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Floquet-engineered light-cone spreading of correlations in a driven quantum chain
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We investigate the light-cone-like spread of electronic correlations in a laser-driven quantum chain. Using the
time-dependent density matrix renormalization group, we show that high-frequency driving leads to a Floquet-
engineered spread velocity that determines the enhancement of density-density correlations when the ratio of
potential and kinetic energies is effectively increased both by either a continuous or a pulsed drive. For large times
we numerically show the existence of a Floquet steady state at not too long distances on the lattice with minimal
heating. Intriguingly, we find a discontinuity of dynamically scaled correlations at the edge of the light cone,
akin to the discontinuity known to exist for quantum quenches in Luttinger liquids. Our work demonstrates the
potential of pump-probe experiments for investigating light-induced correlations in low-dimensional materials
and puts quantitative speed limits on the manipulation of long-ranged correlations through Floquet engineering.
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I. INTRODUCTION

The control of materials properties with light is a growing
research field [1]. Theoretical proposals for using light to
change properties of interacting-electron systems range from
spin systems [2–5] via one-dimensional Luttinger liquids and
charge-density waves [6,7] and nonequilibrium superconduc-
tors [8–21] to correlated insulators [22–27]. However, in
practice one often has to deal with heating effects that can
blur Floquet-engineered properties [28,29].

A sweet spot in laser-driven correlated systems was iden-
tified in Ref. [6], where it was shown that high-frequency
driving avoids runaway heating and tunes the system across
a phase transition. Similarly, resonant laser excitation with
phonons [30] has been demonstrated experimentally to lead to
light-induced phases with enhanced interactions and induced
order parameters [31–33]. However, in ultrafast materials
science it is difficult to assess the actual correlation lengths
involved in the buildup of correlations in real time. This is
drastically different, for instance, in cold atoms in optical
lattices, where light-cone-like spreading of correlations was
demonstrated [34].

Here we show how light-cone spreading of correlations can
also be triggered by high-frequency laser driving. By inves-
tigating a laser-driven one-dimensional quantum chain with
real-time density matrix renormalization group (t-DMRG)
calculations, we demonstrate how the spread of correlations
is dictated by an instantaneous effective mode velocity that
can be understood in terms of Floquet-renormalized effective
Hamiltonian parameters. Moreover, we investigate the buildup
of a Floquet steady-state for continuous laser driving and com-
pare against thermal states. Finally, we find that a sufficiently
fast switch-on of the drive leads to a kink at the edge of the
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light cone, reminiscent of a dynamical phase transition after
a quantum quench. Our combined results demonstrate the
rich opportunities to tune correlations in periodically driven
systems, provided that adequate off-resonant driving regimes
can be identified.

II. MODEL AND METHOD

To analyze the influence of an electromagnetic driving field
on a one-dimensional correlated chain of spinless fermions,
we consider the Hamiltonian

H (t ) =
∑

j

[
−J (t )

2
c†

j c j+1 + H.c.

+ U

(
n j − 1

2

)(
n j+1 − 1

2

)]
. (1)

Here U > 0 is the nearest-neighbor Coulomb interaction and
J (t ) the hopping amplitude, which becomes time-dependent
in the driven case (see below). The operator c(†)

j annihilates

(creates) a fermion on lattice site j, and nj = c†
j c j is the

local number operator. Throughout this paper we assume
an infinite chain at half filling. The influence of a spatially
uniform, time-dependent electric field is taken into account
by performing the Peierls substitution [35], yielding the time-
dependent hopping J (t ) = J0 exp[iA(t )], where A(t ) is the
vector potential corresponding to an electric field E (t ) =
−∂t A(t ). In the following we use J0 = 1 as our unit of energy.

To set the stage for the nonequilibrium dynamics, we first
characterize the well-known equilibrium phase diagram. The
system has a quantum phase transition at U/J = 1. To char-
acterize this phase transition, we compute the density-density
correlation function

C(�, t ) = 〈(
n0(t ) − 1

2

)(
n�(t ) − 1

2

)〉
. (2)

This correlation function is shown for the ground state (t = 0)
in Fig. 1 for the tenth (red) and the 50th (blue) lattice site
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FIG. 1. Equilibrium quantum phase transition showing the tran-
sition from a Luttinger liquid (LL) to a charge-density wave (CDW)
at U/J = 1 with nonzero long-ranged correlations.

as a function of U/J . When U/J < 1 the system is a gapless
Luttinger liquid (LL), which does not display long-range
charge density wave order. For U/J > 1 a gapped charge
density wave (CDW) phase emerges with staggered long-
range density-density correlations.

We now turn to the nonequilibrium dynamics. In the
following we consider two different harmonic drives with
frequency � in the high-frequency (Magnus) limit � � J,U .
The first is a drive that is ramped on over a time interval τ ,
with vector potential

AD(t ) = E0

�
sin(�t )

[
0.5 + 0.5tanh

(
t − 5τ

τ

)]
. (3)

This continuous-wave drive (CW-Drive) has previously been
studied with the same DMRG method that we use in this
paper [6]. Hence, it is known that in the Magnus regime
the growth of entanglement limiting the DMRG calculations
remains manageable due to the absence of runaway heating,
and the long-time limit is accessible.

For high driving frequencies, it is known that a steady
state can be defined in a parametrically long intermediate
time regime [4,6,36]. Therefore, long-time physics can be de-
scribed by a renormalized Hamiltonian, i.e., by a Hamiltonian
that is averaged over a period of the drive. Averaging the
time-dependent hopping J (t ) over the 2π/� period yields the
effective hopping

Jeff = J0J0

(
E0

�

)
, (4)

where Jα is the Bessel function of the first kind [37]. Because
the absolute value of the Bessel function is smaller than unity
for any nonzero argument, the effective hopping is generically
reduced compared to the equilibrium hopping. This implies
that U/J is increased by the drive. Therefore the laser drive
moves the system to the right in the phase diagram shown
in Fig. 1, provided that the renormalization of U/J is the
dominant effect of the laser. Below we will show that this is
indeed the case provided that the parameters of the problem
are carefully chosen.

Floquet theory [38] allows for an effective analytical study
of periodically driven systems, but is restricted to time-
periodic systems in analogy to Bloch theory for spatially pe-
riodic systems. Therefore most theoretical studies of Floquet-
driven systems [4,39–56] assume the limit in which the drive
was turned on in the infinitely distant past, which is impossible

to realize within an experiment. Nevertheless it has been
shown that Floquet theory still captures the essential spectral
features for a system driven by laser pulses of finite duration
[57,58] if the system is probed on timescales sufficiently
longer than the period of the driving field [59], and if the
pulse envelope is even longer than the probe duration. We
therefore also consider a periodic drive that is modulated with
a Gaussian envelope, given by

AG(t ) = E0

�
sin(�t )exp

[
− (t − t0)2

2σ 2

]
, (5)

and compare our results to the system where the driving field
is switched on and is kept switched on for long times.

The spread of correlations within a quantum many-body
system is restricted by a maximal velocity, known as the
Lieb-Robinson bound [60]. This bound is similar to the speed
of light for the propagation of information in a relativistic
quantum field theory. The corresponding light-cone effect
has been demonstrated experimentally by quenching a one-
dimensional quantum gas in an optical lattice [34]. The spread
of correlations can be visualized as modes departing from two
lattice sites and the information being propagated when the
modes interfere in the middle [61]. Therefore the velocity with
which correlations spread through the lattice after it is excited
by a quench is given by twice the maximal mode velocity [62].
In the case of a LL, this means the expected velocity is given
by

2vLL = Jπ

h̄
· sin[arccos(−U/J )]

π − arccos(−U/J )
. (6)

To compare this velocity to our numerical data, where the
system is not excited by a sudden quench, but rather an
oscillatory laser drive that is turned on smoothly, we define a
time-dependent effective hopping Jeff (t ), which is calculated
via the envelope functions of the drives. For the ramped case
and the Gaussian pulse, this effective time-dependent hopping
is given by

JD
eff (t ) = J0J0

{
E0

�

[
0.5 + 0.5tanh

(
t − 5τ

τ

)]}
, (7a)

JG
eff (t ) = J0J0

[
E0

�
exp

(
− (t − t0)2

2σ 2

)]
, (7b)

respectively. Replacing J in Eq. (6) with Jeff (t ) yields the
spread velocity

2vLL(t ) = Jeff (t )π

h̄
· sin {arccos [−U/Jeff (t )]}

π − arccos [−U/Jeff (t )]
. (8)

Note that this implies that Jeff (t ) decreases as the amplitude
of the drive increases, and the velocity, which is dominated
not by U/J but by J , decreases because Jeff is smaller than 1.
This is illustrated in Fig. 2, which displays the vector potential
AG(t ), the corresponding renormalized hopping Jeff (t ), and
the spread velocity 2vLL(t ) as a function of time. Below we
will investigate to which extent the spread of correlations
is indeed captured by the effective spread velocity given in
Eq. (8) by comparing against the numerical data.
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FIG. 2. Vector potential AG(t ) as a function of time with driv-
ing frequency �/J0 = 15, maximal amplitude E0/� = 1.421, width
σJ0/h̄ = 10, and t0J0/h̄ = 36.77 (purple, left y axis). The Gaussian
envelope is displayed in blue, and the resulting Floquet-engineered
hopping Jeff/J0 is displayed in green. The right y axis refers to
the time-dependent spread velocity 2vLL(t )h̄/J0 (twice the Luttinger
velocity), which is displayed in red.

III. RESULTS

In this paper we consider three different interactions in the
LL phase U/J0 = {0.429, 0.500, 0.643} and three different
maximal amplitudes E0/� = {0.835, 1.111, 1.421}, which
we found to be representative. This yields values of U/Jeff

between 0.52 (LL) and 1.16 (CDW) at the maximal driving
amplitude. The corresponding driving field profiles are shown
in the upper panels of Figs. 3 and 4, respectively. Note that
the values for the interaction and the driving amplitudes are
chosen such that even though nine different combinations of

U/J0 and E0/� are given, there are only six corresponding
values of U/Jeff . Thus the pairs Figs. 3(g) and 3(e), 3(f) and
3(j), as well as 3(i) and 3(k), and analogously for the corre-
sponding pairs of panels in Fig. 4, have the same U/Jeff . The
driving frequency is chosen to be � = 15J0, the ramp time of
the ramped drive is τJ0/h̄ = 5 unless denoted otherwise, and
the parameters of the Gaussian pulse are given by σJ0/h̄ = 10
and t0J0/h̄ = 36.77. The lower panels in Figs. 3 and 4 display
the heat maps of the light-induced changes of correlations
at even distances � (odd distances have opposite sign) as a
function of time t . Here we subtract off the initial correlations,
and C(�, t ) − C(�, 0) is displayed on a logarithmic scale.

The green lines show the expected spread of correlations,
with twice the largest possible mode velocity in the LL, as
defined in Eq. (4), integrated from tstartJ0/h̄ = 22.2 for the
CW-Drive and tstartJ0/h̄ = 23.0 to t for the pulse

�eff (t, tstart ) =
∫ t

tstart

2vLL(t ′) dt ′. (9)

The starting time tstart is chosen to best match the onset of
enhanced correlations in the numerical data. Note that we
tried to automatize the extraction of the wave front position as
well as of tstart from the numerical data. However, we found
that this requires the introduction of a somewhat arbitrary
threshold value for the signal, which is why we prefer to
not use an automatic extraction method to analyze the re-
sults. Nevertheless we find that, especially for small distances
on the lattice, the wave front of the correlations computed
with t-DMRG matches the green curves quite well. This
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FIG. 3. Spread of correlations in the continuously driven chain. (a)–(c) Vector potential AD(t ) of the ramped drives as a function of time
with driving frequency �/J0 = 15 and ramp time τJ0/h̄ = 5. (d)–(l) Heatmaps of correlation changes C(�, t ) − C(�, 0) as a function of time
t for even distances � and three different values of U and E0/�, as indicated. Jeff (t0) is the maximal amplitude of AD(t ).
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FIG. 4. Spread of correlations in the pulse-driven chain. (a)–(c) Vector potential AG(t ) of the Gaussian drives as a function of time with
driving frequency �/J0 = 15, width σJ0/h̄ = 10, and t0J0/h̄ = 36.77. (d)–(l) Heatmaps of correlation changes C(�, t ) − C(�, 0) as a function
of time t at even distances � for three different values of U and E0/�, as indicated.

hints towards the validity of the concept of a time-dependent
Floquet-engineered spread velocity. Moreover, the magnitude
of the correlations increases as U/Jeff increases.

At the maximal drive envelope amplitude (t → ∞), only
the cases in Figs. 3(d) to 3(k) correspond entirely to
the LL phase with (U/Jeff (t0) = {0.52, 0.6, 0.7, 0.77, 0.9}).
The green curves match the data to a large extent in all
of the shown cases. However, there are tails of correlations
that exceed the 2vLL limit, which have a suppressed magnitude
compared to the major wave front that spreads with 2vLL to a
good approximation.

To compare more closely against time-resolved exper-
iments, which typically employ a pump-probe setup with
a pulsed driving envelope, we consider a sinusoidal field
that is modulated with a Gaussian envelope. The correlation
changes for such a Gaussian drive are displayed in Fig. 4.
Here the time-dependent effective velocity also matches the
major wave front. For the pulse we can also also observe the
relaxation dynamics after the pulse. While C(�, t ) − C(�, 0) is
always nonnegative for the ramped drive, it does take slightly
negative values when the field is switched off after the peak
of the Gaussian pulse (see slightly blue areas in Fig. 4). This
effect can be understood as a consequence of heating (see
discussion below and Appendix), with reduced correlations at
effective nonzero temperatures compared to zero temperature.
Moreover, we find that enhanced correlations last longer at
larger distances, as can be seen from the red areas bending
over to the right in Fig. 4. This implies slower relaxation
dynamics at longer distances, which is in accordance with

the same light-cone effect that causes slower enhancement of
correlations at longer distances when the drive is first switched
on.

According to Floquet theory, a periodic drive with a driv-
ing frequency in the high-frequency Magnus regime should
induce a Floquet steady state at sufficiently long times. In
Fig. 5 the correlations for three different distances on the
lattice are displayed as a function of time. The panels on the
left Figs. 5(a), 5(c), and 5(e)] display the correlations for a
pulsed system, and the panels on the right (Figs. 5(b), 5(d),
and 5(f)] display the correlations for the ramped drive. Note
that the scale of the y axis is different for all three distances
(three rows) since the correlations are roughly ten times larger
at � = 6 than at � = 26.

For the ramped case, the correlations are stabilized to a
steady state at short [Fig. 5(b)] and intermediate [Fig. 5(d)]
distances, but as expected we find longer thermalization times
for larger distances in the lattice [Fig. 5(f)]. For the pulsed
case, we find that the correlations at short [Fig. 5(a)] and
intermediate [Fig. 5(d)] distances basically follow the driving
pulse profile and return to the initial value almost perfectly
shortly after the pulse, whereas for the longest distance shown
here [Fig. 5(e)] the correlations are slightly suppressed below
the initial value before thermalizing at longer times.

The dashed grey lines in the panels on the right indicate
the correlations at thermal equilibrium for the U/Jeff (whose
value is indicated by the arrows on the right) corresponding to
the curves. The magnitude of these equilibrium correlations
does not depend on U/J0 and E0/� separately, but is solely
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FIG. 5. Temporal evolution of correlations at short, intermediate,
and long distances. Correlations C(�, t ) for a continuously driven
system (left panels) and a pulsed system (right panels) with �/J0 =
15 and � = 6 (top), � = 16 (middle), and � = 26 (bottom). Note the
different scale on the y axis for each �. Driving: τJ0/h̄ = 5. Pulse:
σJ0/h̄ = 10, t0J0/h̄ = 36.77. The grey lines indicate the correlations
at thermal equilibrium (zero temperature) for the values of U/Jeff that
are indicated with the arrows on the right.

determined by the value of U/Jeff (t → ∞). Note that due
to the fact that three combinations of interaction strengths
U/J0 and maximal driving amplitudes E0/� yield the same
U/Jeff (t → ∞), there are only five different equilibrium cor-
relations and corresponding steady-state values for the eight
different cases shown. Indeed, we show in the Appendix that
heating is negligible by computing the time-dependent energy
absorption. The system evolves essentially adiabatically de-
spite the fact that the LL phase is gapless and adiabaticity is
not well defined in this case [63–65].
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FIG. 6. Renormalized correlations as a function of dimensionless
distance at increasing distances � in the lattice for ramp times
(a) τJ0/h̄ = 5 [same parameters as Fig. 3(i)], and (B0 τJ0/h̄ = 3.
Here U/J0 = 0.5 and U/Jeff(t → ∞) = 0.9. Different curves corre-
spond to increasing even lattice distances as indicated.

We finally turn to the question of dynamical critical be-
havior when the system is driven between states with differ-
ent correlation power laws. Within the LL phase, a scaling
analysis shows that the correlations after a quench follow
a different power law inside compared to outside the light
cone, which necessarily leads to a kink in the renormalized
correlation function at the edge of the light cone. This can
be shown analytically for quenched systems, for example,
in the interacting Tomonaga-Luttinger model [66,67]. In the
following we identify an analogous kink at the edge of the
light cone in our numerical data for driven systems.

To this end we show in Fig. 6 the correlation function
C(�, t )/C(�, t = 0), for two different switch-on times of the
ramped drive, as a function of the effective dimensionless
spreading distance, given by �eff(t, tstart )/�. The initial and
final values of U/J are within the LL phase in both cases.
For large distances, where a power-law decay of correlations
is expected, the kink should be located at �eff(t, tstart )/� = 1,
i.e., at the edge of the light cone, which is indicated by the
dashed line in Fig. 6.

Indeed no clear peak can be identified at short distances in
both cases, but a peak emerges and moves towards the edge of
the cone at intermediate distances. At large distances the peak
is well defined and approaches a kink-like discontinuity. As
expected, the peak develops more clearly when the ramp time
is shorter [Fig. 6(b)] compared to the slower ramp [Fig. 6(a)].
Interestingly this result proves that dynamical quantum crit-
icality with nonanalytic behavior can indeed not only be
observed for quantum quenches but also for Floquet-driven
systems, paving the way for the potential observation of such
critical behavior in pump-probe experiments on solids.

IV. SUMMARY AND OUTLOOK

In this work we investigated in detail the Floquet-
engineered spread of correlations in a driven quantum chain
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with Luttinger liquid and charge-density wave phases. In par-
ticular, we showed that light-cone effects exist even in driven
systems with finite ramp times and finite laser pulses when the
velocity renormalization due to the driving field is properly
taken into account. Our findings prove that thermalization of
correlations at moderate distances happens relatively quickly,
provided that heating can be largely avoided in the first place.
In our study heating is effectively suppressed although the
Luttinger liquid is gapless and the switch-on timescale of
the laser drive is relatively fast. The suppression of heating
is enabled by the choice of an off-resonant, large driving
frequency.

The upshot from our results for laser-driven materials is
that light-induced phase transitions and nonequilibrium ma-
terials engineering can be rationalized. In analogy with ex-
periments on cold atomic gases [34] the effective correlation
length that can be induced by nonequilibrium engineering of
microscopic interactions is speed-limited only by the largest
available relevant mode velocity. For example, for velocities
on the order of 106 ms−1, which is a typical scale for the Fermi
velocity in graphene, a correlation length on the order of
10−6 m is established within half a picosecond. Correspond-
ingly, for slower modes like phonons, magnons, or plasmons,
the times for correlations on the micrometer level are longer. It
would be highly intriguing to devise experiments that are able
to measure such timescales for the buildup of correlations in
Floquet-engineered materials, which might be possible with
time-resolved scattering at x-ray free-electron lasers [68–70].
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APPENDIX: ENERGY ABSORPTION

Here we briefly comment on the extraction of a Floquet
steady-state energy in comparison to the ground-state energy
of the Floquet-renormalized Hamiltonian, which proves that
energy absorption is minimal and heating is avoided in the
high-frequency driving regime. The upper two panels in Fig. 7
display the energy h(t ) as a function of time. The values
of U/J0 and E0/� are chosen such that U/Jeff (t → ∞) =
0.60 for both panels [analogous to Figs. 3(e) and 3(g)]. The
numerically extracted period duration of the time-dependent
energy, hav(t ) = 0.838, equals twice the period of the drive.
By comparison to the ground-state energy for the Floquet-
renormalized parameters with U/Jeff = 0.60, it becomes ev-
ident that the time-averaged energy of the driven system
approaches exactly this ground-state energy in the long-time
limit. This proves that heating is indeed minimal, as discussed
in the main text in the context of Fig. 5.

Finally we illustrate that the energies corresponding to
parameters that have the same U/Jeff (t → ∞) = 0.60 are
directly related to each other. Figure 7(c) displays the energy
as a function of the inverse temperature β and shows that they
are simply related by rescaling of all energies in the problem
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FIG. 7. Energy h(t ) as a function of time for (a) U1/J0 = 0.429
and E0/J0 = 1.111 and (b) U2/J0 = 0.500 and E0/J0 = 0.835, re-
spectively, shown as rapidly oscillating blue curves. Averaging over
the numerically determined period duration tpJ0/h̄ leads to the
period-averaged energy hav(t ) (yellow). In addition, we indicate in
the legend the long-time limit hav

t→∞. Green lines indicate the respec-
tive equilibrium energies of the Floquet-renormalized Hamiltonian at
zero temperature. The frequency of the drive is �/J0 = 15 and the
ramp time is τJ0/h̄ = 5. (c) Energy h(β ) as a function of inverse
temperature for U1/J0 = 0.429 and E0/J0 = 1.111 [purple, same
parameters as Fig. 3(g)] and U2/J0 = 0.500 and E0/J0 = 0.835 [red,
same parameters as Fig. 3(e)]. A renormalization of h(β ) for the
red curve (U1/J0 = 0.500, E0/J0 = 0.835) of both the x axis and
the y axis with the ratio of energy scales, namely U1/U2 = 0.858,
leads to the dashed magenta curve, which is identical to the purple
curve (U1/J0 = 0.429 and E0/J0 = 1.111), showing that the curves
are related by simple rescaling of all energies, as they should.

for the two cases shown. The nonequilibrium parameter E0/�

enters the equilibrium calculation as a parameter that renor-
malizes the effective hopping Jeff (E0/�) [cf. Eq. (4) in the
main text]. We show this parameter as a label in Fig. 7(c)
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to allow for a direct comparison to the nonequilibrium cases
shown in Figs. 7(a) and 7(b). Figure 7(c) indeed shows that
the dashed magenta curve, which is the red curve rescaled by

the ratio of respective Jeff values for the two cases discussed
here, is identical to the purple curve, confirming the expected
behavior.
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