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Numerically exact full counting statistics of the energy current in the Kondo regime
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We use the inchworm quantum Monte Carlo method to investigate the full counting statistics of particle
and energy currents in a strongly correlated quantum dot. Our method is used to extract the heat fluctuations
and entropy production of a quantum thermoelectric device, as well as cumulants of the particle and energy
currents. The energy-particle current cross correlations reveal information on the preparation of the system and
the interplay of thermal and electric currents. We furthermore demonstrate the signature of a crossover from
Coulomb blockade to Kondo physics in the energy current fluctuations, and show how the conventional master
equation approach to full counting statistics systematically fails to capture this crossover.
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I. INTRODUCTION

Energy transport through small junctions is a major
paradigm at the heart of attempts to formulate thermodynamic
principles applicable to nanoscale quantum systems [1–7].
The latter are essential for understanding and improving
operational efficiency in nanoelectronic devices [8], where
quantum entanglement effects are inseparably intertwined
with performance fluctuations [9–12].

Fluctuations in the energy and particle currents [13,14] can
be studied through consideration of the full counting statistics
(FCS) of particle and energy transfer [15–18]. A particularly
challenging problem in this field is the study of electronic
correlations and their impact on the performance of quantum
devices coupled to conducting reservoirs. A schematic view
of a junction is shown in Fig. 1. This comprises a central
molecule or quantum dot where confined electrons interact
strongly, contacted by weakly interacting metallic left (L)
and right (R) reservoirs. A voltage bias is applied across the
junction, and an additional thermal or temperature bias may
either not be applied (left panel) or applied (right panel).

Under certain conditions, the system may be characterized
by a threshold known as the Kondo temperature TK . Below
this threshold, transport properties are dominated by the for-
mation of a correlated resonance in the conductance spectrum
[19,20]. A bias voltage (or chemical potential difference be-
tween the leads) splits the Kondo resonance into a pair of
peaks centered near the lead chemical potentials [21–23]. The
resonance width is set by TK , and it is typically much sharper
than features related to noninteracting resonant tunneling [24],
as seen in experiments on strongly correlated single-molecule
transistors [22,25].

A thermal bias (right panel of Fig. 1) may be applied
to the junction by keeping the two reservoirs at different
temperatures TL and TR. The interplay between electric and
thermal biases can be used to implement, e.g., heat engines,

heat pumps, and refrigerators, depending on the direction
of the thermal gradient and the relative direction of flow of
particles Ip and heat Ih [9,26–28].

Recent experiments on molecular junctions show that both
the Seebeck and Peltier coefficients can be measured at the
nanoscale [29–35] and the quantized character of thermal
transport in nanojunctions was demonstrated [36,37]. In addi-
tion, a recent measurement of thermal-gradient-induced parti-
cle noise was reported in the literature [38].

In the linear regime, quantum coherence universally weak-
ens heat engine performance [39], and reductions in power
and efficiency have also been reported in nonlinear quantum
heat engines [40]. However, there is no comprehensive answer
to the question of whether quantum effects improve or reduce
the performance of nonlinear heat engines at the nanoscale. In
certain specific cases, quantum coherence effects have been
shown to increase the thermal efficiency [41], to exceed the
Carnot efficiency and approach a perfect efficiency of 1 [42],
to increase the power output [43], and to reduce fluctuations
in the power [44].

Whereas it is possible to study nanoscale thermoelectricity
within a single-particle approximation with Green’s function
[45–47] or density functional theory (DFT)-based [48–50]
methods, the effect of Kondo physics on the thermoelectric
performance of devices is not fully understood beyond linear
response. An exception is recent work based on the matrix
product states method, which gives access to the current
generated by a temperature bias in the Kondo regime [51]. In
related work, simulations of the current within the noncross-
ing approximation show a strong enhancement in the Seebeck
coefficient by asymmetric dot-lead couplings in the Kondo
regime [52].

Going beyond the study of heat and charge currents, one
may investigate higher-order correlations in the transferred
charge and energy. These higher-order statistical cumulants,
and their underlying probability distributions, are obtained
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FIG. 1. Illustration of a quantum junction comprising leads L and
R coupled by a central quantum dot region D, with a chemical poten-
tial bias at no temperature bias (left) and an opposite temperature
bias (right). Depending on the choice of parameters, the particle and
heat currents, I p and Ih, may be expected to flow in either the same
direction (left) or opposite directions (right).

from the cumulant generating function for the FCS, and
can reveal a whole range of information not present in the
first moment [53]. This includes particle traversal times [54],
waiting time distributions [55–59], shot noise [13,15,60], and
associated quasiparticle charges [61]. In addition, the steady
state cumulant generating function can be related to fluctua-
tions in the thermal efficiency [11].

To date, the majority of the exact FCS theory has focused
on noninteracting models of nanojunctions, beginning with
the work of Levitov and Lesovik on the counting statistics
of charge transport in the steady state regime, which reduces
to the Landauer-Büttiker theory of shot noise, in which the
propagating charge carriers are assumed to be coherent waves
in the device region [13,53,62]. This program culminated with
the path-integral nonequilibrium Green’s function (PINEGF)
approach pioneered by Tang et al. [55,63–66], valid for FCS
calculations in the transient regime following a quench and for
arbitrary time-dependent driving fields.

In strongly correlated systems, the quantum master equa-
tion (QME) approach has proven popular for the investigation
of charge [67–69] and energy [17,44,70–72] FCS in Coulomb-
blockaded systems. It lends itself well to analytical investi-
gation, so it has been used to derive exact relations for opti-
mized thermal efficiencies in molecular heat engines [73,74]
and exact fluctuation relations in the counting statistics of
heat exchange [75]. However, the QME method is generally
limited to the weak impurity-bath coupling regime: �, the
typical strength of hybridization between the lead states and
those of the molecule or dot, must be substantially smaller
than all other energy scales in the problem. In recent years,
the QME method was extended beyond the sequential tunnel-
ing Coulomb-blockade regime to include spin-flip scattering
cotunneling processes, so that noise and FCS can be studied
at higher values of � [76–80].

However, the Kondo regime and current noise resulting
from the formation of a Kondo peak [20,81] are inaccessi-
ble to perturbative QME approaches [82]. Indeed, the study
of current fluctuations in the Kondo regime has mostly
been carried out by methods specialized to very specific

parameter regimes [83–85]. The situation has changed with
the recent development of a numerically exact method for
the computation of full particle counting statistics (FCS) [58].
In this context, “numerically exact” refers to the controlled
evaluation of a quantity with known error bounds that can
be made as small as desired with enough computer time.
This approach was based on the inchworm quantum Monte
Carlo (iQMC) algorithm [86–89], a powerful method for the
stochastic evaluation of propagators in strongly correlated
impurity models. It circumvents the dynamical sign problem
that plagues conventional QMC methods [90] and scales
polynomially in time [86]. In Ref. [58], numerically exact
calculations of the current noise were presented, showing a
crossover from interaction-induced suppression to enhance-
ment as the temperature was lowered below TK . This finding
corroborates the experimental data showing Kondo-enhanced
noise in strongly interacting impurity models [91], and also
indicates the failure of noninteracting theory to properly ac-
count for noise in the Kondo regime.

In the present study we extend the iQMC FCS method to
the full counting statistics of nonequilibrium energy transfer.
We treat junctions with electron-electron interactions, thus
taking steps towards a sorely needed quantum theory of
thermoelectricity [28]. Our methodology enables numerically
exact calculations of cumulants of charge, energy, and heat
transfer in strongly correlated regimes, as well as cross cor-
relations between particle and energy transfer. Through these
quantities, we obtain access to the entropy production.

The structure of the paper is as follows: In Sec. II we
introduce the model of the quantum junction utilized in this
study. Section III introduces the techniques we use (both
numerically exact iQMC and approximate QME) to calculate
particle and energy transfer statistics in the transient regime,
and Sec. IV applies this to quantities of interest in the study
of the thermoelectric properties of junctions. In Sec. V we
present our main results. This includes a comparison with
QME data, a discussion of the effects of interaction and
temperature on heat cumulants and associated heat current
fluctuations, and calculations of entropy production. Finally,
our conclusions can be found in Sec. VI.

II. THE MODEL

We consider a junction described by the nonequilibrium
Anderson impurity model (AIM) Hamiltonian,

Ĥ = ĤD + ĤB + ĤV . (1)

Here, ĤD describes a dot (or molecule) region with on-site
interactions; ĤB = ∑

� Ĥ� describes two large noninteracting
reservoirs or leads, denoted by � ∈ {L, R}; and ĤV is a hy-
bridization Hamiltonian coupling the dot to both leads. These
terms are given by

ĤD =
∑

σ

εσ d̂†
σ d̂σ + Ud̂†

↑d̂↑d̂†
↓d̂↓, (2)

ĤB =
∑
kσ,�

εkσ,�â†
kσ,�

âkσ,�, (3)

ĤV =
∑
kσ,�

(Vkσ,�â†
kσ,�

d̂σ + H.c.). (4)
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The d̂†
σ (d̂σ ) operators create (annihilate) an electron with

spin σ ∈ {↑,↓} on the dot, and the â†
kσ,�

(âkσ,�) perform the
analogous operation on the single-particle level k of lead �. εσ

and εkσ,� are single-particle energies on the dot and lead levels,
respectively, and U sets the strength of Coulomb repulsion on
the dot. Throughout this work, we impose particle-hole sym-
metry by setting εσ = −U

2 . Finally, the Vkσ control tunneling
between the dot and leads.

We will simulate dynamics starting from an initial state
ρ0 = ρL ⊗ ρD ⊗ ρR, where each lead � is in a thermal state
characterized by a temperature T� = 1/β� and a chemical
potential μL/R = ±V/2. We assume that the dot is prepared
in one of the four eigenstates of ĤD: the empty state |0〉,
full state | ↑↓〉, or one of the two magnetized half-occupied
states |σ 〉. In what follows, these local or “atomic” states are
referred to collectively by the index φ. At time t = 0, the
system begins to evolve with respect to Ĥ , corresponding
to instantaneously adding the hybridization term ĤV to the
Hamiltonian to model a sudden coupling of the leads to
the dot. This setup is often referred to as either a coupling
quench or a partitioned approach to the switch-on problem
[92]. In Ref. [92], a mapping was shown to exist such that
partitioned quenches can be mapped onto a partition-free
switch-on process. The validity of this mapping in the strongly
correlated case may be investigated by extending the iQMC
method to include sampling over a vertical branch, as was
done in Ref. [87].

The εkσ,� and Vkσ,� are effectively set by the coupling
density ��(ω) that describes the electron escape rate of
lead �,

��(ω) = π
∑
kσ

|Vkσ,�|2δ(ω − εkσ,�). (5)

We take this to be a flat band with a smooth cutoff [93],

��(ω) = ��

(1 + eν(ω−�c ) )(1 + e−ν(ω+�c ) )
. (6)

In what follows, we set �� = 1
2 such that � ≡ ∑

��� = 1
determines our unit of energy. We take the leads’ band cutoff
�c to be 10�, and their edge width 1

ν
to be �/10.

III. FCS OF ENERGY AND PARTICLES

A chemical potential bias and/or a temperature difference
between the leads engenders charge and energy fluxes across
the junction. For the interface between any lead � and the
dot, FCS yields a way to study the statistics of both elec-
tron transfer, �N̂�(t ) ≡ N̂�(t ) − N̂�(0), and energy transfer,
�Ĥ�(t ) ≡ Ĥ�(t ) − Ĥ�(0). Here, N̂�(t ) and Ĥ�(t ), respectively,
are operators corresponding to the total number of electrons
and total energy in lead �. In the following section, we briefly
introduce some of the main concepts and definitions of FCS
for the convenience of the reader.

A. FCS from iQMC

Within the FCS formalism, the statistics of currents at the
interface with lead � are obtained from a two-point measure-
ment of the total number of particles or energy within reser-
voir � at times 0 and t . Multiple realizations of the quantum

process yield information on the probability P(�n�,�ε�, t ) to
observe transfer of �n� electrons and �ε� energy across the
interface. These probabilities are encoded within the generat-
ing function [63,94]

Z (t ; λ, χ ) ≡
∑

�n�,�ε�

P(�n�,�ε�, t )eiλ�n�eiχ�ε� . (7)

The Fourier variables λ and χ are called counting fields. In
general, there may be a separate counting field for every lead
in a multiterminal counting experiment; the generalization of
Eq. (7) to the multiterminal case is straightforward.

Assuming the initial state of the system to be an eigenstate
of the decoupled dot Hamiltonian, Eq. (7) can be expressed in
terms of counting-field-modified propagators

Z (t ; λ, χ ) = Tr[Û(λ,χ )(t, t0) ρ̂0 Û †
(λ,χ )(t, t0)]

≡ Tr
[
TC e−i

∫
C dz Ĥ(λ,χ ) (z)ρ̂0

]
, (8)

where C is the Keldysh contour comprising a forward branch
C+ (from t0 to t) followed by a backward branch C− (from t
to t0), z is a contour-time variable, and TC is the time ordering
operator on the contour. Time evolution is governed by the
modified propagator and Hamiltonian, respectively given by

Û(λ,χ )(t, t0) = ei χ

2 Ĥ�ei λ
2 N̂�Û (t, t0)e−i λ

2 N̂�e−i χ

2 Ĥ� (9)

and

Ĥ(λ,χ )(z) = ĤD(z) + ĤB(z) + ĤV (sCλ,sCχ )(z). (10)

Here, sC = ±1 at the C± branch of the contour and

ĤV (λ,χ ) =
∑
kσ,�

(Vkσ,�â†
kσ,�

d̂σ e(λ+εkσ,�χ )/2 + H.c.). (11)

The object evaluated in the iQMC method is the auxiliary-
field-modified propagator between two points z1 and z2 on the
contour,

p(z1, z2; λ, χ ) ≡ TrB
[
ρ0TCe−i

∫ z2
z1

dz Ĥ(λ,χ ) (z)]
,

pφφ′ (z1, z2; λ, χ ) ≡ 〈φ|p(z1, z2; λ, χ )|φ′〉, (12)

where the second line describes projection to the atomic φ

basis.
The propagator of Eq. (12) is analogous to propaga-

tors used in other real-time, continuous-time hybridization-
expansion Monte Carlo methods: Whereas earlier implemen-
tations only implicitly relied on such propagators [93,95–98],
later work explicitly took advantage of their properties
[81,86–90,99–104]. Here, the hybridization Eq. (11) is mod-
ified with respect to its physical counterpart ĤV (λ=0,χ=0) by
λ- and χ -dependent factors. The first of these modifications
was already present in the previous iQMC FCS paper [58],
where it was used to address particle (but not energy) counting
statistics.

The cumulant generating function at time t can be extracted
directly from the propagator pφφ between the contour times
t+ and t− corresponding to the physical time t on the two
branches of the Keldysh contour,

Z (t ; λ, χ ) =
∑

φ

pφφ (t+, t−; λ, χ ). (13)
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By expanding Eq. (12) in powers of ĤV , the propagator
can be represented as a sum over configurations suitable for
stochastic Monte Carlo sampling,

pφφ′ (z1, z2; λ, χ ) =
∞∑

n=0

∑
C

w
(n)
loc (C)w(n)

hyb(C; λ, χ ). (14)

Only even orders contribute in this combination of expansion,
model, and propagator, so we use n to denote the expansion
order, but a term of order n actually contains 2n hybridization
vertices of the form in Eq. (11). These vertices occur at times
C = {ζ1, . . . , ζ2n}. The vertex times, all of which are located
within the part of the contour between z1 and z2, are integrated
over in the second summation.

In the expansion of Eq. (14), the w
(n)
loc are products of inter-

acting (but purely local) atomic state propagators p(0)
�κ (z1, z2),

defined as in Eq. (12) but with Ĥ(λ,χ ) replaced by Ĥ0 ≡
ĤD + ĤB in the time-ordered integral. The states φi between
each pair of vertices are fully determined by C and the initial
condition φ0. Setting φ2n = φ0 allows us to write these objects
in the following form, which is independent of both λ and χ ,

w
(n)
loc (C) = (−i)n+−n−

2n−1∏
i=0

p(0)
φiφi+1

(zi, zi+1). (15)

The w
(n)
hyb, on the other hand, explicitly depend on the

counting fields,

w
(n)
hyb(C; λ, χ ) =

∑
{X}

sgn(X)
n∏

i=0

�̃λ,χ (zi, zXi ). (16)

In general, X are all permutations of the integers (1, . . . , n),
and �̃λ,χ = ∑

� �̃
λ�,χ�

� , but below we always set λ� =
λδ�L and χ� = χδ�L. The contribution to the counting-field-
modified hybridization from lead � is given by

�̃λ,χ

� (z1, z2) = eiλ�(1−δνν′ )θ (z1 − z2)�>
� (z1 − z2; χ )

+ e−iλ�(1−δνν′ )θ (z2 − z1)�<
� (z1 − z2; χ ), (17)

where θ is the Heaviside function on the contour and ν, ν ′ ∈
{C+, C−} are the branch indices of z1 and z2, respectively.
Finally, the λ-unmodified lesser and greater hybridization
components for lead � are obtained from the level width
function of Eq. (5),

�>
� (t1 − t2; χ ) = i

∫ ∞

−∞

dω

π
e−iω(t1−t2 )eiωχ�

×��(ω)[1 − f (ω − μ�)],

�<
� (t1 − t2; χ ) = −i

∫ ∞

−∞

dω

π
e−iω(t1−t2 )e−iωχ�

×��(ω) f (ω − μ�). (18)

Here, t1 and t2 are physical times corresponding to the contour
times z1 and z2. For leads initially in equilibrium or steady
state, the two-time hybridization functions depend only on the
time difference t1 − t2, and it is convenient to use the Fourier
shift property

�
≶
� (t1 − t2; χ ) = �

≶
� (t1 − t2 ∓ χ�(1 − δνν ′ ); 0) (19)

to avoid numerical issues with strongly oscillating frequency
integrals at finite values of χ .

The bare Monte Carlo process associated with summing
over all diagrams representing terms in Eq. (14) results in
the so-called dynamical sign problem, in which the stochastic
error and computational cost of the summation increases
exponentially with time. The inchworm algorithm [86] over-
comes this problem by optimally reusing propagator data from
earlier times to “inch” forward to later times on the contour.
The details of this method are all described in a previous
work, where it was shown how the FCS can be obtained
efficiently with a quadratic scaling in the number of time
steps. In the present discussion there are no new conceptual
difficulties beyond the introduction of an energy counting
field in Eq. (18), so we refer the reader to that work for a
thorough discussion of the time-stepping algorithm used in
the inchworm approach [58].

B. FCS from QME

The quantum master equation approach to FCS provides
an approximate expression for the dynamics of the reduced
density matrix modified by the counting field, σ̂ (t ; λ, χ ) ≡
TrB{ρ̂(t ; λ, χ )} [105].

Since the dynamics of the off-diagonal elements of σ̂

is completely decoupled from that of the diagonal ones
in the AIM, it is sufficient to consider the diagonal el-
ements of σ̂ (t ; λ, χ ), the counting-field-modified “popula-
tions” pφ (t ; λ, χ ). The generating function Z (t ; λ, χ ) is then
given by the trace with respect to the dot subsystem [94],

Z (t ; λ, χ ) = TrS[σ̂ (t ; λ, χ )] =
∑

φ

pφ (t ; λ, χ ). (20)

We collect the pφ into a vector p, such that—within the
QME approximation—p satisfies the following rate equation,

∂p(t ; λ, χ )

∂t
= M(λ, χ )p(t ; λ, χ ). (21)

Here, M is a matrix with elements given at λ, χ = 0 by
[106–108]

Mφφ′ =
∑

�

M�
φφ′ , (22)

where

M�
φφ′ =

⎧⎪⎪⎨
⎪⎪⎩

∑
φ′′�� f�(�Eφ′φ′′ ), φ = φ′,

−�� f�(�Eφ′φ ), nφ′ − nφ = 1,

−��(1 − f�(�Eφφ′ )) nφ′ − nφ = −1,

0, nφ′ − nφ = ±2, 0.

(23)

The terms M�
φφ′ in this expression correspond to transition

rates from dot state φ′ to state φ as mediated by the lead �,
and we have defined nφ to be the occupation of the decoupled
dot state φ, �Eφ′φ ≡ Eφ′ − Eφ and f�(ε) = 1/(1 + eβ�(ε−μ� ) ).
The level width �� is taken to be frequency independent, an
additional approximation which could be easily removed, but
is justified for the bandwidth and shape used here [47,109].

In the presence of the counting field, the transition rates
undergo the modification

M�
φφ′ → M�

φφ′eiλεφφ′ e−iχ�Eφ′φ . (24)
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Here, εi j = ±1 for ni = n j ± 1, and εi j = 0 otherwise. The
sign of the exponential factor −iχ�Eφ′φ arises from the fact
that an increase of energy in the dot corresponds to a decrease
in lead � [110,111].

We note that more sophisticated QME approaches exist
which take into account, e.g., higher-order tunneling pro-
cesses [78]. However, Markovian master equations gener-
ally fail to address the tunneling-induced level broadening
of dot states, and the accurate evaluation of the deeply
non-Markovian memory kernels that characterize correlated
regimes requires a numerical method on par with iQMC
[98,102,112].

IV. CUMULANTS AND THERMOELECTRIC QUANTITIES

The cumulants of the statistical distribution for particle and
energy transfer at the interface of the dot with lead �, as well
as their cross correlations, may be obtained from derivatives
of the cumulant generating function,

S�(t ; λ, χ ) = log Z (t ; λ, χ ), (25)

with respect to the counting fields λ and χ and with the
convention introduced above that these fields are nonzero only
for properties stemming from lead �. In general, we define

C�,m,k (t ) = ∂m+kS�(t ; λ, χ )

∂ (iλ)m∂ (iχ )k

∣∣∣∣
λ,χ=0

. (26)

In terms of these derivatives, we may define the nth-order cu-
mulants of the separate particle and energy transfer processes,

Cp
�,n(t ) ≡ C�,n,0(t ),

CE
�,n(t ) ≡ C�,0,n(t ). (27)

We may also consider the cross correlations measuring the
statistical influence of particle change on a change in the
energy,

C(×)
�

(t ) ≡ C�,1,1(t ). (28)

One may then evaluate the first and second cumulants of
transferred heat from particle, energy, and cross-correlation
statistics [113],

Ch
�,1(t ) = CE

�,1(t ) − μ�C
p
�,1(t ),

Ch
�,2(t ) = CE

�,2(t ) + μ2
�C

p
�,2(t ) − 2μ�C

(×)
� (t ). (29)

In the long-time regime, the first and second cumulants
yield fluxes, I p/E/h

� , and zero-frequency quantum noises,
Sp/E/h

� , for particle, energy, and heat transfer [11],

I p/E/h
� = lim

t→∞
Cp/E/h

�,1 (t )

t
,

Sp/E/h
� = lim

t→∞
Cp/E/h

�,2 (t )

t
. (30)

Given the quantities above, the overall steady state en-
tropy production rate can be evaluated from the expression
[14,114,115]

σ =
∑

�

β�Ih
� . (31)

We note that this relation is only valid for the steady state [4],
and the second law of thermodynamics necessarily implies
that σ > 0.

V. RESULTS

We consider a biased junction, μL > μR, both with (TL <

TR) and without (TL = TR) a temperature gradient. In the
former case, at appropriately tuned parameters, the system
may embody either a heat engine (electron flow against the
voltage gradient is driven by the temperature bias) or a heat
pump/refrigerator (heat flow against the thermal gradient is
driven by the voltage bias).

A. U = 0 benchmarks and failure of master equations

We begin with benchmarks of the iQMC method in
the noninteracting limit U = 0 against exact path-integral
nonequilibrium Green’s function (PINEGF) results [63,64].
The iQMC method is numerically exact and one might triv-
ially expect to simply find agreement. Nevertheless, such
benchmarks are important whenever a numerical method is
generalized, and the iQMC method has not previously been
applied to the calculation of energy counting statistics. We
furthermore examine the applicability of the QME approach
to FCS in the noninteracting limit.

Figure 2 displays the real (top panels) and imaginary (bot-
tom panels) components of the moment generating function
Z (t ; λ, χ ) on lead L, with counting fields set to λ = 0.5 and
χ = 0.1. We note that typically one is most interested in the
derivatives of the generating function at the λ, χ → 0 limit,
where they give the exact cumulants. However, logarithmic
derivatives of Z (t ; λ, χ ) vary slowly with the counting fields,
and the finite values of λ and χ chosen here are therefore
physically relevant and easier to work with numerically [58].
The bias voltage is V = 1� and the initial condition is the
empty state |0〉. There is no thermal bias, i.e., TL/TR = 1.0.

FIG. 2. Real and imaginary parts of the moment generating
function Z (t ; λ = 0.5, χ = 0.1) in lead L are shown for calculations
using the QMC (thick black) QME (dashed blue), and PINEGF
(dotted red) methods. We choose the voltage V = 1�, interaction
strength U = 0�, and the empty initial condition. The two leads
are held at equal inverse temperature βL = βR. The left panels show
the high-temperature case βL = 0.4/�. The right panels show the
low-temperature case βL = 50/�.
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FIG. 3. Real (upper panels) and imaginary (lower panels) parts
of the moment generating function Z (t ; λ, χ ) in lead L for the same
parameters as in the upper panels of Fig. 2, but with applied thermal
bias with βLβR and left-to-right lead temperature ratio TL/TR = 0.1.
The counting fields are set to λ = 0.5 and χ = 0.1 (left panels), and
applied temperature bias and λ = 0.5 and χ = 0 (right panels).

The left panels are at a higher temperature βL = βR = 0.4/�,
whereas the right panels are at a lower temperature βL =
βR = 50/�. Each panel directly compares results from iQMC
(black) with QME data (dashed blue) and exact PINEGF data
(dotted red).

To within numerical errors, the iQMC and PINEGF meth-
ods agree at all times and both temperatures. Notably, the
noninteracting limit is a nontrivial benchmark for the iQMC
algorithm employed here, which is based on an expansion
in the dot-lead hybridization rather than the interaction. As
might be expected, the QME fails to correctly capture the
time evolution in both cases, and fails qualitatively even at
describing the steady state (constant time derivatives at long
times) at the lower temperature [116].

In Fig. 3, we focus on the higher-temperature regime in
which the QME is expected to work well, at βL = 0.4/�.
The left panels repeat the calculation in the left panels of
Fig. 2, but with an applied temperature bias TL/TR = 0.1, so
that heat is driven against the direction of the particle current.
Note that this is set up so that the average temperature is
higher than βL, a supposedly even more favorable condition
for QME. Interestingly, however, QME fails to capture the
high-temperature steady state not just quantitatively, but even
in terms of the sign of the long-time derivative (slope) of Im Z
(see lower left panel of Fig. 3).

The right-hand panels of Fig. 3 show that in this temper-
ature regime the three methods are in excellent agreement
for the case of zero-energy counting field, χ = 0. We have
verified that this remains true in the thermally unbiased case.
Mixed particle-energy counting therefore appears to be more
challenging to capture within the QME framework than parti-
cle counting alone.

B. Finite-U FCS in QME and iQMC

Having established that the iQMC method provides reli-
able FCS in the presence of both the particle and energy
counting fields, we continue to explore the interacting case,
where no analytical results are available. We concentrate on

FIG. 4. First cumulant of particle number change in lead L (left
panels) and R (right panels) for different initial conditions, at voltage
V = 1�, on-site interaction strength U = 8�, and with no tempera-
ture gradient, βL = βR. The upper panels show the high-temperature
case of β = 0.4/�. The lower panels show the low-temperature case
of β = 50.0/�. Solid lines denote iQMC results, and dashed lines
denote QME data.

energy and particle cumulants up to second order, in addition
to energy-particle cross correlations Cp/E

1/2,�(t ) and C(×)
pE ,�(t ).

Using the symmetry properties Z (t ; λ, χ ) = Z (t ; −λ, χ )∗ and
Z (t ; λ, χ ) = Z (t ; λ,−χ )∗, all these quantities can be ex-
tracted from finite-difference logarithmic derivatives based on
just four simulations of the generating function in the (λ, χ )
plane.

In the rest of this section, dashed lines in the figures will
denote QME data and solid lines or symbols denote iQMC
results. In Figs. 4–8, three different initial states of the dot are
shown as color-coded curves: empty (black), half-filled (red),
and fully occupied (blue).

Figures 4 and 5, respectively, show the first cumulants of
particle and energy transfer on lead � = L (left panels) and
� = R (right panels), where the counting fields are introduced
identically for each lead.

We set the interaction strength to U = 8�, the bias voltage
to V = 1�, and the temperatures to be equal on both leads,
such that currents are driven only by the voltage. The approx-
imate Kondo temperature of the system can be estimated as
kBTK ≈ 0.1�, in accordance with the Bethe ansatz formula
kBTK = √

U�/2 exp (−πU/8� + π�/2U ) [20]. We note in
passing that recent work proposes nonequilibrium logarithmic
corrections to this formula [117], but these corrections are
small enough that we are able to safely find temperatures
above and below TK in what follows. In particular, the upper
panels of Figs. 4 and 5 are at a high temperature T = 2.5� ≈
25TK , whereas the lower panels are at a low temperature
T = 0.02� ≈ TK/5 as shown.

Figure 4 shows the total change in electron number with
increasing time, from the quench time up until t = 8/�.
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FIG. 5. First cumulant of energy change in lead L (left panels)
and R (right panels) for different initial conditions, at the same
parameters as Fig. 4. Solid lines denote iQMC results, and dashed
lines QME.

The upper panels shows a remarkable agreement between the
iQMC and QME data at high temperatures, with the exception
of the short-time regime in which higher-order scattering
processes are dominant [118]. This plot shows significant
initial condition dependence in the transferred charges, which
may be understood in terms of Coulomb-blockade physics: (i)
In the initially unoccupied case (black line), one electron can

FIG. 6. Cross correlations between particle and energy change
in lead L (left panels) and R (right panels) for different initial
conditions, at the same parameters as Fig. 4. Solid lines denote iQMC
results, and dashed lines QME.

FIG. 7. First cumulant of heat transfer into lead L for different
initial conditions, at voltage V = 1� and interaction strength U =
8�, and for the iQMC (thick lines) and QME (dashed lines) methods.
We show the high-temperature regime of βL = 0.4/�, with the
temperature ratios set to TL/TR = 1.0 (upper panel) and TL/TR = 0.1
(lower panel). Solid lines denote iQMC results, and dashed lines
QME.

tunnel onto the dot from the left lead, whose Fermi level is
at μL = �/2, before the Coulomb repulsion slows down the
rate of charge transfer out of this lead, explaining the change
to a less negative gradient in Cp

1,L(t ) after a relaxation time
of approximately τr ≈ 1/�. (ii) When the dot is initially fully
occupied (blue line), the particle number may only change on
the left lead on the timescale of τr by tunneling up the voltage
gradient to put the dot in a magnetized state, at which point
the Coulomb blockade forces the current to take the same
value as in case (i). This tunneling process is activated by

FIG. 8. Second cumulants of heat transfer for the same parame-
ters as in Fig. 7. Solid lines denote iQMC results, and dashed lines
QME.
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the high temperature kBT > eV of the junction. (iii) When the
dot is initially in the spin-up or spin-down state (red line),
the steady state population is immediately established at the
quench time, explaining why the gradient of this cumulant is
identical to the gradient which only forms after time τr has
elapsed in cases (i) and (ii).

In the lower panels of Fig. 4, the first cumulants are
shown for the low-temperature (β = 50/�) case with an
otherwise unchanged set of parameters. Here, we see a clear
temperature-dependent transition in the QME data, as all three
dashed lines relax to a constant (zero current) value in a clear
signature of a Coulomb blockade preventing transport through
the dot. However, the iQMC data show an enhanced current
magnitude. This is indicative of the additional transport chan-
nels enabled by the formation of a Kondo resonance in the
nonequilibrium conductance, and illustrates the breakdown of
our naive QME approach at low temperatures.

We now turn to the first cumulant of transferred energy
for the same system parameters, which is displayed in Fig. 5.
The QMC data clearly show that the energy of the left lead
undergoes an increase for all initial conditions. This energy
gain is uniform across the entire junction, as can be seen
by considering the cumulants in the right lead, shown in
the right-hand panels of Fig. 5. It is therefore not associated
with the direction of flow of particle current, which has a
different sign in each lead. Instead, this energy increase can be
interpreted as a charging effect, i.e., it arises from the change
in the electrostatic energy driven by the addition or removal
of an electron from the dot.

We point out that our data on energy cumulants (and later
cross correlations) are significantly noisier than the corre-
sponding results for particle cumulants. The main reason is
that in order to obtain converged results for these cumulants
from the logarithmic finite difference derivatives, relatively
small values of χ were needed. Since the absolute value
of the differences from the χ = 0 values is therefore small,
this results in large relative errors when evaluating numerical
logarithmic derivatives with respect to χ . We do not include
rigorous uncertainty estimates, which are expensive to obtain
in this case [86,87]. As a rough guideline, by comparing
uncorrelated runs (not shown) we find that the data are reliable
to within a small factor (say, 2–3) of the apparent stochastic
noise.

Whereas the total transferred energy at low temperature is
equal for the initially fully occupied and empty states, when
the temperature is raised this symmetry is broken. This can be
seen in the gap that opens up between the blue and black lines
in Fig. 5 in both the iQMC and the QME data. Also for high
temperatures, the symmetry between the energies transferred
to the left and right leads is broken, such that the order of
the blue and black lines is reversed between L and R. To
understand this, it is enough to consider the rates for dot-lead
transfer processes in the L- and R-lead cases separately. In
order to magnetize the dot when the initial condition is |0〉 or
| ↑↓〉, an energy of −4� must be transferred to the dot from
one of the lead states k. In the initially empty state, a particle
is transferred out of one lead � and the corresponding transfer
rate R� is proportional to the Fermi function f (−U/2 − μ�).
In the initially fully occupied state the rate is propor-
tional to the hole occupation f (U/2 − μ�). At infinite kBT ,

RL = RR = 1/2 for both initial conditions, so there is no
symmetry breaking in the system. In the opposite regime of
kBT = 0, RL = RR = 1 for the empty state and RL = RR = 0
for the full state, once again symmetric. However, at interme-
diate temperatures kBT ∼ |�E ± V |, the left-right symmetry
is broken. In this case, RL > RR for the empty state and RL <

RR for the full state. If the system is initially empty, energy
transfer to the left lead is favored in the short-time regime.
The converse is true for the full initial state.

The QME correctly captures the qualitative, though not
the quantitative, aspects of the high- and intermediate-
temperature energy transfer due to charge dynamics. Notably,
however, it fails to predict even the direction of overall energy
transfer in the initially magnetized case. This can be seen by
comparing the dashed and solid red curves in the top panel
of Fig. 5. Less surprisingly, QME also spuriously predicts
no energy transfer in this case at low temperatures. This is
because at the level of QME, the system essentially begins in
its steady state under such conditions.

In Fig. 6 we present the time evolution of the statistical
correlation between the changes in particle number and en-
ergy in each lead, C(×)

� (t ) = 〈�ε�(t )�n�(t )〉. Immediately one
observes that the sign of this quantity depends on the initial
condition, making it an excellent observable for experimental
detection of the initial system preparation. In the case of an
initially occupied (unoccupied) dot, the particle number in the
leads increases (decreases) during the transient regime t < τr .
However, for either initial condition, the total energy in the
leads undergoes the same increase, as shown in Fig. 5. This
results in the dependence of sign on the initial condition in
Fig. 6. At long times and low temperature (bottom panels),
C(×)

� (t ) increases, hinting at a buildup of correlations between
charge and energy transport that is completely absent within
the QME.

C. Heat transfer statistics and thermodynamics

We now examine the thermodynamic effects of simultane-
ously applying both a voltage bias and a temperature gradient.
We will first focus on the flow of heat [see Eq. (29)] and its
fluctuations through the system. In Fig. 7 the first cumulant
of heat transfer, Ch

1,L(t ), is shown in the presence of a voltage
bias of V = 1�. The left lead is held at a high temperature
TL = 2.5�, while TR is set so as to enforce a temperature
ratio of either TL/TR = 1.0 (upper panel) or TL/TR = 0.1
(lower panel). Therefore, in the second case, a thermal bias
is applied in a direction opposite to that of the voltage bias.
We observe that while the left lead is heated either with or
without a temperature bias, this heating is greatly enhanced
when energy is driven into it from the hotter right lead. In
addition, mild deviations between the iQMC and QME persist
for the gradients of the cumulants even at long times, even
though both leads are at a high temperature. This occurs for
the same reasons pointed out in the discussion of Fig. 3.

In Fig. 8 the second cumulants of heat transfer are shown
for the same parameters as in Fig. 7. The thermal fluctuations
are rather large even without a temperature bias, and their
enhancement by this bias is not as strong. The QME is not
able to capture these fluctuations as well as it captures the
mean heat transfer, resulting in more significant deviations
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FIG. 9. Steady state particle current (upper panels) and current
noise (lower panels) as a function of temperature ratio TL/TR. QME
data are shown at U = 8� (dashed black) and U = 4� (dashed
green). Black crosses indicate iQMC data at U = 8�, and green
crosses denote the iQMC results for U = 4�. The left lead is held
at constant high (left panels) or low (right panels) temperature, and
the bias voltage is fixed at V = 1�.

from the numerically exact data. These deviations are more
obvious in the presence of a thermal bias, despite the larger
average temperature of the system.

In our analysis so far, we have considered the entire time
evolution following the coupling quench. We now investigate
the steady state thermodynamics that eventually emerges. This
is extracted from the long-time dynamics of the cumulants
[see Eq. (30)]. In Fig. 9 we present the particle current (upper
panels) and the associated shot noise (lower panels), plotted
on a logarithmic scale as functions of the left-right lead
temperature ratio TL/TR at constant TL. TL takes on the same
two values that were considered in previous plots, one of
which (shown in left panels) is above the Kondo temperature
at U = 8� and the other of which (right panels) is below
it. The right lead temperature varies from 100TL to 0.1TL.
QME data are shown at interaction strengths U = 8� (black
dashed line) and U = 4� (green dashed line), and iQMC data
at U = 8� (black crosses) and U = 4� (green crosses). Our
estimate for the magnitude of numerical uncertainties [86,87]
is smaller than the symbol size.

The definition we have used for the particle current can be
interpreted as the flow rate into the left lead. Its sign at the
parameters considered here is always negative, i.e., particles
are flowing from left to right, consistent with the directionality
induced by the voltage gradient. Within the QME picture, the
system is in the Coulomb-blockade regime, such that reducing
the interaction strength consistently increases the magnitude
of the particle current and noise (cf. green and black dashed
curves in Fig. 9).

As might be expected, the QME successfully reproduces
the numerically exact iQMC results for both current and noise
at high (left and right) temperatures. It therefore proves to be
an excellent approximation in the left part of the left panels
(high TL and TR), and a reasonable one at the right edge of

FIG. 10. Steady state heat current (upper panels), heat current
noise (middle panels), and natural logarithm of the entropy pro-
duction rate normalized by the left lead temperature (lower panels),
plotted as functions of the temperature ratio TL/TR. All parameters
and labeling conventions are as in Fig. 9.

these panels (high TL and low TR). In the low-temperature case
where βL = 50/�, the QME fails qualitatively. In particular,
the QME predicts complete suppression of both current and
noise when both leads are at low temperatures. In the physical
regime explored here, as the temperature decreases, this may
first be attributed to higher-order scattering processes, and
later to the formation of a correlated Kondo transport chan-
nel. Nonmonotonic behavior can be observed in the iQMC
results at high TL/TR. Here, the equilibrium system might be
expected to be driven deeper into the Kondo regime by the
lower average temperature, but this effect competes with the
nonequilibrium fluxes that eventually break down the Kondo
singlet.

In Fig. 10, we move on to examine the steady state val-
ues of heat current (upper panels), heat current fluctuations
(middle panels), and the logarithm of the entropy production
rate normalized by the left lead temperature (lower panels).
In these plots the entropy is temperature normalized so that
the TL > TK and TL < TK plots may be compared on the same
scale, and we consider the logarithm because the growth of
entropy production with increasing average temperature is
known to be exponential. As before, we consider temperatures
TL = 2.5� > TK (left panels) and TL = 0.02� < TK (right
panels).

At high temperature (left panels), QME provides a good
estimate of the heat current, as it did for the particle current.
QME consistently underestimates the fluctuations in heat
current, but does predict the correct trend in that fluctuations
decrease when the right lead is cooled down. However, it
also predicts a strong and spurious dependence on U at low-
temperature ratios, which is not observed in the iQMC results.
A reversal in the direction of the steady state heat current as
a function of the temperature ratio, as illustrated in Fig. 1, is
observed in both methods (upper left panel). The temperature
ratio at which this occurs is indistinguishable from 1 within
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our numerical resolution, indicating that the direction of heat
flux is completely determined by that of the temperature
gradient in this parameter regime.

The QME picture for the high-temperature entropy genera-
tion σ (lower panel of Fig. 10) is surprisingly accurate, though
this is partially due to the logarithmic scale. A monotonic
and approximately exponential growth with the temperature
ratio is observed, with different exponents on the two sides of
TL/TR = 1.

For low TL (right panels of Fig. 10), QME fails qualitatively
except where TR is large. The change in sign at TL/TR = 1
observed at high temperature vanishes at low temperature. In
the QME approximation, this occurs simply because the heat
current vanishes entirely. The iQMC result does show a finite
heat current which remains positive for TR < TL, such that the
left lead continues to heat in this case. This effect and the
wrong QME result can be understood by considering the two
components of the heat current [see Eq. (29)] separately. At
such low lead temperatures, the energy current (not shown)
is essentially zero, a fact that is captured by QME, while the
particle current continues to be carried by the Kondo channel,
not captured by QME. The lack of sign reversal in the heat
current is accompanied by an increase in its fluctuations, again
in opposition to the high-temperature result. This may be
interpreted as a precursor to an eventual reversal that may
manifest if the right lead is cooled further, or if the voltage
bias is reduced.

Unlike at high temperatures, the QME estimate for the
low-temperature entropy production (lower right panel of
Fig. 10) fails catastrophically. Here, it predicts a spurious
structure with multiple peaks and troughs instead of the cor-
rect behavior, which is essentially exponential. At the lower
temperature, the difference in exponents at the two sides of
TL/TR = 1 is either nonexistent or too small to detect within
our numerical resolution. The detectable exponent is clearly
larger than that appearing in the high-temperature case, as is
the overall entropy production rate. This result is most likely
connected to the opening of the Kondo transport channel, and
invites further theoretical analysis beyond the scope of the
present work.

VI. CONCLUSIONS

We presented a numerically exact method for evaluat-
ing full counting statistics (FCS) in nonequilibrium quan-
tum junctions based on the inchworm quantum Monte Carlo
(iQMC) approach. The method accounts for both particle and
energy transport statistics, and is applicable in a wide range
of parameters that includes the strongly correlated Kondo
regime.

We benchmarked the method against the nonequilibrium
Green’s function formalism in the noninteracting case. We
also carried out an extensive comparison between the iQMC
and a simple quantum master equation (QME) approach at
different temperature regimes, showing clearly where the

latter method fails. Surprisingly, we found that the QME
approximation fails to produce the correct energy counting
statistics even at temperatures significantly higher than TK ,
although agreement between QME and iQMC improves as
the temperature tends to infinity. We further found that the
presence of a thermal gradient across the molecular junction
makes the agreement worse even at high temperatures, and
when the gradient increases the overall average temperature.

At temperatures above the Kondo threshold, we found that
there is a left-right symmetry breaking in the system that can
be observed in the first cumulant of energy transfer: Energy
is distributed among the leads in a way that depends on the
initial preparation of the system. When the temperature is
lowered below TK , the iQMC calculations predict finite values
for the particle and heat current and noise, whereas the QME
method predicts full suppression of both current and noise due
to the Coulomb-blockade effect. In general, the disagreement
between the QME and iQMC approaches is most significant in
the noise and the energy-particle cross correlations, confirm-
ing that noise measurements offer more sensitive probes of
higher-order scattering processes and many-body correlations
than average currents.

Finally, we investigated the steady state entropy production
rates at different interaction strengths using both the Monte
Carlo and master equation methods. Among other things, we
found that the entropy production rate from master equations
spuriously predicts an opposite trend to that computed from
iQMC as the average temperature of the system is reduced
significantly below TK .

This paper provides the basis for future investigations into
several more specific questions, including the FCS of energy
transport in periodically driven systems and the properties of
levitons in the Kondo regime, as in Ref. [119]. Long-time
Kondo relaxation effects in the energy FCS may also be in-
vestigated using this formalism. Another interesting direction
is models with multiple orbitals, where QME may fail at
any temperatures due to an inability to properly account for
bath-induced coherences in the system. In general, the tools
presented here allow us to address a variety of fundamental
questions in quantum thermodynamics. For example, with
this method we can obtain the time dependence of entropy
production, test thermodynamic uncertainty relations, and
validate fluctuation-dissipation relations in strongly correlated
quantum many-body systems.
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