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Theory of coherent-oscillations generation in terahertz pump-probe spectroscopy:
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Time-resolved spectroscopies using intense THz pulses appear as a promising tool to address collective
electronic excitations in condensed matter. In particular, recent experiments showed the possibility to selectively
excite collective modes emerging across a phase transition, as is the case for superconducting and charge-density-
wave (CDW) systems. One possible signature of these excitations is the emergence of coherent oscillations of
the differential probe field in pump-probe protocols. While the analogy with the case of phonon modes suggests
that the basic underlying mechanism should be a sum-frequency stimulated Raman process, a general theoretical
scheme able to describe the experiments and to define the relevant optical quantity is still lacking. Here we
provide this scheme by showing that coherent oscillations as a function of the pump-probe time delay can be
linked to the convolution in the frequency domain between the squared pump field and a Raman-like nonlinear
optical kernel. This approach is applied and discussed in a few paradigmatic examples: ordinary phonons in
an insulator, and collective charge and Higgs fluctuations across a superconducting and a CDW transition. Our
results not only account very well for the existing experimental data in a wide variety of systems, but they also
offer a useful perspective to design future experiments in emerging materials.
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In the past decade, significant advances have been made
in the investigation of complex systems thanks to the huge
amount of experimental progress in time-resolved spectro-
scopic techniques [1,2]. On very general grounds, the basic
idea behind any pump-probe protocol is to first excite the
system with a short and very intense electromagnetic pulse
(pump), and then to monitor its relaxation toward equilibrium
by using a secondary, weak pulse (probe) applied with a finite
time delay with respect to the pump. This general protocol can
then be implemented in several different ways, according to
the nature of the spectroscopic measurement (angle-resolved
photoemission, optical reflection or transmission, etc.) or to
the wavelength of the pump/probe fields. However, in all
cases one is faced with two phenomena that mark the dif-
ference with respect to ordinary equilibrium spectroscopies:
(i) the use of an intense pulse triggers, in general, nonlin-
ear optical processes; (ii) the subsequent relaxation encodes
by definition nonequilibrium phenomena on timescales that
depend on the characteristics of the experiment and of the
system under investigation. Due in part to these innovative
aspects, many pump-probe protocols still lack a general the-
oretical framework able to connect the measured quantities
to the material properties. More specifically, while Kubo
linear-response theory [3] currently represents the standard
theoretical tool needed to compute the optical response of any
system to a weak external perturbation, an analogous protocol
for time-resolved spectroscopies has not been established yet.

The present work aims to fill part of this knowledge
gap by providing a general theoretical scheme to understand
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the origin of time-resolved oscillations observed in typical
THz pump-THz/eV probe measurements. This experimental
technique has been successfully applied in recent years to in-
vestigate the properties of both conventional superconducting
(SC) compounds [4–9], whose spectral gap � lies in the THz
region, and layered superconductors [10,11] with an interlayer
Josephson plasma frequency again in the THz range. The gen-
eral scheme consists in probing the effects of the intense THz
pulse by measuring the pump-induced changes δEprobe(tpp)
in the transmitted (for a thin film) or reflected (for a bulk
crystal) probe field at a fixed observation time, as a function
of the pump-probe delay tpp. The observed signal is seen to
oscillate at frequencies that match the typical energy scale
of collective electronic excitations of the broken-symmetry
state, becoming a preferential tool for investigating its nature.
On the other hand, the same protocol can also be used to
excite collective modes of the underlying lattice, as shown,
e.g., by the marked oscillations of the transmitted electric field
at the characteristic frequency of Raman-active phonons in
insulators [12,13]. These experiments with THz pulses have
their counterpart in time-resolved spectroscopies using pump
and probe fields in the visible (vis) or infrared (ir) range.
Also in this case, persistent oscillations of the probe field
(usually collected in reflection configuration) as a function of
the pump-probe time delay lie in the THz range, and they have
been ascribed either to collective electronic modes, as in the
case of superconducting [14] or charge-density [15] ground
states, or to Raman-active phonons (see, e.g., Ref. [16] and
references therein).

Up to now, the general understanding of these experiments
has followed different routes in the literature. For phonons,
time-resolved oscillations at their typical frequencies induced
by a pump in the visible light have been well understood
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as an impulsive-stimulated Raman scattering process (ISRS).
In this case, the pump field generates a coherent ion motion
thanks to a difference-frequency process (DFP) analogous to
stimulated Raman, where the mismatch in the energy of two
optical photons can excite a phonon in the THz range. At a
second stage, the change induced by the ion motion in the
refractive index of the medium is detected by the probe field.
This picture [16] has been successfully applied also to explain
the difference between displacive and impulsive generation
of coherent ion motion in opaque or transparent media, re-
spectively. For what concerns instead the oscillations induced
by THz pump fields, a similar scheme has been recently
used to explain the experiments in wide-gap insulators such
as diamond [12,17] and CdWO4 [13], with the remarkable
difference that in this case the generation of a coherent ion
motion by the pump field is made possible by a Raman-like
two-photon sum-frequency process [17] (SFP).

Regarding collective excitations in broken-symmetry
states, the theoretical work has followed initially a slightly
different path. As an example, in the case of superconducting
systems the main focus has been put on the effects of the
pump on the pairing interaction itself, more than on the overall
description of the electromagnetic pump-probe process. By
assuming that the pump field induces an instantaneous quench
of the pairing interaction, the SC order parameter displays,
while relaxing back to equilibrium, marked oscillations at
the frequency 2� corresponding to twice the SC gap [18].
This perspective, along with the explicit observation of the
2� oscillations in conventional [4,5] and unconventional
[14] superconductors, stimulated extensive theoretical work
focusing on the time relaxation of the amplitude of the order
parameter, also called the Higgs mode [9], in the presence of a
time-dependent pairing interaction [19–22]. In this approach,
the electromagnetic (e.m.) field does not appear explicitly,
since its effect is assumed to be captured by a specific time
dependence of the pairing interaction. One step forward to-
ward a microscopic description has been developed instead
in Refs. [23–30], where the coupling of the e.m. field to
the electronic degrees of freedom is explicitly included. This
generates a quadratic coupling of the field to the SC order
parameter, which acts as a forcing term for the Higgs oscil-
lations. In this context there have also been several attempts
[24–27,30–35], within different approximations, to define a
time-dependent optical conductivity, which is, however, not
the same quantity as the differential probe field δEprobe(tpp)
measured in Refs. [5–8]. What is to some extent missing
in this description is the general explanation of why the
order-parameter fluctuations will cause an oscillation of the
transmitted field as a function of the pump-probe delay, and
under which conditions (i.e., central energy and width of the
pump-field spectrum) they will be more easily detected.

An overall theoretical description of the full pump-probe
process in the transmission geometry has been recently at-
tempted in Ref. [7] and applied to the investigation of the so-
called Leggett mode, which measures the relative fluctuations
of the SC phase between two bands in the multiband super-
conductor MgB2. In this THz pump-THz probe experiment,
the relative change δEprobe(tpp) in the transmitted probe field
with and without the pump has been explicitly computed
and compared to the experiments. This allowed the authors

to link the observed oscillations to the Leggett mode, which
contributes in MgB2 to the Raman kernel, and to show that
the basic underlying excitation mechanism is an SFP, in full
correspondence with the case of phonons [12,17].

In this paper, we show that an analogous theoretical
scheme can be formulated in full generality, allowing one to
understand the pump-probe detection of collective bosonic
modes in several systems. The possible applications range
from ordinary phonons to collective modes across a phase
transition, such as the soft phonon mode in CDW systems
or the collective charge and order-parameter 2� oscillations
in superconductors. We will also establish a close corre-
spondence between pump-probe measurements and ordinary
transmission experiments at high fields, which are able to
detect higher harmonics of the incoming radiation. This con-
nection is particularly important for SC systems, where recent
experiments with multicycle narrowband pulses [6,8,11,36]
clearly established that below Tc a sizable third-harmonic
generation (THG) emerges. It will be shown that all these
effects are strongly interconnected, and they can be theoret-
ically ascribed to the existence of a marked resonance at a
certain energy scale ωres in the nonlinear optical kernel K (ω).
Such resonance is responsible for the THG in transmission
measurements as well as for the differential probe-field oscil-
lations in pump-probe experiments, both due to a SFP induced
by the pump field. In the case of THG, its intensity will
then be maximized when twice the pump frequency matches
the resonance value, i.e., 2�pump = ωres. For what concerns
instead pump-probe experiments, the oscillation frequency
ωosc depends on the convolution between K (ω) and the power
spectrum of the squared pump field, consistent with a SFP.
As a consequence, for broadband pulses the spectral com-
ponents of δEprobe(tpp) are dominated by the characteristic
frequency of the mode, ωosc = ωres, while for narrowband
pulses δEprobe(tpp) oscillates at twice the pump frequency,
ωosc = 2�pump, with an amplitude K (2�pump) maximized
when 2�pump = ωres. These expectations match rather well
the observations reported so far in several SC systems [4–8].
From a theoretical point of view, establishing such a general
paradigm provides also a scheme for further theoretical in-
vestigations aimed at linking the experimental observations to
the properties of the underlying microscopic model. In this
respect, the recent experimental [6,11,36,37] and theoretical
[6,37–44] work focusing on the THG in superconductors, and
the ongoing discussion on the nature of the collective mode
responsible for it [9], becomes crucial also for understanding
the δEprobe(tpp) oscillations in pump-probe experiments, since
both are linked to the same ωres resonance in the nonlinear
optical kernel. This link is also particularly interesting from
an experimental point of view, considering the huge potential
for high-harmonic generation measurements made possible
nowadays by the existence of high-intensity coherent THz
sources, such as, e.g., the TELBE beamline at Helmholtz-
Zentrum-Dresden-Rossendorf (HZDR) [45].

The paper is organized as follows. In Sec. I we introduce
the general formalism needed to understand the pump-probe
protocol, and we establish the general connection between
the measured quantities and the microscopically computed
nonlinear optical kernel. The applications to a few paradig-
matic cases are then developed in the subsequent sections. In
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FIG. 1. Scheme of the experimental configuration for the pump-
probe protocol used, e.g., in Refs. [5–7]. The pump and the probe
fields are both orthogonally incident on the sample, but they are
polarized in two perpendicular directions with respect to the sample
surface. The transmitted probe field is then recorded for a fixed
observation time tg as a function of the delay tpp between the two
pulses.

Sec. II we first analyze the case of ordinary phonons, and
we establish the full analogy between our scheme and the
description given so far in the literature. In Sec. III we move
the focus to electronic collective excitations in ordinary super-
conductors, where the nonlinear optical kernel is dominated
by a resonance at 2�. In Sec. IV we describe the peculiar case
of the soft-phonon mode in CDW systems, where electronic
and ionic excitations are strongly interconnected. Section V is
devoted to concluding remarks and a discussion.

I. SCHEMATIC OF THE PUMP-PROBE EXPERIMENTAL
SETUP AND THEORETICAL DESCRIPTION

Even though most of the present discussion is valid for
pump-probe experiments done both in transmission and re-
flection geometry, for concreteness we will focus on the
transmission configuration, as used, e.g., in Refs. [5–7]. The
protocol consists in first perturbing the sample with an intense
pump field Epump, then probing it with a weaker probe field
Eprobe, and finally measuring the transmittance of the probe
after the sample, as schematically depicted in Fig. 1. The
observable quantity is the change in the transmitted field
δEprobe(tpp) with and without the pump, recorded as a function
of the time delay tpp between the pump and probe pulses. To
better isolate the effects of the pump field, its polarization is
usually taken orthogonal to that of the probe. For experimental
reasons, it is often convenient to study the time evolution
of the transmitted probe field by fixing the observation time
at t = tgate while changing the time delay tpp between the
pump and the probe signal (for further technical details, see
Refs. [5–7]).

To reproduce the experimental configuration, let us define
the incident electric field as

Ein(t ) = Eprobe(t )x̂ + Epump(t )ŷ, (1)

with x, y the crystallographic directions of the sample. By
recalling the theory of transmission from thin films [46–48],
the transmitted probe field can be written as

E tr
x (t ) = 1

n + 1
[2Eprobe(t ) − Z0dJx(t )], (2)

where n, Z0, and d are the refractive index, the impedance of
the free space, and the thickness of the film, respectively. Jx

is the x-component of the electromagnetic current J flowing

inside the sample as the response to the incident field, which
can be decomposed into a linear contribution and a nonlinear
one: J = JL + JNL. For isotropic systems, the linear response
is diagonal in the space indices, meaning that in the field
configuration (1) it can be written as

JL
x (t ) =

∫
dt ′σ (t − t ′)Eprobe(t ′), (3)

where σ is the optical conductivity. In the case of a phase tran-
sition, one should in principle be concerned with the changes
in the optical conductivity across the critical temperature Tc.
However, as we will show below, the linear current does not
give any contribution to the differential transmitted field, so
we will not need to specify its behavior in the following.
For anisotropic systems, in particular for layered materials,
the field configuration will depend on the collective excitation
in which one is interested. For example, for layered cuprates
to probe superconducting amplitude or density modes, one
should polarize the electric field in the plane, as was done in
the recent measurement of THG in Ref. [43]. On the other
hand, when the electric field is polarized perpendicularly to
the layers, one can measure the response of the out-of-plane
plasma mode, as shown in Refs. [10,11].

The nonlinear current has in principle a contribution both
from the pump and the probe field, even though one al-
ready expects the latter to be predominant since the pump
field is more intense. The derivation of the nonlinear current
starting from a given microscopic model is a conceptually
clear problem, even though in practice its calculation can be
nontrivial for interacting systems and in the presence of a
phase transition. Here we discuss the problem within the field-
theory approach developed, e.g., in Refs. [39,42] for the case
of the SC transition, and we apply this formalism to different
physical situations. By starting from a suitable microscopic
electronic Hamiltonian H , the gauge field A is introduced via
the minimal-coupling substitution. Once fermionic degrees
of freedom have been integrated out, one ends up with an
effective action S(A) for the gauge field only. Since in full
generality the current is defined as the derivative of S(A) with
respect to A, we then get

J = − ∂S

∂A
, JL = −∂S(2)

∂A
JNL = −∂S(4)

∂A
, (4)

where S(n) is the term in the effective action containing the
nth power of the gauge field A, whose coefficients Kn are
electronic susceptibilities of order n − 1. Therefore, the linear
current is connected to the usual electronic susceptibility
computed in linear-response theory, leading to the standard
definition (3), while the nonlinear current is controlled by a
third-order tensor Kαβγ δ , which depends, in general, on four
spatial indexes and three incoming frequencies when S(4) is
expressed in the frequency domain:

S(4)(A) = e4
∫ (

3∏
i=1

d�i

)
Aα (�1)Aβ (�2)K̃αβγ δ

× (�1,�2,�3)Aγ (�3)Aδ (−�1 − �2 − �3),
(5)

with e the electron charge. While Eq. (5) accounts for all the
possible third-order processes contributing to the current, here
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we argue that the oscillations in δEprobe(tpp) are present when
S(4) admits a term that can be written as

S(res)(A) =
∫

d� A2
αβ (�)Kαβγ δ (�)A2

γ δ (−�)

=
∫

dt dt ′A2
αβ (t )Kαβγ δ (t − t ′)A2

γ δ (t ′), (6)

where A2
αβ (�) = ∫

dω Aα (�)Aβ (� − ω) is the Fourier trans-
form of Aα (t )Aβ (t ) and the kernel K (�) displays a reso-
nance at a given frequency ωres. Let us then focus on the
contributions to the nonlinear current following Eq. (6) by
taking into account that in an isotropic system we expect only
some components of the nonlinear tensor to be different from
zero. As an example, for a square lattice one finds that only
Kαα;αα, Kαα;ββ , and Kαβ;αβ are nonzero. In the cross-polarized
configuration discussed here, the incoming field (1) has both
an x and y component, but what matters for the transmitted
field E tr is only its component along x, i.e., along the direction
of the probe. By using Eqs. (4) and (6), it can be immedi-
ately shown that the x-component of the nonlinear current is
given by

JNL
x (t ) = −2e4Aprobe(t )

∫
dt ′{Kxx;xx(t − t ′)[Aprobe(t ′)]2

+ Kxx;yy(t − t ′)[Apump(t ′)]2}, (7)

where Aprobe (Apump) is the incident vector potential of the
probe (pump) field. For vanishing time delay tpp � 0, addi-
tional terms can be present in the nonlinear response. One
contribution is the so-called instantaneous response, due to
time-independent components of the nonlinear kernel [7,42]:

JNL,inst
x (t ) = −2enel

xx;yyAprobe(t )A2
pump(t ),

where nel
xx;yy = ∑

k,a ∂4εa
k/∂k2

x ∂k2
y , and εa

k is the electronic
band dispersion of a given band a. This contribution, which
is analogous to the diamagnetic response for usual linear
response, can be important for the THG in transmission
experiments [42], but it does not contribute to oscillations
as a function of tpp at large time delay. Analogously, in the
presence of a finite Kxy;xy kernel, the current admits also
a contribution similar to Eq. (7) where the integral con-
tains the product Apump(t ′)Aprobe(t ′). However, apart from the
transient regime tpp � 0 when the pump and probe overlap,
this term vanishes, so it cannot contribute to the long-delay
oscillations in which we are interested. Consistently with
the usual analysis of the experimental data [5,10], all the
contributions to the early-time response will be discarded in
the following. As mentioned above, one usually monitors the
variation δEprobe(t ) in the presence and absence of the pump
[4–7]. By then using Eqs. (2), (3), and (7), we find that all
the contributions (linear and nonlinear) proportional only to
the incident probe field cancel out, so that δEprobe(t ) can be
expressed in terms of the nonlinear response to the pump
field only:

δEprobe(t ) = αAprobe(t )
∫

dt ′Kxx;yy(t − t ′)[Apump(t ′)]2, (8)

where α ≡ 2Z0de4

n+1 . In the experiments, the transmitted field is
recorded at a fixed t = tg, and the probe field comes with a

time delay tpp with respect to the pump. By then rescaling
Apump(t ) = Āpump(t + tpp), where we assume that the time
profiles of both Aprobe(t ) and Āpump(t ) are centered around
t = 0, we can explicitly rewrite Eq. (8) as

δEprobe(t = tg; tpp)

= αAprobe(tg)
∫

dt ′Kxx;yy(tg + tpp − t ′)[Āpump(t ′)]2. (9)

The previous equation shows that when tg is fixed, the differ-
ential transmitted field becomes a function of the time delay
tpp only. The probe field appearing on the right-hand side of
Eq. (9) acts only as a multiplying factor, fixing the overall
amplitude and phase of the oscillations. More interestingly, if
we Fourier transform Eq. (9) with respect to tpp, we find a very
simple expression for the power spectrum of the transmitted
differential field:

δEprobe(ω) ∝ Kxx;yy(ω)Ā2
pump(ω). (10)

Notice that the simple Eqs. (9) and (10) contain all the
basic ingredients needed to describe resonant oscillations via
a pump-probe experiment, and they allow us to distinguish the
response to a broadband or a narrowband pulse in a straight-
forward way. To fix the ideas, let us consider the case of a
Lorentzian-like resonance (as in the case, e.g., of phonons)
with central frequency ωres and half-width at half-maximum
γres, as it follows from a kernel,

K (ω) = 1

ω2 − ω2
res + iωγres

, (11)

where we drop for simplicity the spatial indexes of the non-
linear tensor. In full generality, and for the sake of explicit
calculations, we can model the incoming pulses as periodic
oscillations convoluted with a Gaussian decay [39,49], i.e.,

Aprobe(t ) = A0
probee

−( 2t
√

ln 2
τprobe

)2

cos(�probet ), (12)

Āpump(t ) = A0
pumpe−( 2t

√
ln 2

τpump
)2

cos(�pumpt ), (13)

where τpump/probe is the full width at half-maximum, setting
the pulse duration, and � is its central frequency. The Fourier
transform Ā2

pump(ω) appearing in Eq. (10) is then given by

Ā2
pump(ω) = (A0

pump)2√π

4

τpump

2
√

ln 2

{
e− 1

8 [
(ω−2�pump )τpump

2
√

ln 2
]2

+ e− 1
8 [

(ω+2�pump )τpump
2
√

ln 2
]2 + 2e− 1

8 (
ωτpump
2
√

ln 2
)2}

, (14)

which displays peaks at frequencies ω = 0,±2�pump, with
approximate width γpump = 2 ln 2/τpump. From Eq. (10) one
immediately sees that what matters is the overlap of A2

pump(ω)
with K (ω) at ω � ωres, with the resonance frequency ωres in
the THz range. This already explains the difference between
experiments performed with a pump pulse centered in the
visible or in the THz. In the former case, 2�pump � ωres, so
what matters in Eq. (10) is only the ω = 0 peak in A2

pump(ω).
From the point of view of the photons involved in the pro-
cess, this is equivalent to saying that the mode is excited
via a difference-frequency process in which the two photons
involved have energies ω � �pump and ω � −�pump + ωres.
Moreover, since pulses in the ir-vis usually have a τpump ∼
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(a) (b)

(c) (f)

(d) (e)

FIG. 2. Schematic of the mechanism responsible for the oscillations in δEprobe(tpp). Left: broadband pulse. When the pump duration is
much shorter than the mode lifetime, panel (a), the Fourier transform of the pump field squared A2(ω) is approximately constant around the
mode resonance at ωres, panel (b). As a consequence, the convolution (10) between the pump and the mode is peaked at ωres, which identifies
the frequency of the oscillations of δEprobe(tpp) in time domain, panel (c). Right: broadband pulse. In this case a longer pump pulse, panel
(d), gives rise to a sharp A2(ω) in the frequency domain, which can be even narrower than the mode itself, panel (e). When this condition
is satisfied, the convolution δEprobe(ω) is peaked at 2�pump, which sets the frequency of the δEprobe(tpp) oscillations. If the pump frequency
matches the resonance condition 2�pump ≈ ωres, the amplitude of the oscillations is strongly enhanced, panel (f). Here tg = 0 has been set in
all the simulations.

10 fs, one immediately realizes that the peak around ω = 0
reduces to a constant value in the THz range. On the other
hand, for pulses centered in the THz range, where �pump �
0.1–10 THz and τpump � 0.1–10 ps, the overlap with K (ω)
in Eq. (10) is usually made possible by the ω = 2�pump peak
in A2

pump. As a consequence, in this case two photons in the
pump field with similar energies ω � ωres must be added up
to excite the collective mode, meaning that one is realizing a
sum-frequency excitation process [7,12,17].

Once established the general mechanism, to determine the
form of the tpp oscillations one should compare the rela-
tive duration of the pump pulse to the mode lifetime τres,
related to the width γres = 1/τres of the ωres resonance in
the nonlinear kernel K (ω). Indeed, from Eq. (10) one easily
understands that in the so-called antiadiabatic regime where
the time duration of the pulse is much shorter than the mode
lifetime, i.e., γpump � γres (broadband pulse), also for a THz
pulse, A2

pump(ω) is rather flat around the maximum ωres of the
nonlinear kernel; see Figs. 2(a) and 2(b). It then follows that
the main frequency dependence of δEprobe is determined by
the optical kernel, i.e., δEprobe(ω) ∼ K (ω), meaning that its
Fourier transform in the tpp time domain coincides with the
Fourier transform of Eq. (11):

δEprobe(tpp) ∝ Aprobe(tg) sin[ωres(tpp + tg)]

× e−γres (tpp+tg )θ (tpp + tg), (15)

where θ (t ) is the theta function. One then finds that for a
(monocycle) broadband pulse, δEprobe oscillates with a fre-
quency ωosc = ωres; see Fig. 2(c). When instead the system

is excited with (multicycle) narrowband pulses [Fig. 2(d)],
i.e., γpump 
 γres, the opposite situation occurs and the con-
volution between the pump and the kernel in Eq. (10) can
be approximated with a δ-like signal at ω = 2�pump, with a
prefactor given by K (2�pump); see Fig. 2(e). In this case, one
expects to recover oscillations at ωosc = 2�pump:

δEprobe(tpp) ∝ Aprobe(tg)|K (2�pump)| sin[2�pump(tpp + tg)]

× e−2(
2 ln 2(tpp+tg )

τpump
)2

, (16)

with an amplitude that gets strongly enhanced when �pump =
ωres/2, as depicted in Fig. 2(f). It is worth noting that the
change of the frequency oscillations when going from broad-
band to narrowband pulses has been experimentally seen for
SC resonant modes [5–8]. In this case, the long-time decay
of the measured signal can show different features according
to the specific properties of the nonlinear optical kernel, as we
will discuss in more detail in Sec. III. Still, the identification of
the oscillation frequency from the convolution (10) between
the pump spectrum and the nonlinear optical kernel is a robust
feature, which holds regardless of the specific frequency
decay of the kernel away from resonance. In addition, the
same description holds when instead of the changes of the
transmitted field one measures the changes in the reflected
one, as done, e.g., in Refs. [10,11]. Also in this case, the
difference between the reflected probe beam with and without
the pump originates from the nonlinear current, which in turn
depends on the nonlinear kernel. As discussed below Eq. (9),
the dependence on the probe field completely disappears when
the transmitted field is recorded as a function of the time delay
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tpp, and the observation time tg is kept fixed. On the other hand,
if one detects all the spectral components of the transmitted or
reflected probe field at a fixed tpp, this is equivalent to taking
the Fourier components of Eq. (9) with respect to tg. In this
case, the oscillations of the differential signal as a function
of tpp can only be evidenced by considering the spectrally
integrated pump-probe response, as shown indeed in Ref. [10]
in the case of plasmon excitations.

Finally, let us see how the present formalism explains also
the phenomenon of high-harmonics generation from resonant
excitations. As mentioned above, in this case one performs
standard transmission experiments, using, however, a very
intense pump field. From the point of view of the quartic-order
action (6), this is equivalent to saying that only components
of the pump field appear, and since we are expanding the
action only up to fourth order we are describing THG. If the
pump is applied, e.g., along the x axis and one measures the
component of the transmitted field in the same direction, it
follows immediately that

JNL
x (t ) = −2e4Apump(t )

∫
dt ′Kxx;xx(t − t ′)[Apump(t ′)]2.

(17)
When the current is collected along different crystallographic
directions with respect to the pump field, one can obvi-
ously have mixed components of the nonlinear kernel, which
provide in general useful information on the nature of the
collective resonance [37,39,42]. In all cases, it can be easily
understood from Eqs. (2) and (17) that the Fourier spectrum
of the transmitted field contains frequency components both
at the pump frequency �pump, coming from the linear as
well as from the nonlinear current, and components around
3�pump, due to the nonlinear current (17) only, i.e., ETHG ∝
JNL

x (3�pump). As discussed previously [6,37–40,42–44], the
THG intensity ITHG scales once more with the nonlinear
kernel, and for a narrowband pulse one easily gets that ITHG ∼
| ∫ dt JNL

x (t )ei3�pumpt |2 so that

ITHG(�) ∝ |Kxx;xx(2�)|2. (18)

In this case, ωres can be identified by varying �pump until that
the resonance condition 2�pump = ωres is fulfilled, as indeed
expected for a sum-frequency process.

By direct comparison between Eqs. (16) and (18) one sees
that there exists a general one-to-one correspondence between
the spectral components of the differential transmitted field
δEprobe(tpp) and the spectral components of the transmitted
one E tr. Indeed, in full generality, a peak in the transmitted
component at (n + 1)�pump, with n an integer, corresponds
to oscillations at n�pump in δEprobe(tpp). They are both en-
hanced when a resonance ωres exists in the nonlinear optical
kernel of order n + 1, Kn+1(ω), at the matching condition
ωres = n�pump. In this respect, the recent observation [8] in
superconducting Nb3Sn of odd harmonics in the oscillations
of the differential field δEprobe(tpp) is a remarkable result.
Indeed, as we shall see in Sec. III, in a SC the nonlinear
optical kernel contains only resonances at even multiples of
the pump frequency, so that odd harmonics in δEprobe(tpp) are
in general not expected. In Ref. [8], such anomalous high-
harmonic generation has been interpreted in terms of a finite
symmetry-breaking momentum of Cooper pairs induced by

the asymmetry of the pump profile inside the sample and by
the spatial inhomogeneity of the SC phase. How to incorpo-
rate these effects in the present description is an interesting
question that will require future work. Finally, it is also worth
observing that this quasiequilibrium approach requires that
the pump field is intense enough to generate nonlinear effects,
but not too large to affect the existence of a resonance in K (ω).
In the case of phase transitions, as for superconducting or
CDW systems, this implies that K (ω) can still be computed in
the broken-symmetry state. However, when the pump strength
increases, the ground state is progressively weakened, as
shown in Ref. [5] for SC NbN. At even larger peak electric
fields, as in the case of SC Nb3Sn investigated in Ref. [50], the
pump pulse destroys the SC condensate and one eventually
accesses a perturbed nonequilibrium state lasting for long-
time scales, but oscillations due to SC resonances disappear.

The derivation done so far only relies on the existence of a
contribution to the nonlinear response of the form of Eq. (6),
where the nonlinear optical kernel K (ω) has a well-defined
resonance at ωres. In the next sections, we will consider some
specific examples in which this condition is fulfilled, showing
how the present scheme can be applied to several experimental
results reported for various systems.

II. PUMP-PROBE SPECTROSCOPY OF PHONONS

As mentioned in the Introduction, it has long ago been
recognized that coherent oscillations at the optical phonon
frequency induced by short pulses in the eV range can be
understood as a difference-frequency ISRS process [16]. More
recently, the possibility of inducing phonon oscillations also
by means of intense THz pulses in wide-band insulators was
discussed experimentally and theoretically, and the difference
between a DFP and a SFP was shown [12,13,17]. Here we
want to recast these results within the picture presented in the
previous section, with the aim to further clarify how the time
evolution of a phonon displacement field can be correlated
with the dependence of the transmitted field as a function of
the pump-probe time delay, and how the spectral features of
the applied pulses influence the excitation process.

To fix the notation, we will focus on a generic band
insulator, denoting by ck,c and ck,v the annihilation operators
of electrons in the conduction and valence band, respectively.
On very general grounds, we can assume that the phonon is
coupled to density-like excitations in both bands, and that, for
the sake of simplicity, the electron-phonon coupling g does
not depend on the band index and momentum:

H =
∑

k

εc(k)c†
c,kcc,k + εv (k)c†

v,kcv,k

+
∑

q

ω0b†
qbq + g

∑
k,q,a,b

(b†
q + bq)c†

a,k+qcb,k, (19)

where bq denotes the phonon annihilation operator, and a, b =
v, c labels the valence and conduction band, respectively. As
usual [3], the gauge field couples to the electronic degrees
of freedom via paramagnetic and diamagnetic terms, such
that H (A) ≈ H (A = 0) + A · j + 1

2

∑
αβ ραβAαAβ , where the

long-wavelength limit q � 0 for the gauge field has been
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FIG. 3. Fermionic bubbles connecting the gauge field (wavy
lines) with the phononic field (dashed lines). Solid lines denote
the fermionic Green’s function for the valence/conduction bands,
as explicitly labeled in the diamagnetic diagrams in the top row.
The vertexes identify the insertion either of a velocity vab or a
diamagnetic τab term, which can have both intraband and inter-
band components, with a, b = v, c denoting valence and conduction
bands, respectively.

applied. In full generality, the current and diamagnetic opera-
tors can be expressed in the band basis as

jα =
∑

a,b=c,v

vα
abc†

a,kcb,k, (20)

ραβ =
∑

a,b=c,v

τ
αβ

ab c†
a,kcb,k, (21)

where α, β denote spatial indexes, and we consider the most
general case in which the velocity and diamagnetic terms have
both intraband and interband contributions.

To derive the effective action for the gauge field, we resort
to the functional-integral formalism. Since the model (19)
is Gaussian in the fermionic variables, they can be strictly
integrated out, leading to an effective action that depends
on the phonon variables and on the gauge field only. By
introducing as usual the displacement field Q = (b + b†) for
the phonon operators at q = 0, as relevant for the long-
wavelength excitations induced by a uniform e.m. field, the
effective action then reads

S =
∑

n

1

2

(
�2

n + ω2
0

2ω0

)
|Q(i�n)|2

+
∑
n,m

e2Ax(i�n)Ax(i�m)P(i�n, i�m)Q(i�n+i�m), (22)

where i�n are bosonic Matsubara frequencies and
P(i�n, i�m) denotes the response function obtained by
integrating out fermions. Even though the last term of
Eq. (22) is quadratic in the gauge field, as we shall see below
it leads to a fourth-order contribution to the electromagnetic
action once the phonon field is integrated out, leading again
to a structure similar to Eq. (6). Additional O(A4) terms
mediated by the electrons have been discarded since the
nonlinear electronic kernel is not expected to have any
resonance.

Even without an explicitly calculation, P(i�n, i�m) can be
conveniently expressed by means of the Feynman diagrams
shown in Fig. 3. As explained above, the gauge field couples
linearly to particle-hole excitations via the velocity vertices
vab and quadratically via the diamagnetic vertices τab. We

can then identify diamagnetic contributions to P, as given
by the first row of Fig. 3, and paramagnetic ones in the
second row. For a band insulator, it easily follows that the
first two diamagnetic (Dvv and Dcc) and paramagnetic (Pvv

and Pcc) contributions, corresponding to intraband excitations
within the valence/conduction band, vanish at q = 0, since
particle-hole excitations within a fully filled/empty band are
not permitted. One is then left with the diamagnetic Dvc and
paramagnetic Pvc diagrams, describing interband excitations
between the valence and conduction band. To make a closer
connection between the present scheme, where one computes
the response with respect to A, and the ab initio approach
of Refs. [12,13,17], where the response with respect to the
electric field E is derived [51], we can rewrite the second term
of Eq. (22) as

−
∑
n,m

e2Ex(i�n)Ex(i�m)R(i�n, i�m)Q(i�n + i�m), (23)

where we defined R(i�n, i�m) = P(i�n, i�m)/�n�m. The
crucial observation now is that in a wide-band insulator,
the kernel R appearing in Eq. (23) is weakly dependent on
the external frequencies, as long as they are smaller than
the band gap � [17,51]. Moreover, one can easily see that
when this condition is fulfilled, the function R is real and
it coincides with the Raman tensor of the phonon [51] R ≡
∂χxx/∂Q, where χxx is the electric susceptibility. In a small
gap semiconductor or in a semimetal, this approximation is
instead not good and one can have a nontrivial dependence
of the electron-phonon kernel R on both frequencies. For
example, within the context of graphene-based materials, the
frequency dependence of the electron-phonon infrared kernel
has been widely discussed within the context of the infrared
response [52–54], where it has been shown that the phonon
effective charge can be greatly enhanced when the interband
transitions match the phonon frequency. Similar effects could
be present for the Raman kernel, so for the moment we will
consider only the case in which the band gap is the largest
energy scale in the problem.

From a diagrammatic point if view, making the derivative
with respect to the phonon field Q is equivalent to the insertion
of a phonon line in the electronic bubbles describing the
response to A2. This is what happens for all the diagrams
in Fig. 3, which can thus be identified as the derivative of
the current-current response function �xx with respect to Q.
By further using the connection [3,51] between the electric
susceptibility and the current-current response function, i.e.,
χi j (ω) = −�i j (ω)/ω2, one understands the equivalence be-
tween the two approaches as far as the differences between the
two incoming frequencies are negligible with respect to the
band gap. By then assuming that R is real and by performing
the analytical continuation to real frequencies, the effective
action (22) and (23) reduces to

S = 1

2

∫
d�

(
�2 − ω2

0

2ω0

)
|Q(�)|2

+
∫

d� d�′e2Ex(�)Ex(� − �′)R Q(−�)

=
∫

dt
Q̇2(t ) − ω2

0Q2(t )

4ω0
+ e2RE2

x (t )Q(t ). (24)
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Once expressed in real time, Eq. (24) allows us to easily
recover from the minimization condition δS = 0 the stan-
dard equations of motion for the phonon displacement field
[12,13,16,17]:

Q̈(t ) + ω2
0Q(t ) = 2ω0e2RE2

x (t ), (25)

where one directly sees that the force term on the right-hand
side is quadratic in the electric field, as expected for a Raman-
like excitation process. Equation (25) can be easily solved by

Q(t ) = e2R
∫

d� ei�t D(�)E2
x (�)

= e2R
∫

dt ′D(t − t ′)E2
x (t ′), (26)

where E2
x (�) = ∫

dω Ex(�)Ex(� − ω), and D(�) =
2ω0/[ω2

0 − (� + iδ)2] is the phonon propagator, with δ

an infinitesimal positive constant, which can be replaced by a
finite broadening γ to account for the finite phonon lifetime.

The solution of the equations of motion for Q(t ) is relevant
to understanding the excitation process induced by the pulse,
and its behavior for an insulating system perturbed via THz
fields has been recently detailed in Refs. [12,13,17]. However,
computing explicitly Q(t ) does not provide yet the behavior of
the differential probe field as a function of the pump-probe
time delay tpp, which is the actual measured quantity. To
achieve this goal, one should proceed further and derive the
quartic-order action for the electric field only, in analogy
with the derivation outlined in the previous section. This can
be easily done from Eq. (24) by integrating out the phonon
field. For the sake of generality, we can keep the explicit
dependence of the Raman tensor on the direction of the
electric field, so that the last term in Eq. (24) reads RαβE2

αβ (t ).
In full analogy with Eq. (6), one then finds that

S(res)(E) = −
∫

d� E2
αβ (�)e4RαβRγ δD(�)E2

γ δ (−�)

= −
∫

dt dt ′E2
αβ (t )e4RαβRγ δD(t − t ′)E2

γ δ (t ′).

(27)

The previous expression has exactly the same structure as
Eq. (6) above, except for the change of variables between
the gauge field A and the electric field E. In particular, it
shows that the resonant nonlinear kernel in the case of a
phononic excitation is just the phonon propagator D(t ) itself,
weighted by the Raman tensor. In the geometric configuration
of Eq. (1), i.e., for a pump field along y and a probe field along
x, we can derive δEprobe(tpp) as done in the previous section,
finding again that the differential probe field depends on
the nonlinear current JNL

x (t ) only. Since JNL
x (t ) = ∂PNL

x /∂t ,
where PNL

x (t ) = −∂S(res)/∂Ex is the nonlinear polarization,
we easily get the equivalent of Eq. (9) for the phonon
excitation:

δEprobe(tg; tpp) ∝ ∂Eprobe

∂t
(tg)

∫
dt ′D(tg + tpp − t ′)Ē2

pump(t ′)

+ Eprobe(tg)
∫

dt ′Ḋ(tg + tpp − t ′)Ē2
pump(t ′),

(28)

where the proportionality factor accounts for constant terms
(including the Raman tensor) dropped out for the sake of
compactness, and Epump(t ) = Ēpump(t + tpp) has been rescaled
to explicitly account for the pump-probe delay. Since phonon
resonances are usually very sharp, i.e., γ 
 ω0, it simply
follows that the Fourier transform of Eq. (28) with respect to
tpp at fixed tg scales as

δEprobe(ω) ∝ RxxRyyD(ω)Ē2
pump(ω). (29)

Equations (28) and (29) are fully equivalent to Eqs. (9) and
(10), showing that the phonon field can be excited only if it is
Raman-active (R �= 0) and if there is a finite overlap between
the spectral components of the squared pump field and the
phonon frequency. Since the phonon response is peaked at
� � ω0, in full analogy with the discussion below Eq. (14),
one finds that for a broadband pump δEprobe ∝ Ē2

pump(ω0), so
that δEprobe(tpp) oscillates at the phonon frequency ω0. The
underlying mechanism is again different for a pulse in the
visible or in the THz frequency range, as recently discussed
in Ref. [17]. In the former case, a finite component of Ē2(�)
around ω0 occurs because of the frequency mismatch between
two incoming photons, and the phonon is excited via a DFP. In
the latter case, one has to sum up two THz photon frequencies
to excite the phonon, thus dealing with a SFP.

From a theoretical standpoint, the solution Q(t ) of the
equation of motion (26) for the phonon field and the ex-
perimentally measured differential field δEprobe(tpp) represent
two distinct quantities. However, qualitative differences can
only be appreciated if the probe field is in the THz. Indeed,
both Q(t ) and δEprobe(tpp) display oscillations at the phonon
frequencies, as explicitly shown in Fig. 4, where we solve
Eq. (26) for Q(t ) and Eq. (28) for δEprobe(tpp) using a proper
set of parameters well reproducing the recent experiment in
diamond of Ref. [12]. To make a closer connection with
the theoretical analysis of Refs. [12,17], we model here the
electric field by using an expression analogous to Eq. (13)
above, i.e.,

Ēpump = E0
pumpe−(2t

√
ln 2/τpump )2

cos(�pumpt ), (30)

with �pump/2π = 20 THz and τpump = 0.2 ps. For the vis
probe field, we take instead �probe/2π = 400 THz and
τprobe = 7 fs, as used in the experiment of Ref. [12], while
the Raman-active phonon is modeled as in Eq. (11), with
ω0/2π = 39.2 THz and γ = 0.01ω0. For a probe field in
the visible, the pulse duration is much shorter than the
timescale over which the phonon propagator varies in time,
meaning that one can essentially set tg � 0 in Eq. (28); see
Fig. 4(a). In this situation, as depicted in Figs. 4(b) and 4(c),
no relevant difference can be appreciated between the time
variation of Q(t ) and the pump-probe time-delay dependence
of δEprobe(tpp), apart for the overall amplitude of the two
signals, scaling as R and R2, respectively. On the other hand,
for a probe field in the THz range, one can vary tg along the
pulse duration [Fig. 4(d)] and observe the changes in phase
and amplitude of the oscillations in δEprobe(tpp), as shown in
Fig. 4(e), where the probe field has the same spectrum and
time evolution of the pump. It is worth noting that Ē2

pump(ω)
for the THz pump used in Ref. [12] identifies a relatively
narrow peak around 2�pump, and since the phonon resonance
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(a)

(b)

(c)

(d)

(e)

FIG. 4. Left: THz pump-eV probe detection of coherent phonon oscillations. Here the phonon mode oscillates at ω0/(2π ) = 39.2 THz,
with spectral broadening γ /(2π ) = 0.4 THz. Panel (a) shows the time dependence of the pump and probe field (the observation time is set to
tg0 = 0). Since the duration of the probe field is much shorter than the period of the phonon, there is no appreciable difference between the
time evolution of the phonon displacement Q(t ) induced by the pump, panel (b), and the time dependence of the differential probe field as a
function of the pump-probe time delay tpp, panel (c). Right: THz pump-THz probe detection of coherent phonon oscillations. Panel (d) shows
the time dependence of the pump and probe pulses. Panel (e) shows the differential transmitted probe field for three different values of tg, as
marked in panel (d). Even though δEprobe(tpp) always oscillates at the phonon frequency, the choice of tg affects the amplitude and phase of the
signal.

is extremely sharp γ0/ω0 � 0.01 one needs to go very close to
the SFP resonance condition 2�pump � ω0 in order to excite
the phonon, as indeed observed in Ref. [12]. On the contrary,
in the case of Ref. [13] the squared pump spectrum Ē2

pump(ω)
is much broader, and thus overlaps with several Raman-active
phonons. In this case, according to Eq. (29), the intensity of
the oscillatory signal depends not only on the relative Raman
cross sections, but also on the value of Ē2

pump(ωi
0) at the ωi

0
frequencies of the various phonon modes. More generally,
if we model directly the pump electric field as in Eq. (30),
we can strictly estimate from Eq. (29) the relative efficiency
of the process for a pulse in the ir-vis or in the THz range.
Indeed, in analogy with Eq. (14), we simply find that E2(ω ≈
0) � 2τpumpE2

0 and E2(ω ≈ 2�p) � τpumpE2
0 . Since for an eV

pump what matters is the DFP, i.e., E2(ω ≈ 0), while for
a THz pulse E2(ω ≈ 2�p) enters Eq. (29) for the SFP, we
deduce that for two pulses with the same value of the peak
field E0, one has

δETHz-pump
probe

δE eV-pump
probe

� τTHz
pump

2τ eV
pump

. (31)

As a consequence, a pump in the THz, with a typical duration
of fractions of picoseconds, is about one or two orders of
magnitude more efficient than a visible pulse, with a typical
duration of tens of femtoseconds.

It is also worth mentioning that a possible alternative
mechanism to the one discussed here to induce coherent

phonon oscillations is via the so-called ionic Raman scattering
[13,55–58]. In this case, the pump electric field excites two
infrared-active optical phonons, which can in turn couple and
transfer energy to a Raman-active one, thanks to the pres-
ence of anharmonic (trilinear) phononic interactions. From
the point of view of the present formalism, this implies that
Eq. (29) above is replaced by a more complex convolution
of the Raman-active phonon propagators times the squared
pump field and the ir-active phonon propagator. As discussed
in Refs. [13,56–58], the ionic Raman scattering and the
stimulated Raman scattering described so far can be distin-
guished by their different sensitivity to the light polarization
or by using a pump-probe protocol with two different THz
pulses [13].

Notice that in the recent measurements of Refs. [12,13], the
experimental setup is slightly different from the orthogonal
cross-polarization transmission scheme described here. How-
ever, the experimentally measured quantity is always propor-
tional to the nonlinear current, and the above arguments can
be easily generalized, since the general mechanism explaining
the excitation and detection of the phonon remains unchanged.
So far, we only considered the case of a large-gap band
insulator, where the Raman tensor at the pump frequencies is
always real, both for light pulses in the visible and in the THz.
However, the situation can be rather different for small-gap
insulators or normal metals, since in this case a finite density
of particle-hole excitations is present at the pump frequencies,
and the Raman tensor may acquire an imaginary part. In
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this case, for vis-ir pulses one expects a displacive response
[16], and the frequency dependence of the Raman tensor itself
can induce significant differences between the pump-probe
detection of phonons via a DFP or an SFP. In particular, for
THz pulses the intraband diamagnetic Dcc and paramagnetic
Pcc processes depicted in Fig. 3 become relevant, and they
must be explicitly computed for the specific band structure
of the system under investigation. As we shall see in the next
section, the ongoing theoretical debate on the nature of the
SC excitations detected via the pump-probe protocols relies
indeed on the analysis of low-energy intraband processes
triggered by THz pulses in metallic systems that undergo a
SC transition.

III. PUMP-PROBE SPECTROSCOPY OF
SUPERCONDUCTING MODES

As already mentioned, recent experiments in SC sys-
tems have shown that in the cross-polarized configuration
of Eq. (1), the differential field δEprobe(tpp) shows marked
oscillations when entering in the SC state [4–8]. At the same
time, below the SC critical temperature Tc a marked THG has
been observed [6,11,36], which has also been ascribed to SC
collective modes [6,8,37–44]. For the case of conventional
superconductors, such as thin films of NbN, both pump-probe
protocols and THG measurements show that the relevant
frequency is twice the value of the SC gap �. As explained
in Sec. I, the THG is potentially easier to understand theoret-
ically, since this is an equilibrium transmission measurement
whose intensity scales with the nonlinear optical kernel; see
Eq. (18). Indeed, the ongoing debate on the literature focuses
not on the relation (18), but rather on the identification of the
collective SC excitations that give the largest contribute to
K (ω). In particular, using again a diagrammatic description,
one has two main contributions to K = χDF + χH in the S(4)

action of Eq. (6): the contribution χDF of lattice-modulated
density fluctuations (LMDF), which probes Cooper pairs ex-
citations, and the contribution χH of the SC Higgs (amplitude)
mode, arising from the RPA vertex correction in the pairing
channel. With respect to the discussion of the previous section,
we focus here only on intraband processes occurring in the
bands at the Fermi level.

The calculations of Ki j = χDF
i j have been detailed in several

previous works [37,39,42–44], and we will just report here the
result in the single-band case:

χDF
i j (ω) = �2

Ns

∑
k

∂2
ki
εk∂

2
k j
εk

Ek
[
(ω + iγ )2 − 4E2

k

] tanh(Ek/2T ),

(32)

where Ns is the number of lattice sites, � is the SC order
parameter, ξk = εk − μ with εk the electronic band disper-
sion and μ the chemical potential, Ek =

√
ξ 2

k + �2 is the
quasiparticle dispersion in the SC state, and γ is a finite
broadening. Apart for the tensorial nature implicit in the
polarization factors ∂2

ki
εk, χDF

i j is substantially equivalent to
the BCS density-density correlation function F (ω), which at

T = 0 can be estimated as

F (ω) = �2

Ns

∑
k

1

Ek
[
(ω + iγ )2 − 4E2

k

] (33)

� �2NF

∫ ωD

−ωD

dξ/
√

ξ 2 + �2

[(ω + iγ )2 − 4(ξ 2 + �2)]

= −2�2NF

m2

tan−1
[

ω+iγ√
4�2−(ω+iγ )2

ωD√
ω2

D+�2

]
(ω + iγ )

√
4�2 − (ω + iγ )2

, (34)

where ωD gives an upper cutoff for the pairing, like, e.g., the
Debye frequency for phonon-mediated superconductivity. For
the Higgs contribution we have that χH (ω) = χ2

A2�
δ�2(ω),

with δ�2(ω) the propagator for the Higgs mode and χA2� the
Raman-like coupling between the gauge field and amplitude
fluctuations δ�, which explicitly reads [37,39,42–44]

χH (ω) = χ2
A2�δ�2(ω) = χ2

A2�

[(ω + iδ)2 − 4�2]F (ω)
, (35)

where the simple single-band case on a square lattice is con-
sidered, so that χA2� does not depend on the light polarization.
The real and imaginary parts of the function K (ω) in the
weak-coupling limit are shown in Appendix (see Fig. 9). In the
case of zero broadening, we recover a square-root singularity
of the real part of K at ω = 2�, while the imaginary part
remains zero for ω < 2� and diverges as ∼(ω − 2�)−1/2

for ω → 2�+. The appearance of an imaginary part only at
ω > 2� at T = 0 reflects the gapped nature of the electronic
spectrum Ek in a superconductor, where absorption is only
possible when the incoming frequency overcomes the 2�

threshold for the particle-hole continuum. Since the Higgs
fluctuations identify a collective electronic mode, the function
F (ω) appears also in the Higgs contribution (35), so both the
LMDF and the Higgs show a square-root singularity at 2�,
and not a simple Lorentzian-like resonance as in the case of
phonons discussed in Sec. II. While this has some implications
for the long-time decay of the oscillations, it does not alter the
general description of the pump-probe experiment described
in Sec. I for what concerns the difference between broadband
and narrowband pulses.

In the metallic state, K (ω) = 0, since it scales with q =
0 charge fluctuations that vanish at finite frequency due to
charge conservation [41,59,60]. As shown above, in the SC
state the density-like response F (ω) computed at BCS level is
not zero, since density is not conserved in the BCS approxima-
tion. When the Raman density scales as the full density, as oc-
curs for parabolic-like bands and symmetric Raman channels,
the gauge invariance is restored by properly adding to Eq. (33)
the contribution of phase and density modes at the RPA level
[41,60]. However, for a lattice system the lattice-modulated
density fluctuations (32) do not follow the same conservation
law, and a finite response is possible in the SC state even in
the absence of disorder [37,39,60]. Since both χDF and χH

diverge at 2�, the two contributions cannot be distinguished
by their resonance frequency. However, for a conventional
BCS superconductor the Higgs-mode contribution is largely
subleading with respect to density-like fluctuations [39,42],
because χA2� is extremely small. In other words, even if the
gauge field is able to excite the Higgs mode as soon as χA2�
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is nonzero, the contribution of the Higgs fluctuations to the
nonlinear kernel K (ω), and then to the physically accessible
quantity δEprobe(tpp), is negligible. The situation can change,
and eventually even be reversed, when strong interactions
[20,40] are considered, even if this also implies a significant
smearing of the resonance itself, challenging the understand-
ing of the experiments. Recently, it was also suggested that
disorder can play a crucial role by activating paramagnetic-
like processes that are absent without disorder [9,43,44]. It is
also worth noting that the two contributions differ from their
dependence on the polarization of the pump light [39], but the
exact comparison with the experiments requires an accurate
modeling not only of the band structure [37] but also of the
pairing interactions [42]. Finally, when disorder is present, all
the terms in the action (5) whose kernel depends on multiple
frequencies are in general not zero. In particular, it has been
shown in [44] that the paramagnetic-like response shows an
additional resonance below 2�. In general, while in the clean
case the single-frequency approximation encoded in Eq. (5) is
exact below Tc [39], this is not necessarily true in the presence
of disorder. On the other hand, the analysis of Refs. [43,44]
suggests that the main effect of disorder is to enhance the χA2�

prefactor in Eq. (35). In this case, the largest contribution to
the kernel still retains the single-frequency form of Eq. (35),
since electronic excitations just mediate the coupling of light
to the Higgs mode, in full analogy with the case of the phonon
response discussed in Sec. II.

In the following, we will focus for simplicity on the case of
a single-band BCS superconductor, where the DF contribution
χDF is certainly the dominant one at weak disorder, with the
aim to establish the connection between the nonlinear kernel
and the pump-probe response. In particular, we will show
that the experimental observations can be fully captured by
using the same formalism of Sec. I, showing that the 2�

oscillations can also be explained using LMDF whenever
these dominate the nonlinear kernel. Since the band derivative
scales with the inverse electron mass (∂2

i εk ) ∼ 1/m, we will
then approximate the nonlinear optical kernel as

K (ω) ∼ 1

m2
F (ω). (36)

Let us start from the case of a broadband pump. Here both
the pump and probe fields are modeled as in Eq. (13), with a
central frequency of 1.2 THz and a duration of 0.64 ps, giving
rise to the typical monocyclic time profile shown in Fig. 5(a).
The corresponding power spectrum of the pump squared is
shown in Fig. 5(b) along with |K (ω)| given by Eq. (36) for
a gap value � = 0.65 THz, consistent with the experiments
performed on NbN SC films [5,6]. Since the power spectrum
of Ā2

pump(ω) is much broader than the SC resonance, on the
basis of Eq. (10), δEprobe(ω) is peaked at ω � ωres = 2�,
and the differential field δEprobe(tpp) computed according to
Eq. (8) displays marked oscillations with a frequency 2�; see
Fig. 5(c), as indeed reported in Ref. [5] for a broadband pump
pulse. As already mentioned in Sec. II, and shown in Fig. 4(e)
for the case of the phonon resonance, the intensity and phase
of the oscillations can be modulated by changing the obser-
vation time tg. This effect is demonstrated in Fig. 5(d), where
we show in a contour plot the profile of δEprobe as a function
of both tpp and tgate. Here one can clearly see that for different

(a) (b)

(c)
(d)

FIG. 5. (a) Pump and probe fields used to simulate the exper-
iments of Ref. [5]. (b) Power spectrum of the squared pump field
A2

p(ω) compared to the nonlinear optical kernel |K (ω)| given by
Eq. (36) for � = 0.65 THz. (c) Differential transmitted probe field
as a function of the pump-probe delay tpp obtained by fixing the
observation time at tgate = 0.1 ps. (d) δEprobe(tg; tpp) as a function of
both the observation time tg and the time delay tpp.

choices of tgate, the oscillations with respect to the time delay
tpp preserve their frequency at 2�, but they get progressively
dephased, which is why the colored stripes of the plot assume
a diagonal shape. A similar effect has been recently seen in
broadband measurements of the SC Leggett mode [7], and it
would be interesting to test it experimentally also for the 2�

mode.
While the frequency of the SC oscillations is well captured

by the parabolic-band approximation (36) for the nonlinear
kernel, their long-time decay depends crucially on the band-
structure details. This can be again understood by relying
on the general equation (8) for the transmitted probe field.
In the case of a broadband pulse, and setting for simplicity
tg = 0, we can safely approximate the long-time behavior of
δEprobe(tpp) with the time dependence on the nonlinear kernel
K (t ):

δEprobe(tpp) ∼ K (tpp). (37)

For the ideal system with parabolic band structure, where
K (ω) is given by Eq. (36), its Fourier transform at zero broad-
ening γ = 0 decreases as K (t ) ∼ 1/

√
t . This can be easily

shown using the same argument usually invoked to explain the
long-time decay of the Higgs mode [18,61–63], as discussed
in Appendix A. However, as soon as one considers a more
realistic band structure, the long-time decay of the nonlinear
optical kernel, and then of the differential probe field, is found
to follow a power-law decay with a nonuniversal exponent

δEprobe(tpp) = A cos(2�tpp + φ)

tα
pp

. (38)

We tested Eq. (38) by computing δEprobe(tpp) for a prototype
tight-binding model on the square lattice, such as the one
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FIG. 6. Time profile of the transmitted probe field in the SC
case obtained within the attractive Hubbard model on the squared
lattice at increasing filling n = 0.1, 0.4, 0.9, and different values of
the electronic broadening (γ = 0.01�, left column; γ = 0.1�, right
column).

discussed in Ref. [39]. We found that for a particle density
near half-filling, where the effects of the density-of-states
variations are stronger due to the proximity to a Van Hove
singularity, the profile of the differential probe field follows
closely Eq. (38), with an exponent α � 1; see Fig. 6. It
is worth noting that a power-law behavior of the long-time
signal, with an exponent α ranging from 1 to 3, has been
reported in the experiments on NbN films in Ref. [5]. Since
a realistic band structure for NbN is near half-filling [37,42],
the results of Fig. 6 indicate that deviations from the ideal
1/

√
t decay could be captured by considering realistic band

structures.
Let us finally turn to the case of a narrowband pump pulse.

We model the pump with Eq. (13) by setting �pump/2π =
0.3, 0.6 THz and τpump = 9.5, 4.8 ps, respectively [see
Fig. 7(a)], which reproduce the experimental configuration
of Ref. [6] with great accuracy. In this case, the power
spectrum of the squared pump field is considerably narrower
than the nonlinear kernel, see Fig. 7(b), so that according to
Eq. (8), δEprobe(ω) is dominated by twice the frequency of
the pump field, weighted with the value of K (2�pump). As
a consequence, as expected from Eq. (16), the differential
field oscillates at 2�pump, with a stronger amplitude when
�pump = 0.6 THz, see Fig. 7(c), such that the resonance con-
dition with the maximum of the nonlinear kernel is satisfied,
i.e., 2�pump � 2�. Also in this case our results not only
capture the frequency of the oscillations of δEprobe obtained
experimentally in Ref. [6], but also their general profile as
a function of tpp, whose shape and time duration look very
similar to that shown in Ref. [6]. In this case, oscillations are
much more long-lived, since they have essentially the duration
of the pump pulse, and one can better resolve the phase and
amplitude variations as a function of the observation time tg,
as shown in Fig. 7(d).

(a) (b)

(c)
(d)

FIG. 7. (a) Pump fields (red and green lines) used to simulate the
experiments of Ref. [6] for two different central frequencies �i and
τi. The probe field (blue line) is the same of Fig. 5(a). (b) Power
spectrum of the squared pump fields A2

i (ω), compared to the non-
linear optical kernel |K (ω)| given by Eq. (36) for � = 0.65 THz.
(c) Differential transmitted probe field as a function of the pump-
probe delay tpp obtained by fixing the observation time at tgate = 0.1
ps. For both choices of the pump, the oscillations are recovered at
twice the pump frequency, with an enhanced amplitude when the
resonance condition 2�2 ≈ 2� is satisfied. (d) δEprobe(tg; tpp) as a
function of both the observation time tg and the time delay tpp.

As discussed at the beginning of this section, there is still
some ongoing theoretical debate in the literature about the
nature of the collective SC mode responsible for the 2� reso-
nance in the nonlinear optical kernel of a conventional super-
conductor. While the discussion has been focused so far on the
THG [9], the detailed derivation we gave above of δEprobe(tpp)
shows that the same problem exists for pump-probe experi-
ments. Indeed, despite the fact that the experimental findings
have been attributed so far only to the oscillations of the Higgs
mode [5,6], we have shown that all the experimental features
can be well reproduced by considering the effect of density-
like fluctuations as well, once these dominate the nonlinear
optical kernel. On the other hand, since the spectral features of
the nonlinear optical response (35) due to Higgs fluctuations
are qualitatively very similar to those of density fluctuations
(32), once the Higgs dominates the nonlinear optical kernel,
the present approach explains equally well the difference
between experiments done with broadband or narrowband
pulses. Unfortunately, for an ordinary BCS superconductor,
both the Higgs mode and charge fluctuations occur at the same
frequency 2�, so the only way to distinguish between them is
to rely on an explicit calculation allowing one to decide which
contribution dominates K (ω). As we shall see in the next
section, the situation is instead different for the Higgs mode
of a CDW system, since in this case charge and amplitude
fluctuations occur at different frequency scales, providing a
tool to access them separately.
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(a) (c)

(b)

FIG. 8. (a) Temperature dependence of the renormalized phonon
frequency �0 in units of the bare one ω0, as given by Eq. (48) at
T > TCDW and Eq. (44) at T < TCDW. (b) Raman kernel (41) of the
amplitudon below TCDW. Its value at the three selected temperatures
shown by dashed lines is used to compute δEprobe(tpp) according to
Eq. (10). (c) Differential field as a function of the pump-probe delay
tpp for a broadband pulse with a central frequency of 0.9 THz and a
duration of 0.8 ps.

IV. HIGGS MODE OF THE CHARGE-DENSITY WAVE

In full analogy with the SC case, when a system undergoes
a CDW transition, a new electronic order parameter appears
whose ground-state value �CDW is connected to the CDW gap
in the electronic spectrum, and whose amplitude fluctuations
define a massive collective mode. Within the conventional
Peierls-like description of the CDW transition [64,65], the
ordering is driven by an instability of the electronic charge
susceptibility at the nesting wave vector Q, which causes
the softening of the coupled phonon mode at Q, whose
frequency �0 is renormalized by charge fluctuations and thus
softens when T approaches the critical temperature TCDW.
Below TCDW, the phonon couples to the amplitude (Higgs)
fluctuations of the CDW order parameter [66–69], and its
frequency �0 progressively increases by reducing the temper-
ature, reaching a finite value at T = 0 that is usually much
smaller than the bare one ω0; see Fig. 8(a). This peculiar
soft phonon mode, named an “amplitudon” for its coupling
to the CDW amplitude fluctuations, becomes Raman-active
below TCDW [68,70], thus allowing for its detection with
conventional Raman spectroscopy in several CDW systems,
ranging from dichalcogenides [69,71–74] to tritellurides [75].
A microscopic derivation of the Raman kernel for the am-
plitudon within a simplified electron-phonon model has been
recently provided in Refs. [68,69]. The model system is based
on the electron-phonon Hamiltonian:

H =
∑
kσ

ξkc†
kσ ckσ + g

∑
kσ

γkc†
k+Qσ ckσ (b†

Q + b−Q), (39)

where ξk = −2t (cos kx + cos ky) − μ is the tight-binding dis-
persion on the square lattice, with t the hopping parameter
and μ the chemical potential, such that at half-filling (μ = 0)

the band dispersion displays perfect nesting at Q = (π, π ).
As a consequence, the finite coupling g to a phonon mode
at Q induces a CDW instability. Here γk accounts for the
possible momentum modulation of the CDW gap, and we use
as an example a d-wave form factor γk = (cos kx − cos ky)/2.
As discussed in Refs. [68,69], the present toy model allows
one to capture the main features of several experimental
observations, and it has been successfully applied to predict
the pressure dependence of the amplitudon in Raman spectra
of NbSe2 [69]. The mean-field CDW order parameter �CDW

can be readily obtained from Eq. (39) as a solution of the
self-consistent equation:

�CDW = 2g2�CDW

ω0N

∑
k

γ 2
k

Ek
tanh(Ek/2T ), (40)

where Ek =
√

ξ 2
k + (�CDWγk )2 is the quasiparticle dispersion

below TCDW. As one can see, from the point of view of
single-particle excitations, the CDW transition has the same
effect as that of the SC one, with the opening of a gap in the
quasiparticle spectrum, so that the density-like fluctuations
become resonant at 2�CDW. However, since at the CDW
transition a reconstruction of the lattice occurs, this is reflected
in the phononic spectrum. For both dichalcogenides [74] and
tritellurides [75], the CDW gap is expected to be significantly
larger than the soft CDW phonon, so the nonlinear kernel
K (ω) in the THz range will be dominated in this case by the
amplitudon, allowing one to detect Higgs fluctuation of the
CDW order parameter at a scale �0 well separated from the
2�CDW threshold for density-like excitations. The computa-
tion of the Raman kernel for the amplitudon has been detailed
in Refs. [68,69], and we report here the main results. Below
TCDW, the nonlinear optical kernel K (ω) in the symmetric
Raman channel can be schematically written as

K (ω) = Reff(T,�CDW)

ω2 − ω2
0 − �(ω)

, (41)

where the prefactor Reff ∼ �2
CDW measures the Raman visibil-

ity of the CDW phonon and grows below TCDW proportionally
to the CDW order parameter, while �(ω) denotes the (com-
plex) self-energy due to the coupling between the phonon and
the Higgs fluctuations δ�CDW:

�(ω) = 2g2ω0χCDW(�), (42)

where χCDW denotes the bare susceptibility for amplitude
fluctuations, i.e.,

χCDW = 4

N

∑
k

ξ 2
k

Ek
[
(i�m)2 − 4E2

k

] tanh(Ek/2T ). (43)

After an analytical continuation to real frequencies, the
renormalized phonon frequency �0 and the peak width
�0 below TCDW can be obtained by solving the two
equations

�2
0 = S′(�0), (44)

�0 = −S′′(�0), (45)
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where we introduced the quantity S(ω):

S(ω) ≡ ω2
0 + �(ω) = ω2

0[1 + (2g2/ω0)χCDW(�0)]

= 2g2ω0

N

∑
k

γ 2
k

ω2 − 4�2
CDWγ 2

k

Ek
[
(ω + iδ)2 − 4E2

k

] tanh(Ek/2T ).

(46)

The last line has been obtained by using the self-consistent
equation (40). The quantity on the right-hand side of Eq. (46)
scales as the denominator of Eq. (35), which identifies the
Higgs mode. In particular, when γk = 1 one can rewrite
Eq. (44) as

�2
0 � 2g2ω0

[
�2

0 − 4�2
CDW

]
F (�0), (47)

showing explicitly that the renormalized phonon frequency
is connected to Higgs fluctuations. As mentioned above, in
most CDW systems the energy scale set by the quasiparticle
excitations is larger than the phonon energy, so that in the
self-consistent Eq. (44) one can approximately set �0 � 0 on
the right-hand side. By taking into account the temperature
dependence of F (�), one then finds that �0(T = 0) is much
smaller than the bare frequency ω0 [66,68,69]. Conversely, as
T → TCDW, �0 → 0. At T > TCDW, the Higgs mode is no
longer defined, but the phonon is still coupled to electronic
charge fluctuations at Q, so that its self-energy simply scales
as the electronic charge susceptibility at Q:

�2
0 = ω2

0

[
1 − 2g2

ω0N

∑
k

γ 2
k

Ek
tanh(Ek/2T )

]
. (48)

At T = TCDW, the right-hand side of Eq. (48) reduces to
the self-consistency equation (40) with �CDW = 0, and one
recovers the phonon softening due to the lattice instability.
Below TCDW, the imaginary part of the Higgs fluctuations
provides also the phonon damping; see Eq. (45). In general,
a momentum dependence of the CDW gap allows for residual
quasiparticle excitations below 2�CDW even at low T . These
in turn provide a decay channel for the CDW phonon increas-
ing its broadening, especially as the temperature approaches
TCDW, as observed in Raman spectra [71,72,74,75].

In summary, the nonlinear optical kernel (41) below TCDW

is formally equivalent to the ordinary phonon kernel (11):

K (ω) � �2
CDW(T )

ω2 − �2
0 + iω�0

, (49)

allowing us to compute the pump-probe response along the
lines outlined in the previous sections. In Fig. 8 we show
the simulated pump-probe spectra of the CDW phonon at
selected temperatures below TCDW for broadband THz pulses.
Here we choose parameter values appropriate to reproduce
the experimental situation in which 2�CDW > �0, i.e., g/t =
0.27, ω0/t = 0.15. As one can see, the amplitude of the
oscillations is rapidly suppressed already at T/TCDW � 0.8,
due to the reduction of the Raman visibility Reff ∼ �2

CDW.
This is consistent with the experiments of Refs. [15,76],
where one needs to go significantly below TCDW to detect
appreciable oscillations in the probe signal. To the best of our
knowledge, the CDW amplitudon has been seen so far only
in tritellurides by means of light excitations in the visible. As

discussed in Sec. II within the context of ordinary phonons,
a THz pulse tuned at the right frequency is expected to have
a much larger efficiency than a visible light pulse. It would
then be highly desirable to test the approach proposed here to
excite CDW soft phonon modes via THz pulses, especially in
CDW dichalcogenides where the lower transition temperature
requires cooling down much more to gain enough Raman
visibility to excite the mode via visible light.

V. DISCUSSION AND CONCLUSIONS

In the present work, we provide a general theoretical
scheme to describe pump-probe experiments by means of a
quasiequilibrium approach. In particular, we show that the co-
herent oscillations of the probe signal as a function of the time
delay between the pump and the probe can be linked to the
resonant behavior of the nonlinear optical kernel, showing that
not only phonons but any Raman-active collective electronic
excitation can be excited by a light pulse via an impulsive-
stimulated Raman process. For the sake of concreteness, we
focus here on the experiments in transmission geometry, and
we derive explicitly the transmitted probe field as a function of
the observation time tg and the pump-probe delay tpp. We show
that the power spectrum of the differential probe signal can be
linked to the product of the nonlinear kernel K (ω) times the
power spectrum of the squared pump pulse:

δEprobe(ω) = K (ω)Ā2
pump(ω). (50)

This simple relation, along with the existence of a pronounced
resonance of the kernel K (ω) at a certain frequency ωres, rep-
resents the starting point to understand the difference between
several experimental setups, and the link between pump-probe
spectroscopy and third-harmonic generation. For visible light
pulses, only the ω � 0 component of Ā2(ω) is relevant, show-
ing that the mode is excited via a difference-frequency pro-
cess. For a THz pulse, the ω � 2�pump component of Ā2(ω) is
relevant, and the mode is excited via a sum-frequency process.
As a consequence, we clearly establish that for ultrafast THz
spectroscopy, not only the pump pulse duration (which deter-
mines the adiabatic versus antiadiabatic condition) but also its
central frequency cooperatively determine the generation of
coherent oscillations. By taking advantage of the relation (50),
we discuss the difference between broadband and narrowband
THz pulses, explaining why in the former case one generates
oscillations at the resonance frequency ωres, while in the latter
oscillations occur at twice the pump frequency.

We then discuss three applications of the general approach
based on Eq. (50). The first one is the case of Raman-active
phonons. We show the analogies and differences between our
scheme and the approach based on the equation of motions
for the displacement phononic field, and we recast in our
language some interesting recent results obtained for THz-
stimulated phononic oscillations in insulators [12,13,17].

The second application concerns coherent oscillations of
SC collective modes. The main advantage of the general
relation (50) is that the computation of the nonlinear optical
kernel K (ω) within a specific and controlled approximation
allows one to address separately the various physical pro-
cesses relevant for each system, and to test the results against
the experiments. This approach can lead to a considerable
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advantage in the case of collective electronic modes across
a phase transition, when the full numerical solution of a time-
dependent problem is computationally challenging [19–28],
and does not always allow one to disentangle the contri-
butions from different excitations channels. This is exactly
what happens for the 2� oscillations in a superconductor,
which have been ascribed so far either to the excitation of
density-like fluctuations [14] or to the Higgs mode [4–6].
While in a generic lattice model the Higgs is always excited by
a light pulse [23–28], its contribution to the differential probe
field (50) is crucially determined by its Raman visibility. We
then show that in general the experimental observation of
THz-induced coherent oscillations at twice the gap value [5]
or at twice the pump frequency [6] could be well reproduced
by considering only density-like fluctuations, which certainly
dominate the kernel K (ω) in the clean limit, as it has been
widely discussed within the context of the third-harmonic
generation [37,39–44]. More recently, it has been pointed out
[43,44] that in the presence of disorder, the hierarchy of the
two contributions can be reverted, making the Higgs contribu-
tion to the nonlinear kernel K (ω) the dominant one. The main
reason is that disorder triggers paramagnetic-like processes
able to enhance the Raman-like visibility of the Higgs mode,
which then rapidly overcomes the density-like diamagnetic
response. A somehow counterintuitive result of these calcula-
tions is that an extremely small amount of disorder is enough
to make paramagnetic-like processes dominant. However, if
this is the case, the Leggett mode, recently observed by pump-
probe spectroscopy in the multiband MgB2 superconductor,
should not be visible, since its Raman visibility is strongly
constrained to the relevance of diamagnetic-like processes
[41,60]. So far, the experimental observations of Ref. [7] have
been very well reproduced by the theoretical scheme based on
Eq. (50), with a calculation of the nonlinear kernel done in the
clean limit, so more work is needed to reconcile these results
with the outcomes of Refs. [43,44]. In addition, the compar-
ison between pump-probe experiments and THG in a system
where multiple resonant excitations appear in the nonlinear
kernel K (ω) requires some additional care with the matching
conditions for the sum-frequency process. In the case of MgB2
one has in principle three excitations, corresponding to twice
the two gap values �1,2 and to the Leggett ωL, with 2�1 <

ωL < 2�2. When the system is excited with a narrowband
pulse with central frequency �pump, the only collective exci-
tation that contributes to the nonlinear optical response is the
one that matches the sum-frequency condition. In Ref. [43]
it has been argued that the Leggett mode gives a negligible
contribution to the THG when the system is excited with a
light pulse matching the larger gap value, 2�pump � 2�2 �
ωL. However, this result cannot be simply ascribed to the
effect of disorder, since even in the clean case the frequency
of the pump would be too high to excite the Leggett mode,
and it will then always give a negligible contribution to the
nonlinear kernel. A more compelling comparison could be the
THG signal obtained for two pump frequencies, one matching
the Leggett and one matching twice the larger gap. Finally, it is
worth noting that calculations in Refs. [43,44] are done in the
Born limit of weak disorder, where the Higgs resonance stays
untouched and disorder only affects the Raman visibility of
the Higgs. However, as disorder increases it has been shown

that the mixing between the SC phase and amplitude modes
spoils the spectral weight of the Higgs fluctuations at 2� [77].
It would then be very interesting to study experimentally the
fate of the 2� oscillations as disorder increases in conven-
tional superconductors such as NbN.

Finally, we discussed the case of the Higgs mode in a CDW
transition. In this case, the amplitude fluctuations of the CDW
order parameter couple to the CDW phonon giving rise to
a soft “amplitudon” phonon mode at a frequency �0 much
lower than twice the gap value 2�CDW, allowing one to spec-
troscopically disentangle the two contributions that appear at
the same scale 2� in a superconductor. We have shown that in
this case the pump-probe response looks pretty much the same
as that of an ordinary phonon, with remarkable differences due
to the temperature dependence both of the phonon frequency
�0 and of its Raman visibility. These findings are consis-
tent with the observation of the amplitude CDW mode in
tritellurides via visible-light excitations [15,76]. However, for
CDW systems a THz-pump counterpart of these experiments
is still lacking, both for tritellurides and for the other class
of CDW materials based on dichalcogenides. Our general
scheme, based on the prediction (50) for the form of the
power spectrum of the differential probe field, could serve as
a guideline to design these experiments. It can also trigger
further theoretical work aimed at a quantitative computation
of the nonlinear optical kernel in CDW materials, with the
ultimate goal to use pump-probe protocols to gain crucial
information on the microscopic mechanisms responsible for
the CDW transition in these systems.
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APPENDIX: LONG-TIME DECAY OF THE
TRANSMITTED PULSE

Here we derive analytically the asymptotic behavior of
the nonlinear optical kernel in the case of an approximated
parabolic band. We are interested in the function

K (t ) ≡
∫ ∞

−∞

dω

2π
K (ω)e−iωt (A1)

in the limit �t � 1. Using the reality of K (t ), the previous
integral can also be written as

K (t ) =
∫ ∞

0

dω

π
Re{K (ω)e−iωt }, (A2)

which allows us to consider positive frequencies ω > 0 only.
For the sake of simplicity, we consider the illustrative case

of weak SC coupling ωD � � and zero spectral broadening
γ = 0, so that Eq. (36) reduces to

K (ω) = −2�2NF

m2

tan−1
(

ω√
4�2−ω2

)
ω

√
4�2 − ω2

. (A3)
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FIG. 9. Real (a) and imaginary (b) part of the kernel K (ω) as
a function of ω/2�. The continuous line corresponds to the finite
broadening γ = 0.1� while the dotted line corresponds to γ = 0.
Here we used ωD = 10�, which corresponds to the relatively weak
dimensionless SC coupling λSC � 0.33. (c),(d) Projection of the
integration path of the integrals

∫ ∞
0 ds e±is√

s on the imaginary axis. The
+ or − signs appearing in the exponent of the integrand require us to
choose the positive (c) or negative (d) imaginary axis, respectively.
(e) Comparison between the function K (t ) (continuum blue line), as
obtained by the numerical integration of Eq. (A2), and the long-time
estimate of Eq. (A7) (dotted red line).

Notice that while K (ω) is purely real for ω2 < 4�2, for ω2 >

4�2 a finite imaginary part appears; see Figs. 9(a) and 9(b).
By distinguishing the two cases, we obtain

K (ω) = −�2NF

m2

{
�(4�2 − ω2)2

tan−1
(

ω√
4�2−ω2

)
ω

√
4�2 − ω2

+�(ω2−4�2)

⎡
⎣ ln

(
ω−√

ω2−4�2

ω+√
ω2−4�2

)
ω

√
ω2−4�2

+ iπ

ω
√

ω2−4�2

⎤
⎦
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(A4)

where the branch of the complex square-root has been chosen
in order to satisfy

√
4�2 − ω2 = −i

√
ω2 − 4�2 ∀ ω > 2�,

which is imposed by requiring K (ω) to be a retarder Green’s
function, obtained as an analytical projection from the upper
half-plane, i.e., ω ≡ limγ→0+ ω + iγ .

In the long-time limit, the integral of Eq. (A2) is dominated
by the singular contribution, ω2 ∼ 4�2, of K (ω), which can
be written as

Ksing(ω) = − NF

4m2

π
√

�√|ω − 2�| [�(2� − ω) + i�(ω − 2�)].

(A5)
Substituting Eq. (A5) into (A2) gives

K (t ) ∼ − NF
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(A6)
where we introduced the integration variable s = ωt and we
put 2�t = ∞ in the first integral of the right-hand side. The
two integrals ∫ ∞

0
ds

e±is

√
s

can be easily computed by projecting the path of integration
on the positive (+) or negative (−) imaginary axis [see
Figs. 9(c) and 9(d)], which leads to∫ ∞

0
ds

e±is

√
s

= e±iπ/4
∫ ∞

0
ds

e−s

√
s

= e±iπ/4√π.

Equation (A6) then finally gives

K (t ) ∼ − NF

2m2

√
π�

t
cos

(
2�t − π

4

)
. (A7)

Although Eq. (A7) has been obtained in the long-time limit,
it provides a quite precise estimate of the function K (t ) up
to very short timescales, as we show in Fig. 9(e), where
the continuous line represents the result of the numerical
integration of Eq. (A2), while the dotted line represents the
estimate (A7).
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