have a competitive energy.
Therefore it is reasonable to expect that the AFM3 order
could be found near the spin liquid phase by tuning some
coupling parameters. We have numerically tested the SU(3)
model with different additional interactions, and we found
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FIG. 9. (a) Quantum phase diagram of the spin-1 bilinear-biquadratic Heisenberg model on the square lattice with changing K3 and K2 = 0.
The regime of the nematic spin liquid around the SU(3) point is indicated in red shading. (b)–(e) are the spin (m2

S) and quadrupolar (m2
Q)

structure factors for different K3 with K2 = 0.0, which are obtained from the middle 6 × 12 sites on the long RC6 cylinder. The upper and
lower figures are for m2

S and m2
Q, respectively.

the AFM3 order by considering the third-neighbor biquadratic
coupling K3 (K2 = 0), as shown in the quantum phase diagram
Fig. 9. The structure factors of Figs. 9(b)–9(e) clearly show
at least three quantum ordered phases, including the AFQ4,
the AFM3, and AFQ3 phase. In a small parameter region
−0.3 � K3 � −0.2, one can see the structure factor peaks of
the AFM3 order in Fig. 9(c).

VI. SUMMARY

We have studied the ground state of the spin-1 bilinear-
biquadratic model on the square lattice using semiclassical
flavor-wave theory and extensive DMRG calculation. We find
a disordered phase for 0.75 � K1/J1 � 1.4 by showing van-
ished spin and quadrupolar orders, as well as absent transla-
tional symmetry breaking. The bond energy texture indicates
a spontaneous breaking of C4 lattice rotational symmetry.
Based on our results, we suggest this disordered phase as
a nematic spin liquid. The spin triplet gap drops rapidly
with system size, which strongly suggests gapless excitations.
We discuss the origin of the lattice nematic order and the
dominant (π, 2π/3) fluctuations in the framework of gap-
less spin liquid. By considering additional further-neighbor
couplings, we find that this spin liquid phase is stable in a
range with different changing couplings. We also find the
previously proposed AFM3 phase, which is at the neighbor
of the spin liquid phase, in presence of a small third-neighbor
biquadratic interaction K3 < 0. Our results lead to a hitherto
unexplored mechanism for quantum nematic spin liquid and,
more generally, open up a new route towards novel phases
of quantum spin systems. For further understanding on this
exotic nematic spin liquid phase, variational wavefunction

study and renormalization group simulation on larger system
size are highly demanded.
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APPENDIX A: FLAVOR WAVE THEORY CALCULATIONS

Here, we demonstrate the details of the flavor wave theory
calculation. We first give the dispersions associated with the
gapless Goldstone modes together with the nematic order
parameters in different orders. Two types of nematic order
parameters are considered in this work, defined as

σ1 ≡ 1

Ns

∑
i

[〈Si · Si+x̂〉 − 〈Si · Si+ŷ〉], (A1)

σQ ≡ 1

Ns

∑
i

[〈Qi · Qi+x̂〉 − 〈Qi · Qi+ŷ〉], (A2)

where Ns represents the number of sites, i is the site labelings,
and the quadrupolar bond energy can be re-expressed in terms
of the spin bond energy using the identity Qi · Q j = 2(Si ·
S j )2 + Si · S j − 2S2

i S2
j/3.

(1) FM. After the standard procedure, we find that the
boson Hamiltonian is

H =
∑

k,α=0,1̄

εk∈BZ,α

(
b†

k,α
bk,α + 1

2

)
+ 8NsJ1, (A3)

where BZ stands for the Brillouin zone, and Ns is the total
number of sites, and the dispersions are

εk,0 = 2J1[cos (kx ) + cos(ky) − 2], (A4)

εk,1̄ = 2K1[cos (kx ) + cos(ky)] + 4(K1 − 2J1). (A5)

The nematic orders in FM are obviously zero (σ1 = σQ = 0)
since there is no rational symmetry breaking in FM.

(2) AFM2 (Néel AFM). The boson Hamiltonian after
performing Fourier transform is

H =
∑

k,α∈0,1̄

εk,α

(
a†

k,α
ak,α + 1

2

)
+ Ns

(
16K

3
− 8J

)
,

where Ns is the number of sites and the dispersions associated
with ak,0 and ak,1̄ are

εk,0 =
√

A2
k,0 − B2

k,0, εk,1̄ =
√

A2
k,1̄

− B2
k,1̄

, (A6)

where we define

Ak,0 = 4(J − K ), (A7)

Ak,1̄ = 4(2J − K ), (A8)

Bk,0 = 2(J − K )(cos(kx ) + cos(ky)), (A9)

Bk,1̄ = 2K (cos(kx ) + cos(ky)). (A10)

Since there is no rotational symmetry breaking in AFM2, the
nematic orders are zero (σ1 = σQ = 0).

(3) FQ. The boson Hamiltonian after performing Fourier
transform is

H =
∑

k,α∈0,1̄

εk,α

(
a†

k,α
ak,α + 1

2

)
+ 8NsK1, (A11)

where Ns is again the number of sites and we find that the
dispersions associated with ak,0 and ak,1̄ are the same εk,0 =
εk,1̄ ≡ ε

FQ
k , with

ε
FQ
k = 2([cos (kx ) + cos(ky) − 2K1]2

− [(J1 − K1)(cos (kx ) + cos(ky))]2)
1
2 . (A12)

Since FQ does not break rotational symmetry, the nematic
order are zero.

(4) AFQ3. The bosonic Hamiltonian at the SU(3) time-
reversal-invariant basis can be concise expressed as

H =
∑

k∈BZ,α=y,z

εk,α

(
a†

k,α
ak,α + 1

2

)
, (A13)

with

εk,α=y,z =
√

A2
k,α

− B2
k,α

, (A14)

where we define

Ak,y = 2K1 + (K1 − J1)
√

2(1 + cos(kx + ky)),

Bk,y = J1

√
2(1 + cos(kx + ky)),

Ak,z = 2K1 − (K1 − J1)
√

2(1 + cos(kx + ky)),

Bk,z = J1

√
2(1 + cos(kx + ky)). (A15)

We note that the summation in momentum k is over the whole
BZ for two bands. We can see that along the line with kx +
ky = 0, the z-bosons have gapless lines along εk,z|kx+ky=0 =
0. Due to this gapless line in the whole regime at K1/J1 �
1, the quantum corrections to the ordered moment extracted
within the flavor-wave theory are divergent, which hints that
the flavor-wave analysis may break down in this regime in
this model. At the SU(3) point, the divergence of the quantum
correction to the order moment within the flavor-wave picture
was also reported previously [32]. The nematic orders vanish,
σ1 = σQ = 0.

(5) AFQ23. In the AFQ23, a unit cell contains 2 × 3
sublattices as shown in Fig. 1(b). In our calculations, we
choose the 2 sublattices in the first column to be a primitive
cluster (sublattices A1 and B2) and perform local rotations
on different sites in the unit cell to align with the states on
the first column. Since the AFQ23 has never been considered
previously, we provide more details of the calculations here.
Focusing on the sublattices in the primitive clusters denoted
as 1 for the original A1 and 2 for the original B2, we assume
that at 1 only ax-bosons condense and at 2 only ay-bosons
condense, and perform local rotations for ar,α=x,y,z(μ = 1, 2)
to transform ar,α (μ) → br,α (μ), and in the b-boson basis, only
bx condense at each site. Explicitly, the local rotations give

⎧⎨
⎩

ar,x(1)
ar,y(1)
ar,z(1)

=
⎧⎨
⎩

br,x(1)
br,y(1)
br,z(1)

; (A16)

⎧⎨
⎩

ar,x(2)
ar,y(2)
ar,z(2)

=
⎧⎨
⎩

br,z(2)
br,x(2)
br,y(2)

. (A17)
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At Fourier space, we find that the Hamiltonian in terms of the
bosons is

H =
∑

k∈RBZ

{3K1[b†
k,y(1)bk,y(1) + b†

k,z(2)bk,z(2)]

+ K1[b†
k,z(1)bk,z(1) + b†

k,y(2)bk,y(2)]

+ (K1−J1)[eikx (b†
k,y(1)bk,z(1) + b†

k,y(2)bk,z(2))+H.c.]

+ J1[eikx (b†
k,y(1)b†

−k,z(1) + b†
k,y(2)b†

−k,z(2)) + H.c.]

+ (K1 − J1)[(1 + eiky )b†
k,y(1)bk,z(2) + H.c.]

+ J1[(1 + eiky )b†
k,y(1)b†

−k,z(2) + H.c.] + 4K1}.
(A18)

Where RBZ means the reduced Brillouin zone, which will be
suppressed below for clarity. For diagnosing the Hamiltonian,
we first simplify the Hamiltonian with new boson fields,
defined as

b†
k,y(1) = e−iky/2

√
2

(c†
k(1) − c†

k(2)), (A19)

b†
k,z(2) = 1√

2
(c†

k(1) + c†
k(2)), (A20)

b†
k,z(1) = ei(kx−ky/2)

√
2

(d†
k (1) − d†

k (2)), (A21)

b†
k,y(2) = e−ikx

√
2

(d†
k (1) + d†

k (2)), (A22)

followed by a generalized Bogoliubov transformation

ck(1) = uk,1γk,1 + u2,pγk,2 + vk,1γ
†
−k,1 + vk,2γ−k,2,

dk(1) = uk,3γk,1 + uk,4γk,2 + vk,3γ
†
−k,1 + vk,4γ−k,2,

ck(2) = sk,1γk,3 + sk,2γk,4 + tk,1γ
†
−k,3 + tk,2γ

†
−k,4,

dk(2) = sk,3γk,1 + sk,4γk,2 + tk,3γ
†
−k,1 + tk,4γ

†
−k,2,

we can obtain the diagonalized bosonic Hamiltonian as

H =
∑

k,α=1,2,3,4

εk,α

(
γ

†
k,α

γk,α + 1

2

)
, (A23)

where RBZ refers to the reduced Brillouin zone and γk,α

stands for the Goldstone bosons of band α. The dispersions
for the four bands are

εk,1 = [−A1,k − (
A2

1,k − 4B1,k
) 1

2
] 1

2 , (A24)

εk,2 = [−A1,k + (
A2

1,k − 4B1,k
) 1

2
] 1

2 , (A25)

εk,3 = [−A2,k − (
A2

2,k − 4B2,k
) 1

2
] 1

2 , (A26)

εk,4 = [−A2,k + (
A2

2,k − 4B2,k
) 1

2
] 1

2 , (A27)

where

A1/2,k = 2K1(2J1 − K1)

∣∣∣∣cos

(
ky

2

)∣∣∣∣
2

∓6K1(K1 − J1)

∣∣∣∣cos

(
ky

2

)∣∣∣∣
+2K1(J1 − 3K1), (A28)

B1/2,k = K3
1 (K1 − 2J1)

∣∣∣∣cos

(
ky

2

)∣∣∣∣
2

∓2K2
1

(
J2

1 − K2
1

)∣∣∣∣cos

(
ky

2

)∣∣∣∣
+K2

1

(
K2

1 − 2J2
1 + 2J1K1

)
. (A29)

We note that the dispersions in the AFQ23 are independent of
kx in this setup (If we choose the other completely degenerate
order with q = (π, 2π/3) the dispersions would be indepen-
dent of ky), and there are a set of gapless lines for εk,3 along
kx axis (ky = 0). Due to the gapless lines, we are not able
to extract the reduced order moment within the flavor-wave
theory since the quantum corrections to the ordered moment
are divergent in the whole regime at K1/J1 � 1.

For the nematic orders, we find that σ1 and σQ are both
finite indicating that the C4 lattice rotation symmetry is
broken. Explicitly, we find that the nematic orders can be
expressed in terms of the coefficients for the Bogoliubov
transformations, as σ1 = ∑

k ξk,1 and σQ = ∑
k ξk,Q, with

ξk,1 = vk,1uk,3 + vk,2uk,4 − vk,1vk,3 − vk,2vk,4

+tk,1sk,3 + tk,2sk,4 − tk,1tk,3 − tk,2tk,4

− fk

2

(
vk,1uk,1 + vk,2uk,2 − v2

k,1 − v2
k,2

)

+ fk

2

(
tk,1sk,1 + tk,2sk,2 − t2

k,1 − t2
k,2

)
(A30)

and

ξk,Q = vk,1(uk,3 + vk,3 − vk,1)

+vk,2(uk,4 + vk,4 − vk,2)

+tk,1(sk,3 + tk,3 − tk,1)

+tk,2(sk,4 + tk,4 − tk,2)

+ fk[tk,1sk,1 + tk,2sk,2 − vk,1uk,1 − vk,2uk,2], (A31)

where fk ≡ |eikx + e−iky |. From these explicit expressions for
the integrand, we find that the contributions from the gapless
lines are finite. This is confirmed by numerical evaluations
of these integrals: The results for σ1 and σQ are illustrated in

FIG. 10. Nematic orders σ1 and σQ in AFQ23 within the flavor-
wave theory calculations. We can see that the nematic orders are finite
indicating the broken C4 lattice rotation.
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FIG. 11. Finite-size scaling of the spin m2
S (a) and quadrupo-

lar m2
Q (b) order parameters for two momenta (π, 2π/3) and

(2π/3, 2π/3) at K1 = 0.9 and 1.1. (c) and (d) are the finite-size
scaling of σ1 and σQ for K1 = 0.9 and 1.1. The lines are guides to
the eye.

Fig. 10. Thus the nematic orders are always finite indicating
the broken C4 lattice rotation symmetry in the AFQ23 order.

APPENDIX B: DMRG RESULTS

We have shown the decay of magnetic and quadrupolar
order parameters at the SU(3) point via finite-size scaling in
Fig. 5(b) in the main text. Here, we complement these findings
by showing the finite-size scaling of the order parameters
for two different values of K1 = 0.9 and 1.1, both inside the
disordered phase proposed in the present work. In Figs. 11(a)
and 11(b), we find the spin and quadrupolar orders also
scaling to zero, which are consistent with our results for
the SU(3) point in the main text. In Figs. 11(c) and 11(d),
we further show the scaling of the nematic order parameters
that are defined as σ1 ≡ 1

Nm

∑
i[〈Si · Si+x̂〉 − 〈Si · Si+ŷ〉] and

σQ ≡ 1
Nm

∑
i[〈Qi · Qi+x̂〉 − 〈Qi · Qi+ŷ〉] in the bulk of cylinder

(x̂ and ŷ denote the unit vectors along the two directions, Nm

is the number of sites of the two columns in the middle of
cylinder). Consistent with the findings at the SU(3) point in
Fig. 6(d) of the main text, we find that the nematic order
parameters extrapolate to finite values in the thermodynamic
limit, indicating a spontaneous lattice rotational symmetry
breaking in this disordered phase.

In Fig. 12, we show the spin gaps between the ground state
in the total spin S = 0 sector and the lowest-energy states in
the total spin S = 1 and S = 2 sectors, respectively; which are
denoted as �T (S = 1) and �T (S = 2). The gaps are obtained
on the RC6 cylinder by sweeping the ground state first and
then targeting the total spin S = 1 and S = 2 sectors to find

FIG. 12. The spin gaps �T (S = 1, 2) as a function of K1 on the
RC6 cylinder.

the lowest-energy state. In the Néel AFM phase for K1 � 0.75,
both spin gaps are quite small, consistent with the broken spin
rotational symmetry. Interestingly, at the transition K1 � 0.75,
the spin gap �T (S = 2) undergoes a sharp increase on the
RC6, while the spin-triplet gap �T (S = 1) grows gradually.
For large K1, the AFQ order is dominant, which agrees with
the smaller spin gap �T (S = 2) we find for K1 > 1. For the
SU(3) model, we find that the two spin gaps have the same
values on our studied systems (see also Table I). In Table I, we
list the ground-state bulk energy and spin gaps for the SU(3)
model on different geometries. The ground-state energy for
RC9 is obtained by extrapolating the energy versus DMRG
truncation error as shown in Fig. 13.

In DMRG simulation for a topological gapped spin liquid,
the spinon sector usually can be found by removing or adding
a spinon on each open edge of cylinder. On a finite-size
system, the normal sector and the spinon sector have an energy
difference that decays exponentially with increasing system
width. This edge pinning technique has been successfully

TABLE I. The bulk energy per site e, the spin gaps �T (S = 1, 2),
and the spin singlet gap �S of the SU(3) model on the RC and TC
cylinders. MSU(2) and ε are the kept SU(2) DMRG states and the
DMRG truncation error, respectively. The bulk energy on the RC9
is obtained by the quadratic fitting of the energy as a function of the
truncation error as shown in Fig. 13. We keep the SU(2) states up
to 4000 with the truncation error ε ∼ 1 × 10−5. For the RC cylinder,
one can see that the RC3, RC6, and RC9 cylinders have the lower
energy and the smaller truncation error than the other cylinders.

e MSU(2) ε �T (S = 1) �T (S = 2) �S

RC3 −0.8652 2000 4 × 10−13 2.028 2.028 1.853
RC4 −0.6360 4000 4 × 10−6

RC5 −0.6459 4000 6 × 10−6

RC6 −0.6764 4000 2 × 10−7 0.774 0.777 0.285
RC7 −0.6392 4000 6 × 10−5

RC8 −0.6405 4000 4 × 10−5

RC9 −0.6518(12)
TC3 −0.6825 2000 4 × 10−13

TC4 −0.6612 4000 2 × 10−6
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FIG. 13. The quadratic fitting of the bulk energy for the SU(3)
model on the RC9 cylinder as a function of DMRG truncation error.
We keep the SU(2) DMRG states up to 4000.

used for studying gapped spin liquids in spin-1/2 systems
[43]. For spin-1 gapped spin liquid, a spinon may carry spin-1
spin. Thus we have performed the pinning technique for the
nematic disordered phase by removing a spin-1 on each open
edge of cylinder on the Ly = 3, 6 cylinders. We find that for
Ly = 3, 6, the ground states with and without removing spin-1
sites have the same bulk energy (see Fig. 14), which seems not
to support a near-degenerate spinon sector.

On the RC cylinder with Ly not a multiple of 3, we find the
ground state with a spontaneous lattice translational symmetry
breaking in the bulk of the cylinder. In Fig. 15, we show the
bulk bond energy 〈Si · S j〉 and 〈Qi · Q j〉 on the RC4 and RC5
cylinders. In all the cases, the bond energy is not uniform
and shows a period of 3 along the x direction, suggesting
the breaking of translational symmetry. We note that on these
geometries, the bulk energy is higher than those on the RC
cylinder with Ly = 3n such as RC3, RC6, and RC9, which
may be owing to that the TC lattice frustrates the short-range
(π, 2π/3) order pattern.

On the π/4 tilted cylinder (TC), the lattice geometry
frustrates the momentum at (π, 2π/3) but is compatible with

FIG. 14. Quadratic fitting of the bulk energy with and without
removing a spin-1 on the RC6 cylinder as a function of DMRG
truncation error. The calculations are performed by keeping the
SU(2) DMRG states up to 4000.

FIG. 15. The Si · S j (a) and Qi · Q j (b) on the nearest-neighbor
bonds for the SU(3) point in the middle of RC4. The Si · S j (c) and
Qi · Q j (d) on the nearest-neighbor bonds for the SU(3) point in the
middle of RC5.

(2π/3, 2π/3). Accordingly, we find the three-sublattice order
on the TC cylinders, as shown in Fig. 16. DMRG calculations
on the TC cylinder are harder to converge than the calculations
on the RC cylinder. Here, we only show the convergent
results on TC3 and TC4. We would like to mention that as
shown in Table I, the truncation error of TC4 is much larger
than the one of RC6. Consequently, we conclude that the
DMRG calculations on the RC geometry are more accurate
than the TC geometry at the SU(3) point, as we therefore focus
on the RC geometry for the most part of this work.

APPENDIX C: SPINON-GAUGE THEORY FOR
WEAKLY-COUPLED SU(3) CHAINS

As far as the origin of the (π, 2π/3)/(2π/3, π ) orders at
Ly-leg ladder near the SU(3) point in Figs. 2 and 3, which
vanish at thermodynamic limit, we can also rely on the picture
of the gapless spin liquid. Focusing on the SU(3) point, where
the gapless disordered phase is present, we can introduce an
eight-component operator Qμ, with μ = 1–8, consisting of
three components of spin (Sα=x,y,z ) and five components of the
quadrupolar moment (Qi=1∼5). The operator can be concisely
expressed in terms of three-flavor partons, fα=x,y,z which
couple to a U(1) gauge field to gauge out the total charge
mode, as Qμ = f †

α (Mμ)αβ fβ , where Mμ are 3 × 3 matrices
constructed based on Gell-Mann matrices. For a single SU(3)
chain, we can expand the operator in terms of continuum
field Qμ � ∑

P=R/L Q
μ
P + ∑

q=±2kF
Qμ

q eiqx, where kF = π/3.
Using Bosonization method [48–50], we find that the scaling
dimensions for each are �[Qμ

P=R/L] = 1 and �[Qμ
±2π/3] =

2/3, which leads to the power-law behaviors in the real-space
correlation function, 〈D(x) · D(0)〉 ∼ r−2 + r−4/3 cos(2kF x),
consistent with the previous results [51]. We can clearly see
that the wavevector 2π/3 indeed appears at a single SU(3)
chain limit. We then consider the multiple SU(3) chains
coupled by weak nearest-neighbor interchain interactions.
Based on weak-coupling analysis, we find that the interchain
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FIG. 16. The real space spin [(a) and (c)] and quadrupolar
[(b) and (d)] correlation functions for the SU(3) model on the TC3
[(a) and (b)] and TC4 [(c) and (d)] cylinders. The green site is the
reference site; the blue and red colors denote positive and negative
correlations of the sites with the reference site, respectively. The area
of circle is proportional to the magnitude of the spin or quadrupolar
correlations.

interaction can be written as H ′ = ∑
y

∫
dxH′, where

H′ = g1Qμ
q,yQ

μ
q̄,y+1 + λbsQμ

R,yQ
μ
L,y + g2Qμ

P,yQ
μ
P,y+1, (C1)

where repeated indices means summation and q̄ = −q =
±2kF . Based on the scaling dimension analysis, we find that
only the coupling g1 is relevant, which suggests that the
oscillating components Qμ

q,y at y leg and Qμ
q,y+1 sitting at

(y + 1) leg tend to “antiallign” with each other leading to a
π period along y direction. The above weak-coupling analysis
for the SU(3) ladder system gives the tendency toward the
formation of (2π/3, π )/(π, 2π/3) order, which is frustrated
in the thermodynamic limit.

We now present further details to make the above points
more explicit. In two dimensions (2D) the usual approach
is to decompose the three-component spin (Sα=x,y,z ) and
five-component quadrupole (Qi=1∼5) operators in terms of
three-flavor spinor, the fermionic partons. At SU(3) point,
we can concisely construct an eight-component operator Q ≡
f †
α Mμ

αβ fβ , with

Qμ=1∼3 = Sα = −iεαβγ f †
β fγ , (C2)

Qμ=4∼8 = Qi=1∼5, (C3)

f †
α fα = 1 (C4)

where repeated indices mean summation, and we can iden-
tify Q1 = Qx2−y2

, Q2 = Q3z2−r2
, Q3 = Qxy, Q4 = Qyz, and

Q5 = Qzx in the usual convention for the definition of the
quadrupolar operator, and the 8-component matrices M can
be related to Gell-Mann matrices λμ=1∼8 as M1 = λ7, M2 =
−λ5, M3 = λ2, M4 = −λ3, M5 = λ8, M6 = −λ1, M7 = −λ6,
and λ8 = −λ4. The Gell-Mann matrices are

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, λ6 =

⎛
⎝0 1 0

0 0 1
0 1 0

⎞
⎠,

λ7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (C5)

In the mean-field approach, one assumes that the partons are
noninteracting and hopping freely on the lattice [46]. This
artificially enlarges the Hilbert space, since the noninteracting
parton hopping Hamiltonian allows for unoccupied and dou-
bly occupied sites, which are strictly forbidden in the present
quantum spin model. One route to project the enlarged Hilbert
space into a physical one is to perform Gutzwiller projection
to project the enlarged Hilbert space at the mean-field level
back into the physical Hilbert space for the quantum spin
model restricting the patrons to single occupancy. The alter-
nate approach for implementing the constraint of the single
occupancy is by introducing a gauge field, for which the
simplest case is the U(1) gauge field, minimally coupled to the
patrons in the hopping Hamiltonian. By doing this, the theory
becomes a strongly coupled lattice gauge field theory, which is
hard to be solved analytically. Fortunately, on the chain limit,
we can employ Bosonization to analyze the quasi-1D gauge
theory, which can capture universal low-energy properties of
the ground state in the spin Hamiltonian [46,47].

We now start by using Bosonization to analyze the gauge
theory. We assume a mean-field state in which the partons are
hopping on the chain with nearest-neighbor hopping strengths
denoted t1. The dispersion of each flavor of parton is

ξ (k) = −2t1 cos(k). (C6)

At the mean-field level, each flavor of parton is 1/3 filled,
which gives one set of Fermi crossings at wave vectors
±kF = ±π/3. The parton operators are expanded in terms of
continuum fields,

fα (x) =
∑

P

eiPkF x fPα, (C7)

with α = x, y, z denoting the flavor, and P = R/L = ± de-
noting the right and left mov-ing fermions. We now use
Bosonization re-expressing these low-energy parton operators
with Bosonic fields,

fPα = ηαei(ϕα+Pθα ), (C8)
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with canonically conjugate boson fields:

[ϕα (x), ϕβ (x′)] = [θα (x), θβ (x′)] = 0, (C9)

[ϕα (x), θβ (x′)] = iπδαβ�(x − x′), (C10)

where �(x) is the Heaviside step function, and ηα are the
Klein factors, the Majorana fermions {ηα, ηβ}, for assuring
the anti-commutation between partons with different flavors.
Under bosonization, the slowly varying fermionic densities
are simply f †

Pα fPα = ∂x(Pϕα + θα )/(2π ).
In the present 1 + 1D continuum theory, we work under

the gauge constraint that eliminate spatial components of the
gauge field. In the imaginary-time formalism, the bosonized
Lagrangian density is

L = 1

2π

∑
α=x,y,z

[
1

vα

(∂τ θα )2 + vα (∂xθα )2

]
+ LA. (C11)

Here LA encodes the coupling to the slowly varying 1D
(scalar) potential field A(x),

LA = 1

m

(
∂xA

π

)2

+ iρAA, (C12)

where ρA denotes the total gauge charge density:

ρA = 1

π

∑
α

∂xθα. (C13)

In the present SU(3) chain, it is useful to define fields as

θρ = 1√
3

∑
α

θα, (C14)

θ1 = 1√
2

(θx − θy), (C15)

θ2 = 1√
6

(θx + θy − 2θz ), (C16)

and similar expressions for ϕρ, ϕ1, ϕ2 fields, which leads to
the Lagrangian density in the same form as before,

L = 1

2π

∑
α=ρ,1,2

[
1

vα

(∂τ θα )2 + vα (∂xθα )2

]
+ LA. (C17)

Integration over the gauge potential generate a mass term,

LA ∼ m
(
θρ − θ (0)

ρ

)2
, (C18)

for the field θρ = ∑
α θα/2. Due to the presence of the mass

term for the total charge mode, θρ , the θρ becomes gapped and
can be ignored essentially.

The spin and quadrupolar operators can also be re-
expressed in terms of the bosonic fields, and their corre-
sponding correlation functions can be determined based on
the bosonic Lagrangian above, Eqs. (C17) and (C18). Let’s
take the spin operator as an illustration. We find that the
spin operator at the low-energy theory description consists
of a uniform and a oscillating parts with wave vectors

q = ±2kF = ±2π/3,

Sα (x) � Sα
uni(x) +

∑
q=±2kF

Sα
q (x)eiqx, (C19)

with

Sα
uni(x) � 1

2π
(∂xϕRα − ∂xϕLα ) = 1

π
∂xθα, (C20)

Sα
q (x) � −iεαβγ ηβηγ e−i(θβ+θγ ) cos(ϕβ − ϕγ ). (C21)

Based on the scaling dimension analysis, we find the scaling
dimensions for the uniform and oscillating parts to be

�
[
Sα

uni

] = 1, �
[
Sα

q

] = 2/3, (C22)

which leads to the conclusion that a spin correlation function
at such a SU(3) spin chain shows the power-law behavior as

〈�S(x) · �S(0)〉 � r−2�[Sα
uni] + r−2�[Sα

q ] cos(2kF x) (C23)

= r−2 + r−4/3 cos(2kF x), (C24)

which is consistent with the previous studies [51]. Similarly,
we can find that the quadrupolar operator has the similar
behaviors as

Qi(x) � Qi
uni(x) +

∑
q=±2kF

Qi
qeiqx, (C25)

and their scaling dimensions are

�
[
Qi

uni

] = 1, �
[
Qi

q

] = 2/3. (C26)

We can clearly see the 2π/3 wave vector.
Now in order to see the π wave vector found in the DMRG

calculations, we proceed to consider weak couplings be-
tween each SU(3) chains. Introducing a more compact eight-
component operator Q consisting both spin and quadrupolar
operators, we can then expand the eight-component in terms
of low-energy fields as

Qμ=1∼8 � Qμ
uni +

∑
q=±2kF

Qμ
q eiqx. (C27)

At weak-coupling regime, we find that the nearest-neighbor
couplings between y and (y + 1) legs chains can be written
down at the low-energy description as H ′ = ∑

y

∫
dxH′ with

H′ = g1Qμ
q,yQ

μ
q̄,y+1 + λbsQμ

R,yQ
μ
L,y + g2Qμ

P,yQ
μ
P,y+1, (C28)

where the repeated indices mean summations. We define
Qμ

y ≡ ∑
P Q

μ
P,y and q̄ = −q. At tree-level renormalization

group (RG) analysis, we find the scaling dimensions for the
couplings as �[g1] = 2/3, where λbs and g2 remain marginal.
Therefore we can see if g1 > 0, under RG the Qμ

q,y and Qμ
q̄,y+1

tend to “antialign” with each other leading to a staggered
pattern along y-direction with a period of π .

We can then see based on the weak-coupling analysis of
multiple SU(3) chains weakly coupled by weak interchain
interactions, the wave vector (2π/3, π )/(π, 2π/3) can nat-
urally arise, which is consistent with the DMRG results.
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