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Enhanced interaction effects in the vicinity of the topological transition
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A metal near the topological transition can be loosely viewed as consisting of two groups of electrons. The
first group are “bulk” electrons occupying most of the Brillouin zone. The second group are electrons with
wave vectors close to the topological transition point. Kinetic energy, ẼF , of electrons of the first group is much
bigger than kinetic energy, EF , of electrons of the second group. With electrons of the second group being
slow, the interaction effects are more pronounced for these electrons. We perform a calculation illustrating that
electrons of the second group are responsible for inelastic lifetime making it anomalously short, so the concept
of quasiparticles applies to these electrons only marginally. We also demonstrate that interactions renormalize
the spectrum of electrons in the vicinity of topological transition, the parameters of renormalized spectrum being
strongly dependent on the proximity to the transition. Another many-body effect that evolves dramatically as the
Fermi level is swept through the transition is the Friedel oscillations of the electron density created by electrons of
the second group around an impurity. These oscillations are strongly anisotropic with a period depending on the
direction. Scattering of electrons off these oscillations give rise to a temperature-dependent ballistic correction
to the conductivity.
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I. INTRODUCTION

Topological transitions in metals take place when, upon
changing a certain external parameter, the connectivity of the
Fermi surface undergoes a transformation. The concept of
topological transitions was introduced by I. M. Lifshitz in
1960 [1]. Lifshitz demonstrated that thermodynamic charac-
teristics of a metal exhibit a singular behavior in the vicinity
of the transition. Such a singular behavior was subsequently
observed experimentally [2,3]. First, experiments were con-
ducted on 3D metallic alloys [2] and 2D semiconductor super-
lattices [3]. In the past decade, the class of materials in which
the signatures of the topological transitions were uncovered
has significantly broadened [4–11] to include heavy fermions,
graphite, germanene, cilicene, ruthinades, etc.

On the theoretical side, kinetic and thermodynamic char-
acteristics of metals near the topological transitions [12–18]
were actively studied after the experiments [2,3]. The results
are reviewed in Ref. [19]. On the conceptual level, the main
theoretical finding is that, in addition to the single-particle
density of states, the transition manifests itself in the energy
dependence of the impurity scattering time of carriers, which,
at the same time, broadens the transition. Recent theoretical
interest in the topological transitions [20–25] is mostly mo-
tivated by the invention of materials with strong spin-orbit
coupling.

The role played by electron-electron interactions in the
topological transition was considered in Ref. [18] with a
general conclusion that, away from Pomeranchuk instability,
Fermi-liquid effects renormalize the singular part of thermo-
dynamic quantities.

The goal of the present paper is to trace how the standard
many-body effects for an isotropic spectrum get modified in
the vicinity of the topological transition. We will consider the

following effects: Friedel oscillations of the electron density,
interaction-induced modification of the electron spectrum,
and the interaction-induced electron lifetime caused by the
creation of the electron-hole pairs. We find that the proximity
to the transition gives rise to additional Friedel oscillations
with very long periods, which are strongly anisotropic and
get rotated by 90◦ as the Fermi level is swept through the
transition.

Our main finding is that the electron lifetime, τe, associated
with the creation of pairs, shortens dramatically in the vicinity
of the transition. Directly at the transition, we have h̄

τe(E ) ∼ E ,
so the concept of the Fermi liquid applies only marginally.

Since the interaction effects are more pronounced in two
dimensions, we will choose the simplest form of the spectrum
in the vicinity of the topological transition

Ek = h̄2k2
x

2m
− h̄2k2

y

2m
, (1)

see Fig. 1. The transition corresponds to the position of the
Fermi level EF = 0. As EF changes from negative to positive,
the Fermi surface near kx = ky = 0 evolves as illustrated in

Fig. 2. Most importantly, the typical wave vector, ( mEF

h̄2 )
1/2

, in
the vicinity of the transition is small, while everywhere else in
the Brillouin zone this wave vector is big, namely it is of the

order of ( mẼF

h̄2 )
1/2

, where ẼF is the Fermi level measured from
the bottom of the band.

While within a single-particle approach the topological
transition causes a singular correction to the electron charac-
teristics, interaction effects give rise to new distinct features,
in particular, new Friedel oscillations and a new channel of
inelastic relaxation.
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FIG. 1. Electron spectrum near the topological transition is plot-
ted from Eq. (1) together with Fermi contours for different values of
the Fermi energy, EF .

FIG. 2. The process responsible for the formation of the Kohn
anomaly and ensuing long-period Friedel oscillations is illustrated
for positive EF (a) and negative EF (b). The components of the vector
q satisfy the condition q2

x − q2
y = 4k2

F , Eq. (39).

FIG. 3. Anisotropic Friedel oscillations are plotted from Eq. (14)
for positive EF . For negative EF , the plot should be rotated by 90◦.

II. FRIEDEL OSCILLATIONS

For a parabolic spectrum, Ek = h̄2k2

2m , the Friedel oscilla-
tions of the electron density, δn(r), created by a defect, are
isotropic,

δn(r) ∝ sin (2kF r)

(kF r)2 , (2)

where kF = ( 2mEF

h̄2 )
1/2

is the Fermi wave vector.
Below we generalize the derivation of δn(r) to the case of

a hyperbolic spectrum Eq. (1) and demonstrate that it assumes
the form

δn(r) ∝ sin(2kF

√
x2 − y2)

(kF

√
x2 − y2)2

. (3)

Outside the quadrants |x| > |y|, the correction δρ(r) falls off
exponentially at large r � k−1

F .
On the opposite side of the transition, EF < 0, the result

Eq. (3) transforms into

δn(r) ∝ sin(2kF

√
y2 − x2)

(kF

√
y2 − x2)2

, (4)

with kF = ( 2m|EF |
h̄2 )

1/2
. Therefore, the crossing from positive

to negative EF is accompanied by rotation of the Friedel os-
cillations pattern by 90◦ (see Fig. 3). At finite temperature, T ,
the oscillations are cut off at distance rT such that kF rT ∼ EF

T ,
so in the transition region EF ∼ T the oscillations effectively
disappear.

Derivation

Consider a short-range impurity with potential U (r). It
creates the following correction to the free-electron wave
functions, �k(r):

δ�k(r) =
∑

k′

Ukk′

Ek − Ek′
�k′ (r). (5)
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Then the electron density,

n(r) =
∑

k

|�k(r) + δ�k(r)|2�(EF − Ek ), (6)

acquires the following correction:

δn(r) = 2
∑

k

�(EF − Ek )�∗
kδ�k

= 2U0

∑
k,k′

�(EF − Ek )
�∗

k�k′

Ek − Ek′
, (7)

where U0 = Ukk′ = ∫
drU (r), and �(z) is a step function. It

is convenient to rewrite Eq. (7) in the form

δn(r) = U0

4π2

∫ EF

−∞
dE1

∫ ∞

−∞
dE2

�(E1, r)�∗(E2, r)

E1 − E2
, (8)

where we have introduced an auxiliary function

�(E , r) =
∫

dkeikrδ(E − Ek )

=
∫∫

dkxdkyδ

[
E − h̄2

2m

(
k2

x − k2
y

)]
eikxx+ikyy. (9)

To establish the analytical form of �(E , r), we switch to the
new variables

kx = px cos ϕr + py sin ϕr,

ky = px sin ϕr − py cos ϕr, (10)

where ϕr is the azimuthal angle of r. Then Eq. (9) takes the
form

�(E , r) =
∫∫

d pxd pyδ

[
2mE

h̄2 − (
p2

x − p2
y

)
cos 2ϕr − 2px py sin 2ϕr

]
eipxr . (11)

Note that py is present only in the argument of the δ function. To perform the integration over py, we factorize this argument:

�(E , r) = 1

cos 2ϕr

∫
d pxeipxr

∫
d pyδ

[(
py + px

sin 2ϕr

cos 2ϕr
+

√
p2

x

cos2 2ϕr
−

(
2mE

h̄2

)
1

cos 2ϕr

)

×
(

py + px
sin 2ϕr

cos 2ϕr
−

√
p2

x

cos2 2ϕr
−

(
2mE

h̄2

)
1

cos 2ϕr

)]
. (12)

Now the integration over py is straightforward and yields

�(E , r) = 1

2

∫ ∞

−∞
d px

eipxr√
p2

x − (
2mE

h̄2

)
cos 2ϕr

. (13)

Here we assumed that E cos 2ϕr is negative, so the expression
under the square root does not turn to zero. Then the integral
reduces to the Macdonald function. For positive E cos 2ϕr,
the argument of the δ function in Eq. (12) turns to zero only
when |px| > [ 2mE

h̄2 cos 2ϕr
]
1/2

. This condition excludes the interval

|px| < [ 2mE
h̄2 cos 2ϕr

]
1/2

from the integration. The integral then
reduces to the Bessel function of the second kind. Combining
both cases, we write

�(E , r) = m

2π2h̄2

{−Y0(kE

√
x2 − y2), E (x2 − y2) > 0

K0(kE

√
y2 − x2), E (x2 − y2) < 0,

where kE = ( 2mE
h̄2 )

1/2
. In the case of a parabolic spectrum, the

function �(E , r) is simply the Bessel function J0(kE r).
Now the expression for �(E , r) should be substituted

into Eq. (8). Similar to the parabolic spectrum, one has to
use the large-argument asymptote of �(E , r). We see that
for |y| > |x|, the Macdonald function decays exponentially,
so there are no oscillations in two quadrants |y| > |x|. For
quadrants |x| > |y|, the long-distance asymptote of Y0(z) is
sin (z − π

4 ), and differs by a phase π/2 from the asymptote,
cos (z − π

4 ), of J0(z). Thus, the product Y0(z1)Y0(z2) contains
cos (z1 + z2 − π

2 ) in the same way as the product J0(z1)J0(z2)
only with opposite sign. This allows us to proceed directly to

the result for δn(r)

δn(r) = mU0 sin(2kF

√
x2 − y2)

2π2h̄2(x2 − y2)
. (14)

Equation (14) illustrates the general connection [26] between
the Friedel oscillations and the underlying spectrum. We note
that the condition of applicability of the result Eq. (14) is that
the argument of the sine is big.

III. SPECTRUM RENORMALIZATION

We start from the textbook expression [27] for the ex-
change self-energy,


(k) = −
∫

d2k′

(2π )2
V (k − k′) nk′ , (15)

where nk′ = �(EF − Ek′ ) is the Fermi distribution and V (q)
is the Fourier component of the electron-electron interaction.
We first assume that EF = 0 and choose for V (q) the screened
Coulomb potential,

V (q) = 2πe2

ε(q + κ )
, (16)

where ε is a bare dielectric constant and κ is the inverse
screening radius which we will determine later.

Obviously, the integral over k′ diverges at large k′, leading
to a general energy shift independent of k. To calculate the
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spectrum renormalization, we subtract this shift and get


(k) − 
(0)=−2πe2

ε

∫
d2k′

(2π )2

k′ − |k′ − k|
(k′ + κ )(|k − k′| + κ )

nk′ .

(17)

Now the integral Eq. (17) converges at k′ ∼ κ . We are inter-
ested in the spectrum renormalization in the vicinity of the
transition. Assuming that k 	 κ , we expand the integrand in
parameter k

k′ . This yields


(k) − 
(0)

= −2πe2

ε

∫
d2k′

(2π )2

[ k·k′
k′ + (k·k′ )2−k2k′2

2k′3

(k′ + κ )2
+

( k·k′
k′

)2

(k′ + κ )3

]
nk′ .

(18)

The expansion in Eq. (18) is carried out to the second order
in k

k′ , since the first-order term vanishes upon the angular
integration. Indeed, this term changes sign upon replacement
ϕk′ → (π − ϕk′ ), where ϕk′ is the polar angle of the vector k′.
On the other hand, the argument of nk′ contains cos 2ϕk′ , and it
does not change upon this replacement. Thus, the integration
of the linear term over ϕk′ yields zero. The second and the
third terms in Eq. (18) give rise to the following k2 correction
to the spectrum:


(k) − 
(0) = 2πe2

ε
k2

∫
d2k′

(2π )2

×
[

sin2(ϕk − ϕk′ )

2k′(k′ + κ )2
− cos2(ϕk − ϕk′ )

(k′ + κ )3

]
nk′ .

(19)

It is instructive to rewrite this correction in the form


(k) −
(0) = −2πe2k2

ε

∫
d2k′

(2π )2

×
[

(k′ − κ ) + (3k′ + κ ) cos 2(ϕk − ϕk′ )

4k′(k′ + κ )3

]
nk′ .

(20)

We expect that interactions preserve the structure of the
spectrum, k2 cos 2ϕk. On the other hand, the first term in the
numerator of Eq. (20) leads to the isotropic k2-correction. But
it is easy to check that the condition∫ ∞

0
dk′ k′ − κ

(k′ + κ )3
= 0 (21)

is met, so the coefficient in front of the k2-term is zero. The
final result for the spectrum renormalization reads


(k) − 
(0) = −k2 cos 2ϕk

(
e2

8πε

)∫ ∞

0

dk′(3k′ + κ )

(k′ + κ )3

×
∫ 2π

0
dϕ

k′ nk′ cos 2ϕ
k′ . (22)

In Eq. (22), it is assumed that the Fermi level is zero. Then the
integrals over k′ and over ϕ

k′ get decoupled. The first integral
is equal to 2κ−1, while the second integral is equal to −2. It is
convenient to cast Eq. (22) into the form of the renormalized

mass in the spectrum Eq. (1):

1

meff
= 1

m

(
1 + 2me2

πεκ h̄2

)
. (23)

At finite but small EF 	 h̄2κ2

2m , the dependence on EF comes

from the Fermi distribution nk′ = �(EF − h̄2

k′2 2m cos 2ϕ
k′ ). At

EF = 0, the argument of the �-function is positive when
cos 2ϕ

k′ is negative. At finite EF , the angular interval narrows,
but slightly. This is because the typical value of k′ is of the
order of κ . On the other hand, the leading dependence on
EF originates from the parameter κ . Within the random-phase
approximation, the expression for the inverse screening radius
reads

κ = 2πe2

ε
ν, (24)

where ν is the density of states at the Fermi level. In fact, ν

diverges in the limit EF → 0. Indeed, one has

ν(E )=2
∫

d2k

(2π )2
δ

[
E − h̄2

2m

(
k2

x − k2
y

)]= 2m

π2h̄2 ln

(
ẼF

|E |
)

.

(25)

Substituting Eq. (25) into Eq. (24), we arrive at the following
expression for renormalized mass:

1

meff
= 1

m

[
1 + 1

2 ln(ẼF /|EF |)
]
. (26)

IV. POLARIZATION OPERATOR

The polarization operator for 2D electron gas with a
parabolic spectrum was calculated by F. Stern [28]. Below we
calculate the polarization operator for a hyperbolic spectrum
Eq. (1), we start from the definition

�(ω, q) =
∑

k

nk − nk+q

h̄ω + Ek − Ek+q
. (27)

As a first step, we cast Eq. (27) into the form

�(ω, q) =
∑

k

nk

[
1

h̄ω + Ek − Ek+q
− 1

h̄ω + Ek−q − Ek

]
.

(28)
Introducing, similar to Eqs. (10), the new variables

kx = px cos ϕq + py sin ϕq,

ky = py cos ϕq − px sin ϕq, (29)

and replacing the sum by the integral, we obtain

�(ω, q) =
∫∫

d pxd py

(2π )2
�

[
2mEF

h̄2 − (
p2

x − p2
y

)

× cos 2ϕq − 2px py sin 2ϕq

]

×
[

1

h̄ω + h̄2q2

2m cos 2ϕq − h̄2

m pxq

− 1

h̄ω − h̄2q2

2m cos 2ϕq − h̄2

m pxq

]
. (30)
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Note that the argument of the � function has the same form
as the argument of the δ function in Eq. (12) with ϕq instead
of ϕr. Then the integration over py is straightforward,

�(ω, q) =
∫ ∞

−∞

d px

2π2

[
p2

x

cos2 2ϕq
− 2mEF

h̄2 cos 2ϕq

]1/2

×
[

h̄ω + h̄2q2

2m cos 2ϕq(
h̄ω + h̄2q2

2m cos 2ϕq
)2 − ( h̄2 pxq

m

)2

− h̄ω − h̄2q2

2m cos 2ϕq(
h̄ω − h̄2q2

2m cos 2ϕq
)2 − ( h̄2 pxq

m

)2

]
, (31)

where the first square bracket is the result of integration over
py, and in the second square bracket we have isolated the parts
even in px.

It is convenient to rewrite Eq. (31) as follows:

�(ω, q) = m

π2h̄2q cos 2ϕq

∫
d px

[
p2

x − A
]1/2

×
[

β+
β2+ − p2

x

− β−
β2− − p2

x

]
, (32)

where the parameters A, β+, and β− are defined as

A = 2mEF cos 2ϕq

h̄2 ,

β± = m

h̄2q

(
h̄ω ± h̄2q2

2m
cos 2ϕq

)
. (33)

Now the integration in Eq. (32) can be performed explic-
itly. The main contribution to the polarization operator comes
from log divergence of the integral at large px. This divergence
is cut off at px ∼ (2mẼF /h̄2)

1/2
. The ω and q dependencies

are given by the subleading terms

�(ω, q) = m

π2h̄2q cos 2ϕq

×
[
−(β+ − β−) ln

(
ẼF

|EF cos 2ϕq|
)

−
(

β2
+ − A

β+

)
G

(
A

β2+

)
+

(
β2

− − A

β−

)
G

(
A

β2−

)]
,

(34)

where the function G(z) is defined as

G(z) =
∫

dP
(P2 − z)1/2(P2 − 1)

. (35)

The upper limit in the integral Eq. (35) is infinity. The lower
limit is py = z1/2 for positive z and py = 0 for negative z.
Correspondingly, the form of G(z) is different for z > 0 and
z < 0. Namely,

G(z) =
⎧⎨
⎩

1
(z−1)1/2 arcsin

(
1

z1/2

)
, z > 0

ln
(

1
|z|1/2 +

√
1+ 1

|z|
)

(|z|+1)1/2 , z < 0,

It is easy to see that G(z) falls off as 1/z at large positive z and
as 1/|z| at large negative z.

A. Frequency domain

Note that the coefficient (β+ − β−) in front of the leading
logarithmic term does not depend on frequency. In 2D electron
gas with parabolic spectrum [28], the analog of the com-

binations β2
± − A in Eq. (34) has the form [(h̄ω − h̄2q2

2m )
2 −

2 h̄2q2ẼF

m ]
1/2

. At small q, the polarization operator acquires an
imaginary part, which is responsible for the AC conductivity,

when ω > ( 2ẼF
m )

1/2
q. The corresponding condition for the

hyperbolic spectrum reads ω > ( 2EF cos 2ϕq

m )
1/2

q. First, since
ẼF , the Fermi energy in the “bulk” is much bigger than EF , we
conclude that the AC response at low frequencies is dominated
by the proximity to the topological transition. Second, this
response is strongly anisotropic.

B. Momentum domain

In the static limit, ω = 0, the polarization operator is a
universal function of the dimensionless momentum:

Qq = q

(
h̄2

2mEF
cos 2ϕq

)1/2

. (36)

This function has a form

�(q) = − m

2π2h̄2

[
ln

(
ẼF

|EF cos 2ϕq|
)

−
(

1 − Q2
q

4

)1/2
arcsin

(Qq

2

)
(Qq

2

)
⎤
⎦ (37)

for |Qq| < 2. Near the Kohn anomaly, the behavior of
(�(q) − �(0)) is singular, (2 − |Qq|)1/2. It gives rise to the
long-period Friedel oscillations Eq. (14).

For |Qq| > 2, the expression for the polarization operator
reads

�(q) = − m

2π2h̄2

⎧⎨
⎩ln

(
Ẽ

|EF cos 2ϕq|
)

+
(

1 − 4

Q2
q

)1/2

× ln

⎡
⎣(

Qq

2

)
+

√
Q2

q

4
− 1

⎤
⎦

⎫⎬
⎭. (38)

As a function of (|Qq| − 2), the behavior of �(q) is linear.
Note that the behaviors Eqs. (37) and (38) differ from the
static polarization operator for the isotropic spectrum [28],
where �(q) is constant for q < 2kF , while the Kohn anomaly,
∝(q − 2kF )1/2, is located to the right from q = 2kF .

To summarize, we have evaluated a polarization operator
in the entire domain of frequencies and momenta. In the static
limit and for qy = 0, our result agrees with Ref. [22]. While

for parabolic spectrum, Ek = h̄2

2m (k2
x + k2

y ), the Kohn anomaly
corresponds to the condition q = 2kF , the corresponding con-
dition for the hyperbolic spectrum Eq. (1) reads

q2
x − q2

y = 4k2
F . (39)

This condition is illustrated in Fig. 2.
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V. ELECTRON LIFETIME

The process which is responsible for a finite lifetime, τe,
of an electron with energy, Ek, above the Fermi level is the
creation of an electron-hole pair. Accurate calculation of τe

for an electron gas with a parabolic spectrum was reported in
Refs. [29,30]. The result reads

1

τk
= �(k, Ek ) = E2

k

4π h̄ẼF
ln

(
ẼF

Ek

)
. (40)

The E2
k dependence originates from the energy conservation,

namely Ek + Ep = Ek′ + Ep′ , where Ek′ > ẼF is the energy
of the secondary electron, while Ep < ẼF and Ep′ > ẼF are
the energies of particles constituting an excited pair. The
factor ln ( ẼF

Ek
) originates from the momentum conservation.

To generalize Eq. (40) to the case of hyperbolic spectrum, we
start from the golden-rule expression for the rate τ−1

k :

1

τk
∝

∫
Ek′ >ẼF

dk′
∫

Ep<ẼF

dp
∫

Ep′>ẼF

dp′

× δ(Ek + Ep − Ek′ − Ep′ )δ(k + p − k′ − p′). (41)

In conventional calculations [29,30], the interaction strength
is absent in Eq. (41) as a result of screening. In our case,
the screening radius, κ−1, contains an additional logarithmic
factor, which we do not capture in our calculations.

To perform the averaging over the directions of momenta,
we introduce auxiliary variables E1, E2, and E3 and invoke the
integral representation of the δ function:

1

τk
∝

∫ ∞

ẼF

dE1

∫ ẼF

−∞
dE2

∫ ∞

ẼF

dE3 δ(Ek + E2 − E1 − E3)

×
∫

dk′
∫

dp
∫

dp′δ(Ek′ − E1)δ(Ep − E2)δ(Ep′ − E3)

×
∫

dr
(2π )2

exp[i
(
k + p − k′ − p′)r]. (42)

Now the integration over momenta decouples into three in-
tegrals of the type

∫
dp exp (ipr)δ(Ep − E ). For a parabolic

spectrum, this integral is expressed through a zero-order
Bessel function, J0(kE r). Then the integral over r in Eq. (42)
assumes the form

I =
∫

dreikrJ0
(
kE1 r

)
J0

(
kE2 r

)
J0

(
kE3 r

)
. (43)

The angular-averaged exp (ikr) is equal to J0(kE r). The mag-
nitudes of all momenta in Eq. (43) are close to the Fermi
momentum, k̃F . The long-distance behavior of the product of
the four Bessel functions is ∝ 1

(k̃F r)
2 . Then the integration over

r gives rise to the logarithm in Eq. (40), while 1
k̃2

F
generates ẼF

in the denominator.
For a hyperbolic spectrum, the integral

∫
dp exp

(ipr)δ(Ep − E ) is given by the function �(E , r) defined
by Eq. (9). Then, in place of integral Eq. (43), one has

I =
∫

dreikr�(E1, r)�(E2, r)�(E3, r). (44)

Depending on the polar angle of r, the function �(E , r) either
oscillates with r (in the domain −π

4 < ϕr < π
4 ) or decays

FIG. 4. Illustration of the process responsible for a finite electron
lifetime: Initial electron with momentum k and energy Ek reduces its
energy and goes to the final state Ek′ , creating a pair with energies Ep

and Ep′ .

with r (in the domain π
4 < ϕr < 3π

4 ). In the first domain,
with energies E1, E2, E3 close to EF and wave vector k close
to (2mEF /h̄2)

1/2
, the slow part of the integrand in Eq. (44)

reproduces, within a numerical factor, the result Eq. (40) for
the hyperbolic spectrum.

Naturally, the applicability of Eq. (40) requires that |Ek −
EF | 	 EF . In the vicinity of the topological transition, EF is
small and the estimate for the lifetime follows from Eq. (40)
upon setting EF ∼ Ek. We conclude that, in the vicinity of the
topological transition, h̄

τe
∼ E .

Assume now that the Fermi level is EF = 0. The question
of interest is how τe depends on the direction, ϕk, of the
momentum of the initial electron. For EF = 0, energy conser-
vation requires that, when the energy E1 is positive, the energy
E2 is negative while the energy E3 is positive, see Fig. 4. Then
Eq. (44) assumes the form

I =
∫ ∞

0
drr

∫ 2π

0
dϕr exp[ikr cos(ϕk − ϕr )]

×Y0(k1r cos 2ϕr )K0(k2r cos 2ϕr )Y0(k3r cos 2ϕr ), (45)

where k is the magnitude of momentum of initial electron, k1

and k3 are momenta of the secondary electrons, and −k2 is the
momentum of a hole.

To find the dependence of τe on ϕk, we introduce instead
of r a new variable z = kr cos 2ϕr and obtain

I = 1

k2

∫ 2π

0

dϕr

cos2 2ϕr

∫ ∞

0
dzz exp

[
iz

cos (ϕk − ϕr )

cos 2ϕr

]

×Y0

(
k1

k
z

)
K0

(
k2

k
z

)
Y0

(
k3

k
z

)
. (46)

The form Eq. (46) suggests that the main contribution to the
integral comes from the vicinity of ϕr ≈ ±π

4 ,± 3π
4 . For

these ϕr, the exponent in the integrand rapidly oscillates with
z. The exceptions are the vicinities of ϕk = ±π

4 ,± 3π
4 when

cos (ϕk − ϕr ) turns to zero when ϕr is close to ±π
4 ,± 3π

4 .
As an example, consider a situation ϕk ≈ −π

4 and set
ϕr = π

4 + ψr, with ψr 	 1. The exponent in Eq. (46) does not
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oscillate for ψr > ψmin, where ψmin = | cos (ϕk − π
4 )|. Then

the angular integration in Eq. (46) yields

∫ ∞

ψmin

dψr

ψ2
r

= 1

ψmin
= 1∣∣ cos

(
ϕk − π

4

)∣∣ . (47)

The above result suggests that the lifetime, τe, shortens dra-
matically for certain directions of momentum of an electron.
Physical explanation of such a shortening is that the cost
of creation of a pair by electron with these directions of
momentum is anomalously low.

VI. CONCLUDING REMARKS

(i) Ballistic correction to the conductivity [31–33],
σ (EF , T ), of a 2D electron gas has the form δσ

σ
∼ λ( T

EF
),

where λ is the interaction parameter [32]. The origin of this
correction is electron scattering from the potential created
by Friedel oscillations surrounding individual impurities. The
amplitude of this process is sharply peaked at the scattering
angle π . For this angle, the momentum transfer is close to 2kF ,
the wave vector of the Friedel oscillation. For the hyperbolic
spectrum, while the wave vector of the Friedel oscillations
depends on the direction, the mechanism of Refs. [31,32] still
applies. It gets modified as illustrated in Fig. 2. Backscattering
takes place between disjoint parts of the Fermi surface. The
smallness of EF makes the ballistic correction progressively
pronounced in the vicinity of the transition.

(ii) While calculating the spectrum renormalization, we
assumed that the form of interaction is screened Coulomb,
see Eq. (16). In fact, the static polarization operator Eq. (37)

contains a subleading term, (1 − Q2
q

4 )
1/2

, describing the Kohn
anomaly. This term is strongly anisotropic. An interesting
question is how this anisotropy affects the spectrum renor-
malization. Denote with δκ (q) the correction to the inverse
screening radius, describing the Kohn anomaly, δκ (q) ∝
(1 − h̄2q2

8mEF
cos 2ϕq)

1/2
. Expanding the interaction V (q) with

respect to δκ (q), we get

δV (q) = −2πe2δκ (q)

ε(q + κ )2
. (48)

This correction to V (q) gives rise to the following correction
to the self-energy:

δ
(k) ∝
∫

dk′δκ (k − k′)�
(

EF − h̄2k′2

2m
cos 2ϕk′

)
. (49)

At small momenta, |k| 	 kF , Eq. (49) leads to the following
contribution to the spectrum renormalization:

δ
(k) ∝ Ek

∫
dk′ Ek′

(EF − Ek′ )3/2 �(EF − Ek′ ). (50)

This correction diverges; the divergence comes from the vicin-
ity of ϕk = ±π

4 ,± 3π
4 .

(iii) The divergence of lifetime for directions of momenta
close to ϕq = ±π

4 ,± 3π
4 also hints at strong renormalization

of the spectrum for these momenta.
(iv) With regard to observables, interaction-induced modi-

fication of the effective mass manifests itself in the magneto-
oscillations. Behavior of magneto-oscillations in the vicinity
of the topological transition constitutes a subfield called the
magnetic breakdown, see, e.g., the review Ref. [34]. As the
Fermi level is swept through the topological transition,
the period of magneto-oscillations doubles. The width of the
domain of EF where this doubling takes place is ∼ h̄2

ml2 , where

l is the magnetic length. For EF � h̄2

ml2 , the coupling of the
semiclassical trajectories is determined by tunneling under the
magnetic barrier [35]. Then the dependence of the effective
mass on EF affects the barrier transmission.

Electron lifetime is measured in 2D-2D tunneling experi-
ments [36,37]. The lifetime defines the width of the peak in
the tunnel conductance measured versus the DC bias applied
between the layers.

With regard to materials, see, e.g., Refs. [38–42], with
band structure governed by spin-orbit coupling, our main
message is that when the Fermi level is located in the vicinity
of the Van Hove singularity, like the nodal line [21], the
Fermi-liquid description of the electron states fails due to
the production of soft electron-hole pairs. This situation is
realized in certain topological crystalline insulators [38–42].
Since most experimental studies of topological materials are
carried out using spectroscopic measurements (ARPES) [43],
we predict that, if the Fermi level can be tuned, the pho-
toemission line becomes anomalously broad at the Lifshitz
transition.

(v) There is a conceptual similarity between Friedel os-
cillations of elections of the electron density created by an
impurity and the oscillations of the spin density created by
a magnetic impurity [44]. In this regard, long-period Friedel
oscillations in the vicinity of the topological transition are
similar to the long-period behavior of the RKKY interaction
established in Ref. [17].
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