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An interplay between electron correlation and reduced dimensionality due to the Landau quantization
gives rise to exotic electronic phases in three-dimensional semimetals under high magnetic field. Using an
unbiased theoretical method, we clarify for the first time comprehensive ground-state phase diagrams of a three-
dimensional semimetal with a pair of electron and hole pockets in the quantum limit. For the electron interaction,
we consider either screened Coulomb repulsive interaction or an attractive electron-electron interaction mediated
by a screened electron-phonon coupling, where a screening length is generally given by a dimensionless constant
times magnetic length l . By solving the parquet RG equation numerically and employing a mean-field argument,
we construct comprehensive ground-state phase diagrams of the semimetal in the quantum limit for these two
cases, as a function of the Fermi wave length and the screening length (both normalized by l). In the repulsive
interaction case, the ground state is either excitonic insulator (EI) in strong screening regime or Ising-type spin
density wave in weak screening regime. In the attractive interaction case, the ground state is either EI that breaks
the translational symmetries (strong screening regime), topological EI, charge Wigner crystal (intermediate
screening regime), plain charge density wave or possible non-Fermi liquid (weak screening regime). We show
that the topological EI supports a single copy of massless Dirac fermion at its side surface, and thereby exhibit
a

√
H⊥-type surface Shubnikov-de Haas (SdH) oscillation in in-plane surface transports as a function of a

canted magnetic field H⊥. Armed with these theoretical knowledge, we discuss implications of recent transport
experiments on graphite under the high field.
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I. INTRODUCTION

One of the fundamental challenge in condensed matter
physics is a realization of three-dimensional unconventional
electronic phases in the quantum limit [1]. Recent experimen-
tal discoveries of Dirac, Weyl, and nodal Dirac semimetal ma-
terials [2] lead to growing research interests on novel quantum
transports and quantum phase transitions under high magnetic
field in these new compounds [3–8] as well as celebrated
semimetal compounds such as bismuth [9–11] and graphite
[12–15]. In fact, these semimetallic compounds under the high
field often exhibit low-temperature metal-insulator transitions
within wide ranges of the field [3,5,11–18].

The quantizing effect of the strong magnetic field con-
fines electrons into cyclotron motions in the Landau levels,
while the electron’s kinetic energy along the field direc-
tion remains unaffected. This leaves the system with pris-
tine one-dimensional momentum-energy dispersions along
the field, making the system extremely sensitive to vari-
ous instabilities [19]. Previous theories proposed a num-
ber of spontaneous symmetry broken (SSB) phases as well
as non-Fermi liquid phase [20]. The SSB phases proposed
include charge-density wave [1,8,21–26], three-dimensional
quantum Hall [1,27,28], charge-Wigner crystal [22,29–33],
spin-density wave [16,34–36], excitonic insulator [36–39],
valley-density wave, and three-dimensional topological ex-
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citonic insulator [36]. Recent theoretical efforts on Dirac
and Weyl semimetal models can be found in Refs. [39,40].
In spite of these efforts during last decades, identities of
the low-temperature insulating phases in the experiments
are still veiled in mystery due to a lack of comprehen-
sive microscopic theory based on an unbiased theoretical
method.

An electronic state of the prototypical semimetal materials
can be captured by a pair of electron and hole band. Under
the magnetic field (‖ z), the electron/hole’s motions in the
xy plane are confined into clockwise/anticlockwise cyclotron
orbits around the field respectively. The counter-propagating
cyclotron motion in the xy plane inspires an “electron-hole”
analogy of the two-dimensional quantum spin Hall physics
[41,42]. The one-dimensional dispersions along z of the elec-
tron and hole bands go across the Fermi level at several
Fermi points in the Brillouin zone. The experimental Hall con-
ductivity measurements conclude that the relevant semimetal
material within the relevant field regime [11–18] are in the
charge neutrality region, where electron and hole densities
compensate with each other completely [13,17,36,43–45].
Thereby, to uncover the identities of the low-temperature
insulator phases in the experiments [11–18,46], it is vital to
understand a ground-state phase diagram of a microscopic
Hamiltonian for the semimetal material in the quantum limit
at their charge neutrality point.

In this paper, using an unbiased theoretical method, we
clarify the comprehensive ground-state phase diagrams of a
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FIG. 1. Electronic phase diagram of a semimetal model in the
quantum limit at the charge neutrality point in the presence of the
repulsive Coulomb interaction. The phase diagram is obtained from
numerical solutions of the parquet RG equations. The vertical axis is
B ≡ 2 log10(2kF l ) [2kF is a distance between the right and left Fermi
points along the field, and l is the magnetic length]. The horizontal
axis is log10 A, where

√
A is the screening length divided by the

magnetic length. We set A = A′; see the main text. Within the RPA,
A and A′ are evaluated as in Eqs. (45) and (46), respectively.

prototype model for a three-dimensional semimetal under the
magnetic field H (‖ z). The semimetal model has a pair of
electron pocket with ↑ spin and hole pocket with ↓ spin.
We study two limiting cases at the charge neutrality point,
(i) the model with screened Coulomb interaction and (ii) the
model with an effective attractive interaction mediated by
the screened electron-phonon interaction. We rederive parquet
renormalization group (RG) equations, that was originally
given by Brazovskii [20,47,48], solve numerically the par-
quet RG equations, and complete the ground-state electronic
phase diagrams for these two cases. The ground-state phase
diagrams thus obtained exhibit rich phase diagram structures
as a function of three important length scales in the system,
(α) magnetic length l ≡ √

h̄/eH , (β) Fermi wave length
(along the field) 2π/(2kF ), and (γ ) screening length of the
long-range Coulomb interaction,

√
Al [see Eq. (1) for the

definition of a dimensionless parameter A, see Eq. (45) for
its RPA evaluation]. In the repulsive interaction case, we
found that the ground state is either Ising-type spin density
wave phase or excitonic insulator (EI) phase (Fig. 1). In the
attractive interaction case, we found that the ground state
is either charge Wigner crystal phase, charge density wave
phase, possible non-Fermi liquid [20] phase, EI phase that
breaks the translational symmetry within the xy plane or three-
dimensional topological EI phase with a topological surface
massless Dirac state [36] (Fig. 2). We show in the paper that
a canted magnetic field H⊥ splits the surface Dirac state into
surface Landau levels (sLL). The result suggests that when
in-plane transport in the topological EI phase is dominated by
surface transport, the in-plane resistivity must show a

√
H⊥-

type surface Shubnikov-de Haas (SdH) oscillation under the
canted magnetic field.
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FIG. 2. Electronic phase diagram of a semimetal model in the
quantum limit at the charge neutrality point in the presence of
the electron-phonon interaction (A = A′). The phase diagram is
obtained from numerical solutions of the parquet RG equations for
the semimetal model with an effective attractive electron-electron
interaction, Eq. (3). The vertical axis is B ≡ 2 log10(2kF l ). The
horizontal axis is log10 A.

Highlight of the paper

In the next section, we introduce a model Hamiltonian for
the semimetal material in the quantum limit, where a pair
of the electron pocket with ↑ spin and hole pocket with ↓
spin go across the Fermi level at pz = ±kF at the charge
neutrality point (pz is momentum along the field direction). By
using the RPA approximation, we discuss in Sec. III how the
long-range Coulomb interaction V (r) ≡ e2/εr is screened by
a density fluctuation at pz = 0 and a fast mode of the density
fluctuation at pz = 2kF . The screened Coulomb interactions
thus obtained take the following forms in the momentum
space [49]:

V (q⊥, pz 	 0) = 4πe2l2

ε

1

q2
⊥l2 + 1

A e− 1
2 q2

⊥l2
, (1)

V (q⊥, pz 	 2kF ) = 4πe2l2

ε

1(
q2

⊥ + 4k2
F

)
l2 + 1

A′ e− 1
2 q2

⊥l2
,

(2)

where q⊥ is momentum within the xy plane. Here two di-

mensionless parameters 1/A and 1/A′ are nothing but bare
polarization functions associated with the density fluctuation
at pz = 0 and the fast mode of the density fluctuation at
pz = 2kF , respectively. Equation (1) especially indicates that
the screening length of the long-range Coulomb interaction
is given by the magnetic length times the dimensionless
parameter

√
A; larger/smaller A stands for the weak/strong

screening, respectively.
The polarization function associated with the slow density

fluctuation at pz = 2kF as well as the polarization function for
an excitonic fluctuation have logarithmic singularities [47,48].
These singularities indicate several competing instabilities in
the semimetal model at lower temperature. To identify the
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most dominant instability in the model within a controlled
theoretical framework, we rederive in Sec. IV the one-loop
parquet renormalization group (RG) equations, where the
slow 2kF density fluctuation as well as other fluctuations
with the logarithmic singularity are taken into account on
the same footing [48,50]. Using the screened Coulomb in-
teraction [Eqs. (1) and (2)] as an “initial” interaction form
for the RG equations, we solve the parquet RG equations
numerically and identify the most relevant fluctuations (in-
stabilities) at lower temperature for different values of A, A′,
and 2kF l [an overall factor of V (q⊥, pz ), (4πe2l2)/ε, can
be absorbed into a RG scale change at the one-loop RG
equation; it does not change the phase diagram]. By combin-
ing mean-field arguments with the numerical RG solutions,
we construct in Sec. V a comprehensive ground-state phase
diagram in the presence of the repulsive Coulomb interaction
(Fig. 1).

As the complimentary aspect for the semimetal in the
quantum limit, we also study in Sec. VI an effect of electron-
phonon interaction in the semimetal model under high mag-
netic field. Thereby, we employ a correspondence between
an electron-phonon coupled system and a system with an
electron-electron interaction, and adopt an effective attractive
electron-electron interaction [51,52]. The effective interaction
is mediated by the screened Coulomb interaction between
electron and (acoustic) phonon, and thereby it takes the fol-
lowing form in the momentum space,

Veff (q⊥, pz ) = − ρ0

Mc2

(
4πZe2l2

ε

1(
q2

⊥ + p2
z

)
l2 + 1

A e− 1
2 q2

⊥l2

)2

.

(3)

Here, Z and c are an electron valence of positively charged
nucleus ion and a sound velocity of the acoustic phonon,
respectively, ρ0 and M are the density of the charged nu-
cleus ions and a mass of the ion, respectively. To clarify
possible instabilities in the semimetal model in the presence
of the electron-phonon interaction, we use this effective at-
tractive interaction [Eq. (3)] as an initial interaction form
for the parquet RG equations, and solve the RG equations
numerically for different values of A, A′, and 2kF l . The
numerical solutions in combination with mean-field argu-
ments gives out a comprehensive ground-state phase dia-
gram in the presence of the effective attractive interaction
(Fig. 2).

The two ground-state phase diagrams thus obtained accom-
modate a rich variety of electronic phases as a function of 2kF l
and A. In the repulsive Coulomb interaction case (Sec. V),
the ground state (GS) for strong screening regime [A � 3 for
2kF l 	 1] is an EI phase with a spatially even-parity excitonic
pairing between electron and hole at the same momentum pz.
Since the pairing is between the electron with ↑ spin and the
hole with ↓ spin and it is between the electron and hole at
the same spatial location within the xy plane, the excitonic
pairing field leads to a long-ranged ferro-type order of a XY
component of the spin-1 moment. For the weak screening
regime [A � 3 for 2kF l 	 1], the GS is a plain superposition
of a density wave (DW) of the electron band with ↑ spin and
a DW of the hole band with ↓ spin, that have the 2π/(2kF )

spatial pitch along the field. Due to the Coulomb interaction
between the two DWs, a relative phase between the two DWs
is locked to π . Such superposition leads to an Ising-type
spin density wave without any charge density modulation;
the spatial pitch of the Ising-type antiferromagnetic order is
2π/(2kF ).

In the attractive interaction case (Sec. VI), the GS for a
strong screening regime [A � 0.3 for 2kF l 	 1] is either one
of two distinct EI phases or the charge Wigner crystal. In
one of the EI phases, the excitonic pairing is the spatially
even-parity excitonic pairing between electron and hole at
the same momentum pz, but it is between the electron and
hole at the different spatial location within the xy plane (the
field ‖ z). As a result, the EI phase forms a two-dimensional
texture of the XY component of the spin-1 moment, breaking
the translational symmetries within the xy plane. The charge
Wigner crystal phase breaks both the translational symmetries
along the field and within the xy plane by a three-dimensional
texture of the charge density. The GS for the weak screening
regime [A � 0.3 for 2kF l 	 1] is either a plain charge density
wave phase with the 2π/(2kF ) spatial pitch along the field
[2kF l < 1 for A 	 1] or a possible non-Fermi liquid phase
[2kF l > 1 for A 	 1].

The other EI phase found in the strong screening regime
is a three-dimensional topological band insulator [36]; the
EI phase supports a single copy of massless surface Dirac
fermion state at its side surface (side surface is parallel to
the field; zx and yz planes with the field along z). The EI
phase in the bulk is characterized by a spatially odd-parity
pairing between electron and hole at the same momentum
pz and at the same spatial location within the xy plane.
As a result, the EI phase does not break any translational
symmetries. Besides, it has no local XY component of the
spin-1 moment, since the odd parity leads to a cancellation
between pz and −pz. Meanwhile, the odd-parity excitonic
pairing in the bulk reconstructs a surface chiral Fermi arc
state of the electron band with ↑ spin and that of the hole
band with ↓ spin into the massless surface Dirac state with
a helical spin texture. According to the so-called “periodic
table” of noninteracting topological insulator and topological
crystalline insulator [53–56], the EI phase can be classified
as topological “magnetic crystalline” insulator [55,57], where
the massless nature of the surface Dirac fermion is protected
by a magnetic point group symmetry C2,⊥T (C2,⊥ denotes a π

rotation that changes z to −z, and T is the time reversal). To
give a physical characterization to the topological EI phase,
we show in Sec. VII that a canted magnetic field H⊥ splits
the massless surface Dirac state into surface Landau levels
(sLL), whose energy spacing is proportional to

√
H⊥�0 [�0 is

a strength of the excitonic pairing]. The result suggests that the
longitudinal electric surface transport in the xy direction can
show a

√
H⊥-type surface Shubnikov-de Haas (SdH) oscilla-

tion under the canted magnetic field. Based on these finding,
we give a brief summary and discussion on the semimetal
experiments in Sec. VIII.

II. MODEL HAMILTONIAN

An interacting electron model with a pair of electron
pocket and hole pocket under high magnetic field H (‖ z) is
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considered;

ĤT =
∫

d3rĥ0(r) + 1

2

∫
d3rd3r′ρ̂(r)ρ̂(r′)V (r − r′), (4)

ĥ0(r) ≡
∑

τ=+(↑),−(↓)

[

†

e,τ (r)

{
− Eg

+
( − h̄2∇2

z + π2
)

2me
− Hzτ

}

e,τ (r)

+

†
h,τ

(r)

{
Eg −

( − h̄2∇2
z + π2

)
2mh

− Hzτ

}

h,τ (r)

]
,

(5)

(πx, πy) =
{

(−ih̄∂x,−ih̄∂y + eHx)
(−ih̄∂x − eHy,−ih̄∂y)

(6)

with π ≡ (πx, πy). −Eg and Eg are charge state energies of an
electron-type and hole-type bands at the � point. me and mh

are effective masses of the electron and hole band respectively,
me > 0 and mh > 0. τ = ± refers to the spin 1/2 degree of
freedom (+ ≡ ↑, − ≡ ↓). Hz denotes the Zeeman field and
we assume that the g factor is isotropic in spin and same for
electron and hole band.

An electron density ρ̂(r) is a sum of the density of
the electron band and that of the hole band, ρ(r) ≡∑

a=e,h

∑
τ 
†

a,τ (r)
a,τ (r). In this paper, we consider as the
electron correlation V (r) either repulsive Coulomb interaction
(Secs. III and V) or an effective attractive electron-electron
interaction mediated by the screened electron-phonon interac-
tion (Sec. VI).

Due to the Landau quantization, the kinetic energy within
a plane perpendicular to the field is quenched, where the
electron band and hole band form a sequence of the Landau
levels, respectively,

Ee
n,τ (kz ) = −Eg + h̄2 p2

z

2me
− Hzτ +

(
n + 1

2

)
h̄ωe

Eh
n,τ (kz ) = Eg − h̄2 p2

z

2mh
− Hzτ −

(
n + 1

2

)
h̄ωh (7)

with the cyclotron frequency h̄ωe,h ≡ eH/me,h. we consider
the charge neutrality region in the quantum limit, where only
the lowest Landau levels (n = 0) with ↑-spin electron and
↓-spin hole bands go across the Fermi level at the same Fermi
points (pz = ±kF ), while all the others Landau levels leave
the Fermi level (Fig. 3). For simplicity, we assume that the
electron mass and hole mass are same, me = mh ≡ m and
ωe = ωh ≡ ω.

We linearize the kinetic energy along the field direction
around the two Fermi points. This leads to the following

pz

E(pz)

e+, ky

h+, qx

e−, qx

h−, ky

+kF−kF

n = 0, e, ↑

n = 0, h, ↓

FIG. 3. Energy-momentum dispersion of the electron and hole
pocket along the field direction.

low-energy Hamiltonian for ĥ0:∫
d3rĥ0(r) − μN̂

= 2π l
∑
σ=±

∫ +�

−�

d p

2π
σvF p

×
∫

d (lQ){e†
σ (Q, p)eσ (Q, p) − h†

σ (Q, p)hσ (Q, p)},
(8)

where the magnetic length l ≡ √
h̄/eH and vF = h̄2kF

m . σ =
± distinguishes two Fermi points, kz = ±kF . Q in Eq. (8)
denotes momentum within the xy plane. For the “right-mover”
fermion with positive velocity along the field, e+(Q, p) and
h−(Q, p), we use a Landau gauge with an eigenstate localized
along x direction (x gauge); Q is momentum along y direction,
Q = ky. For the “left-mover” fermion with the negative veloc-
ity, e−(Q, p) and h+(Q, p), we use the Landau gauge with an
eigenstate localized along y (y gauge); Q is the momentum
along x, Q = qx [20]. To be more specific, electron-band and
hole-band creation operators in Eq. (5) are expanded as


e,↑(r) =
∫ +�

−�

d p

2π
ei(kF +p)z

∫
d (lky)ψky (x, y)e+(ky, p)

+
∫ +�

−�

d p

2π
ei(−kF +p)z

∫
d (lqx )φqx (x, y)e−(qx, p),

(9)


h,↓(r) =
∫ +�

−�

d p

2π
ei(kF +p)z

∫
d (lqx )φqx (x, y)h+(qx, p)

+
∫ +�

−�

d p

2π
ei(−kF +p)z

∫
d (lky)ψky (x, y)h−(ky, p),

(10)

with the eigenstates in the LLL,

ψky (x, y) ≡ 1√√
π l

e− 1
2l2

(x−kyl2 )2

e−ikyy, (11)

φqx (x, y) ≡ 1√√
π l

e− 1
2l2

(y−qxl2 )2

ei(qx− y
l2

)x
. (12)
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For later convenience, note that the x-gauge eigenstates and y-gauge eigenstates are transformed to each other by a Fourier
transformation; ∫ ∞

−∞

d (lky)√
2π

eiqxkyl2
ψky (x, y) = φqx (x, y), (13)

∫ ∞

−∞

d (lqx )√
2π

e−iqxkyl2
φqx (x, y) = ψky (x, y). (14)

By substituting Eqs. (9) and (10) into the electron-electron interaction in Eq. (4), we obtain

1

2

∫
d3rd3r′ρ̂(r)ρ̂(r′)V (r − r′) ≡ H1 + H2, (15)

H1 ≡ 1

2

∑
μ,ν=e+,e−,h+,h−

∫
d p

2π

∫
d (lQ1)

∫
d (lQ′

1)
∫

d (lQ′
2)

∫
d (lQ2)

�μν (Q1, Q′
1, Q′

2, Q2; I0)
∫

d p2

2π
a†

μ(Q′
1, p2 + p)aμ(Q′

2, p2)
∫

d p1

2π
a†

ν (Q1, p1 − p)aν (Q2, p1), (16)

H2 ≡
∑

μ,ν=e,h

∫
d p

2π

∫
d (lQ1)

∫
d (lQ′

1)
∫

d (lQ′
2)

∫
d (lQ2)

�+−
μν (Q1, Q′

1, Q′
2, Q2; I2kF )

∫
d p2

2π
a†

μ+ (Q′
1, p2 + p)aμ− (Q′

2, p2)
∫

d p1

2π
a†

ν− (Q1, p1 − p)aν+ (Q2, p1), (17)

with a notation of

ae+ (Q, p) ≡ e+(ky, p)

ae− (Q, p) ≡ e−(qx, p)

ah+ (Q, p) ≡ h+(qx, p)

ah− (Q, p) ≡ h−(ky, p). (18)

H1 is a sum of all the interactions that carry the zero mo-
mentum along the field [Fig. 4(a)], while H2 is a sum of all
the interactions that carry the 2kF momentum along the field
[Fig. 4(c)]. The respective interaction potentials are given by
functionals of following two “bare” functions of the in-plane
momentum (qx, ky),

I0(qx, ky) ≡ V (qx, ky, pz = 0)e− 1
2 (q2

x +k2
y )l2

, (19)

I2kF (qx, ky) ≡ V (qx, ky, pz = 2kF )e− 1
2 (q2

x +k2
y )l2

, (20)

with V (qx, ky, pz ) ≡ 4πe2

ε(q2
x +k2

y +p2
z ) . Specifically, �μν for

(μ, ν) = (e+, e+), (h−, h−), (e+, h−), (h−, e+), �μν for
(μ, ν) = (e−, e−), (h+, h+), (e−, h+), (h+, e−), �μν for
(μ, ν) = (e+, e−), (h−, h+), (e+, h+), (h−, e−), and �μν

for (μ, ν) = (e−, e+), (h+, h−), (h+, e+), (e−, h−) are given
by the same functionals of I0(qx, ky), respectively,

�e+e+ (k1, k′
1, k′

2, k2; I0)

= · · · = �h−e+ (k1, k′
1, k′

2, k2; I0)

= δ(k1 + k′
1 − k2 − k′

2)
∫

dqx

× I0(qx,−k1 + k2)e−i 1
2 qx (k1+k2−k′

1−k′
2 )l2

, (21)

�e−e− (q1, q′
1, q′

2, q2; I0)

= · · · = �h+e− (q1, q′
1, q′

2, q2; I0)

= δ(q1 + q′
1 − q2 − q′

2)
∫

dky

× I0(q1 − q2, ky)ei 1
2 ky (q1+q2−q′

1−q′
2 )l2

, (22)

�e+e− (q1, k1, k2, q2; I0)

= · · · = �h−e− (q1, k1, k2, q2; I0)

= eik1∧k2l2
I0(q1 − q2,−k1 + k2), (23)

�e−e+ (k1, q1, q2, k2; I0)

= · · · = �e−h− (k1, q1, q2, k2; I0)

= eik1∧k2l2
I0(q1 − q2,−k1 + k2), (24)

with

k1 ∧ k2 ≡
(

k1

q1

)
∧

(
k2

q2

)
= k1q2 − q1k2. (25)

�+−
μν for (μ, ν) = (e, e), (h, h), �+−

μν for (μ, ν) = (e, h), and
�+−

μν for (μ, ν) = (h, e) are given by the following functionals
of I2kF (qx, ky):

�+−
ee (q1, k1, q2, k2; I2kF )

= �+−
hh (k1, q1, k2, q2; I2kF )

= l2eik1∧k2l2
∫

dqxdky

2π
I2kF (qx, ky)ei(k1−k2 )qxl2−i(q1−q2 )kyl2

,

(26)
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FIG. 4. (a) Interaction potentials in H1; �μν in Eq. (16) (μ, ν =
e+, e−, h+, h−). (b) screened form of �μν in Eq. (16). (c) interaction
potentials in H2; �+−

μν in Eq. (17) (μ, ν = e, h). (d) screened form
of �+−

μν in Eq. (17), where we only include the fast mode of the
2kF density fluctuation. The slow 2kF density fluctuation shall be
included in the parquet RG equations; see Fig. 6, e.g., the last two
Feynman diagrams in the right-hand side of the first and second lines
as well as the first two Feynman diagrams in the right-hand side of
the fourth line.

�+−
eh (k2, k1, q1, q2; I2kF )

= l2ei(k1q1+k2q2 )l2
∫

dqxdky

2π

× I2kF (qx, ky)eiqxkyl2+iqx (k1−k2 )l2+iky (q1−q2 )l2
, (27)

�+−
he

(
q1, q2, k2, k1; I2kF

)
= l2e−i(k1q1+k2q2 )l2

∫
dqxdky

2π

× I2kF (qx, ky)e−iqxkyl2+iqx (k1−k2 )l2+iky (q1−q2 )l2
. (28)

For later convenience, note that these functionals can be
regarded homomorphic mappings of the functions. Namely,
a product between two functionals of functions f and g is a
functional of f g,

∫
d (lQ)d (lQ′)�μν (Q, Q2, Q1, Q′; f )�νλ(Q′

2, Q′, Q, Q′
1; g)

= 2π�μλ(Q′
2, Q2, Q1, Q′

1; f g), (29)

for any μ, ν, λ = e+, e−, h+, h−. Here a summation over ν is
not taken in their left-hand sides. Similarly,

∫
d (lQ)d (lQ′)�+−

μν (Q, Q2, Q1, Q′; f )�+−
νλ (Q′

2, Q′, Q, Q′
1; g)

= 2π�+−
μλ (Q′

2, Q2, Q1, Q′
1; f g), (30)

for any μ, ν, λ = e, h. These homomorphic natures of the
functionals are useful in the next section.

In the following, we consider Eqs. (8), (15), (16), and (17)
as the prototype model Hamiltonian for a semimetal in the
quantum limit at the charge neutrality point.

III. SCREENED COULOMB INTERACTION

The interaction potentials in H1 are screened by low-energy
density fluctuations at pz = 0, while the interaction potentials
in H2 are screened by the 2kF density fluctuations. The
respective screened interaction comprises of a sum of the bare
interaction part and an effective interaction mediated by the
density fluctuations. Using the random phase approximation
[Figs. 4(b) and 4(d)] with a help of the homomorphic nature of
the interaction potentials, Eqs. (29) and (30), we can show that
the screened forms for the interaction potentials �μν and �+−

μν

take exactly the same forms as their respectively bare forms
in Eqs. (16) and (17), except that their arguments, I0(qx, ky )
and I2kF (qx, ky), are replaced by their screened counterparts,
I0(qx, ky) and I2kF (qx, ky), respectively,

I0(qx, ky) = I0(qx, ky)

1 − 1
h̄

∑
λ �0,λ(ω = 0)I0(qx, ky)

, (31)

I2kF (qx, ky) = I2kF (qx, ky)

1 − 1
h̄

∑
λ �−+

0,λ (ω = 0)I2kF (qx, ky)
. (32)

Here, �0,λ(ω) denotes a bare polarization function for the
pz = 0 density fluctuation in the right/left-mover electron
band (λ = e+/−) or left/right-mover hole band (λ = h+/−). It
is given by

�0,λ(ω = 0)

= 1

2π l2

∫
d p1

2π

{
θ (εF − ελ,p1 )θ (ελ,p1+p − εF )

ελ,p1 − ελ,p1+p

−θ (ελ,p1 − εF )θ (εF − ελ,p1+p)

ελ,p1 − ελ,p1+p

}
, (33)

with the Heaviside step function θ (x). From Eq. (8), ελ,p −
εF ≡ vF p for λ = e+, h− and ελ,p − εF ≡ −vF p for λ =
e−, h+. Noting that p is much smaller than kF , one obtains
the bare polarization function as

�0,λ(ω = 0) = − 1

(2π l )2

1

vF
, (34)

for λ = e+, e−, h+, h−. �−+
0,λ (ω) is the bare polarization func-

tion for the 2kF density fluctuation within the electron band
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(λ = e) or hole band (λ = h),

�−+
0,λ (ω = 0)

= 1

2π l2

∫
d p1

2π

{
θ (εF − ελ−,p1 )θ (ελ+,p1+p − εF )

ελ−,p1 − ελ+,p1+p

− θ (ελ−,p1 − εF )θ (εF − ελ+,p1+p)

ελ−,p1 − ελ+,p1+p

}
. (35)

From Eq. (8), ελ±,p − εF = ±vF p for λ = e and ελ±,p − εF =
∓vF p for λ = h.

The polarization function for 2kF density fluctuation can
be divided into low-energy (slow) 2kF density fluctuation part
and high-energy (fast) 2kF density fluctuation part,

�−+
0,λ (ω = 0) = �−+,s

0,λ (ω = 0) + �−+,f
0,λ (ω = 0), (36)

�−+,s
0,λ (ω = 0) ≡ 1

2π l2

∫
|p1|<�

d p1

2π
{· · · }, (37)

�−+,f
0,λ (ω = 0) ≡ 1

2π l2

∫
�<|p1|<�UV

d p1

2π
{· · · }. (38)

Here, �UV is a momentum cut off associated with the
Brillouin zone boundary, while � separates the slow mode
from the fast mode, � < �UV. The slow 2kF density fluctu-
ation part (|p1| < �) leads to the logarithmic singularity at
p = 0 [50],

�−+,s
0,λ (ω = 0) 	 − 1

(2π l )2

1

vF
ln

(
2�

|p|
)

, (39)

for any λ = e, h. The singularity is a seed of the 2kF DW insta-
bility in each pocket [19,20,47,48]. More generally, “bubble”
Feynman diagrams composed of two single-particle Green
functions with opposite sign of the Fermi velocities have
the same logarithmic singularity both in particle-hole and in
particle-particle channels [47,48]. These logarithmic singular-
ities suggest that the ground state of the electron-hole model at
the charge neutrality point has several competing instabilities
at lower temperature. To clarify the most dominant instability
precisely, we thus take into account the slow 2kF density
fluctuation in the framework of parquet RG equations and
include it as well as the other low-energy fluctuations with the
logarithmic singularity on the equal footing (see the next sec-
tion). Therefore, to avoid the double counting of the slow 2kF

density fluctuation part, we include in Eq. (32) only the high-
energy (fast) 2kF density fluctuation part first. This determines
a form of the screened interaction. The screened interaction
thus obtained is then used for an “initial” interaction potential
for the RG equations (Fig. 5). Finally, the low-energy (slow)
2kF density fluctuation as well as other dominant low-energy
fluctuations shall be included sequentially in the framework
of the RG procedure (Fig. 6). For example, in Fig. 6, the last
two Feynman diagrams in the right-hand side of the first and
second lines as well as the first two Feynman diagrams in
the right-hand side of the fourth line represents the inclusions
of the slow 2kF density fluctuations. The fast 2kF density
fluctuation part, Eq. (38), takes a constant finite value at
p = 0,

�−+,f
0,λ (ω = 0) 	 − 1

(2π l )2

1

vF
ln

(
�UV

�

)
, (40)

e−

e−

e+

e+

=
0

e−

e−

e+

e+

+
2kF

e−

e−

e+

e+

h−

h−

h+

h+

=
0

h−

h−

h+

h+

+
2kF

h−

h−

h+

h+

h+

h+

e+

e+

=
0

h+

h+

e+

e+

e+

e−

h−

h+

ξ=ξ0

=
2kF

e+

e−

h−

h+

(a)

(b)

(c)

(d)

ξ=ξ0

ξ=ξ0

ξ=ξ0

FIG. 5. A set of initial forms of the interaction potentials for
the parquet RG equations are given by the RPA screened Coulomb
interactions, Eqs. (41)–(44). (a) Wb(k, ξ ) at the initial RG scale (ξ =
0) that corresponds to Eq. (49), (b) Wd (k) at ξ = 0, corresponding to
Eq. (49), (c) We(k) at ξ = 0, corresponding to Eq. (50), and (d) Wg(k)
at ξ = 0, corresponding to Eq. (51).

for λ = e, h.
To summarize, we will use the following form of the

screened interaction potentials as the initial interaction forms
for the later parquet RG studies;

Hint ≡ H1 + H2,

H1 = 1

2

∑
μ,ν=e+,e−,h+,h−

∫
d pd p1 d p2

(2π )3

×
∫

d (lQ1)d (lQ′
1)d (lQ′

2)d (dQ2)�μν

× (Q1, Q′
1, Q′

2, Q2; I0)a†
μ(Q′

1, p2 + p)aμ(Q′
2, p2)a†

ν

× (Q1, p1 − p)aν (Q2, p1), (41)
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d

dξ e−

e+

e−

e+

=
e−

e+

e−

e+

e−

e+

+

e+

e−

e+

e−

e+

e−

+

e+

e−

h+

e−

e+

h−

d

dξ h+

h−

h+

h−
=

h+

h−

h+

h−

h+

h−
+

h−

h+

h−

h+

h−

h+

+
h−

h+

e−

h+

h−

e+

d

dξ h+

e+

h+

e+

=
h+

e+

h+

e+

h+

e+

+

e+

h+

e+

h+

e+

h+

+

e+

h+

e−

h+

e+

h−

d

dξ h−

e+

h+

e−
=

e+

h−

e+

e−

h+

e−

+

e+

h−

h+

e−

h+

h−

+

e+

h−

e−

h+

e−

h−

+

e+

h−

e+

h+

e−

h+

FIG. 6. Parquet RG equations in terms of Feynman diagrams.
From the top to the bottom, each line of equations correspond to
Eqs. (52)–(55), respectively.

H2 =
∑

μ,ν=e,h

∫
d pd p1d p2

(2π )3

×
∫

d (lQ1)d (lQ′
1)d (lQ′

2)d (lQ2)�+−
μν

× (Q1, Q′
1, Q′

2, Q2; I2kF )a†
μ+ (Q′

1, p2 + p)aμ−

× (Q′
2, p2)a†

ν− (Q1, p1 − p)aν+ (Q2, p1), (42)

I0(qx, ky) = 4πe2l2

ε

e− 1
2 (q2

x +k2
y )l2(

q2
x + k2

y

)
l2 + 1

A e− 1
2 (q2

x +k2
y )l2

, (43)

I2kF (qx, ky) = 4πe2l2

ε

e− 1
2 (q2

x +k2
y )l2(

q2
x + k2

y

)
l2 + B + 1

A′ e
− 1

2 (q2
x +k2

y )l2

(44)

with B ≡ 4k2
F l2 and

1

A
≡ −4πe2l2

h̄ε

∑
λ=e±,h±

�0,λ(ω = 0) = 4e2

h̄πvF ε
, (45)

1

A′ ≡ −4πe2l2

h̄ε

∑
λ=e,h

�−+,f
0,λ (ω = 0) = 2e2 ln

[
�UV
�

]
h̄πvF ε

. (46)

For simplicity, we take ln(�UV/�) = 2 henceforth and iden-
tify A′ with A. For reminder, the functionals �μν (μ, ν =
e+, e−, h+, h−) and �+−

μν (μ, ν = e, h) in Eqs. (41) and (42)
are defined in Eqs. (21)–(24) and (26)–(28), respectively.

IV. PARQUET RENORMALIZATION GROUP EQUATION

The polarization function for the slow 2kF density fluctu-
ation has the logarithmic singularity [Eq. (39)]. More gener-
ally, all the “bubble” diagrams composed of the two Green
functions with opposite sign of the Fermi velocities have
the same logarithmic singularity in both particle-hole and
particle-particle channels. The presence of the logarithmic

singularities in several distinct channels means competing
ground-state instabilities in the semimetal model. To reveal
the ground-state phase diagram of the model precisely, we
thus include all the relevant fluctuations with the logarithmic
singularity on the equal footing.

To this end, we derive in this section the parquet renormal-
ization group (RG) equations [20,47,48], where consecutive
integration of the higher-energy fermionic degree of free-
dom renormalizes the interaction potentials among the lower-
energy fermions. The renormalization gives rise to either
enhancement, suppression or convergence of the interaction
potentials. By identifying the most divergent potentials among
the others, we shall tell the dominant ground-state instability
in the model.

The one-loop parquet RG equations can be derived by a
standard momentum shell renormalization. Thereby, we begin
with a partition function of the interacting fermion model;

Z =
∫

De†
±De±Dh†

±Dh±e−S0−S1 ,

S0 =
∑
σ=±

∫
d (lω)

2π

∫
|p|<�

d p
∫

dQ
{
(−iω + σvF p)

× e†
σ (Q, p, ω)eσ (Q, p, ω) + (−iω − σvF p)

× h†
σ (Q, p, ω)hσ (Q, p, ω)

}
, (47)

S1 =
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2Wb(k1 − k2)

× e†
+(k1, 1)e†

−(q1, 2)e−(q2, 3)e+(k2, 1 + 2 − 3)

+
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2Wd (k1 − k2)

× h†
−(k1, 1)h†

+(q1, 2)h+(q2, 3)h−(k2, 1 + 2 − 3)

+
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2We(k1 − k2)

× e†
+(k1, 1)h†

+(q1, 2)h+(q2, 3)e+(k2, 1 + 2 − 3)

+
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2We(k1 − k2)

× h†
−(k1, 1)e†

−(q1, 2)e−(q2, 3)h−(k2, 1 + 2 − 3)

+
∫

1,2,3

∫
dk1dq1dk2dq2 ei(k1q1+k2q2 )Wg(k1 − k2)

× e†
+(k1, 1)h†

−(k2, 2)h+(q2, 3)e−(q1, 1 + 2 − 3)

+
∫

1,2,3

∫
dk1dq1dk2dq2 e−i(k1q1+k2q2 )W ∗

g (k1 − k2)

× h†
+(q1, 1)e†

−(q2, 2)e+(k2, 3)h−(k1, 1 + 2 − 3) + · · · .

(48)

Here, Q = ky or qx is rescaled by the magnetic length l;
Qnew ≡ Qoldl . Besides, we used the following notations:

1 ≡ (p1, ω1), 2 ≡ (p2, ω2), 3 ≡ (p3, ω3),∫
1,2,3

≡
∫

dω1 dω2 dω3

(2π )3

∫
d p1 d p2 d p3

(2π )3
, k1 ≡ (k1, q1),

k2 ≡ (k2, q2), k1 ∧ k2 ≡ k1q2 − k2q1.
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For the repulsive Coulomb interaction case, the interaction
potentials in S1 are given by either some of H1 or H2 or their
combination from Eqs. (41)–(44) (see Fig. 5). Namely, Wb(k)
and Wd (k) are given by a sum of Eqs. (23) and (26) with I0

and I2kF replaced by I0 and I2kF . We(k) and Wg(k) are given
by Eqs. (23) and (28) respectively with I0 and I2kF . To be
more specific, we consider the following set of the screened
interaction as the initial interaction forms of the RG equations:

Wb(k)

= Wd (k) = I0(qx, ky) −
∫ dq′

x dk′
y

2π
eikyq′

x−iqxk′
y I2kF (q′

x, k′
y),

(49)

We(k) = I0(qx, ky), (50)

Wg(k) =
∫ dq′

x dk′
y

2π
eiq′

xk′
y+iq′

xky+ik′
yqx I2kF (q′

x, k′
y), (51)

with k ≡ (ky, qx ) and Eqs. (43) and (44). “ · · · ” in Eq. (48)
denotes those interaction parts that are not renormalized by
others and do not renormalize others at the level of the one-
loop RG equations. Such interaction parts are irrelevant in the
framework of the one-loop RG analyses; we thus omit them
henceforth.

Following the standard momentum shell renormalization
process (Appendix B), we first decompose the fermionic
field into fast mode (� − d� < |p| < �) and slow mode
(|p| < � − d�) in the momentum along the field. The inte-
gration of the fast mode in the partition function leads to the
renormalizations of the interaction potentials among the slow
modes. This gives out a set of coupled RG equations for the
interaction potentials,

dWb(k)

dξ
=

∫
dk′Wb(k′)Wb(k − k′)(1 − e−ik∧k′

)

+
∫

dk′Wg(k′)W ∗
g (k − k′), (52)

dWd (k)

dξ
=

∫
dk′Wd (k′)Wd (k − k′)(1 − e−ik∧k′

)

+
∫

dk′Wg(k′)W ∗
g (k − k′), (53)

dWe(k)

dξ
=

∫
dk′We(k′)We(k − k′)(1 − e−ik∧k′

)

+
∫

dk′ e−ikq+ik′q+ikq′
Wg(k′)W ∗

g (k − k′), (54)

dWg(k)

dξ
=

∫
dk′Wg(k − k′){Wb(k′) + Wd (k′)

+ 2e−ikq′−ik′q+ik′q′
We(k′)} (55)

with k ≡ (k, q), k′ ≡ (k′, q′), and dk′ ≡ dk′dq′. dξ denotes a
RG scale,

dξ ≡ 1

(2π )3l2

d�

vF �
. (56)

In order to solve the coupled RG equations numerically,
we put them in the dual-space representation by the Fourier
transform of Wμ(k),

Fμ(r) ≡
∫

dke−ikrWμ(k), (57)

Wμ(k) ≡
∫

dr
(2π )2

eikrFμ(r), (58)

for μ = b, d, e, g with

F̃g(r) ≡ e−irxry Fg(r), (59)

r ≡ (rx, ry) and k ≡ (k, q). It turns out that parquet RG equa-
tions for Fμ(r) (μ = b, d, e) and F̃g(r) as well as their initial
forms respect the following O(2) symmetry and real-valued-
ness;

Fμ(R̂θ r) = Fμ(r) = F ∗
μ (r) ≡ �μ(r), (60)

F̃g(R̂θ r) = F̃g(r) = F̃ ∗
g (r) ≡ �g(r), (61)

R̂θ ≡
(

cos θ sin θ

− sin θ cos θ

)
, (62)

with r ≡ |r| for arbitrary θ ∈ (0, 2π ]. Using this symmetry,
we can finally reach O(2)-symmetric parquet RG equations
for �μ(r) (μ = b, d, e) and �g(r) as follows [48]:

d�b/d (r)

dξ
= �2

b/d (r) + �2
g (r)

−
∫ ∞

0
dr′

∫ ∞

0
dr′′�b/d (r′)�b/d (r′′)K (r, r′, r′′),

(63)
d�e(r)

dξ
= �2

e (r) + �
2
g(r)

−
∫ ∞

0
dr′

∫ ∞

0
dr′′�e(r′)�e(r′′)K (r, r′, r′′), (64)

d�g(r)

dξ
= �g(r)(�b(r) + �d (r))

+ 2
∫ ∞

0
r′dr′�e(r′)�g(r′)J0(rr′), (65)

d�g(r)

dξ
= 2�e(r)�g(r)

+
∫ ∞

0
r′dr′�g(r′)(�b(r′) + �d (r′))J0(r′r), (66)

with

K (r, r′, r′′) ≡ r′r′′
∞∑

m=−∞
J2m(rr′)J2m(rr′′)J2m(r′r′′), (67)

and Bessel function J2m(r) (integer m). �g(r) is a Hankel
transform of �g(r);

�g(r) =
∫ ∞

0
r′dr′�g(r′)J0(rr′), (68)

�g(r) =
∫ ∞

0
r′dr′�g(r′)J0(rr′). (69)
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The initial forms of �μ(r) (μ = b, d, e, g) and �g(r) are
obtained from Eqs. (49,50,51) as follows:

�b/d (r) ≡ 2π

{∫ ∞

0
r′dr′J0(rr′)I0(r′) − I2kF (r)

}
, (70)

�e(r) ≡ 2π

∫ ∞

0
r′dr′J0(rr′)I0(r′), (71)

�g(r) ≡ 2π I2kF (r), (72)

�g(r) ≡ 2π

∫ ∞

0
r′dr′J0(rr′)I2kF (r′), (73)

with

I0(r) ≡ 4πe2l2

ε

1

r2e
1
2 r2 + A−1

, (74)

I2kF (r) ≡ 4πe2l2

ε

1

(r2 + B)e
1
2 r2 + A−1

. (75)

Note that the overall factor of I0(r) and I2kF (r), 4πe2l2/ε,
can be absorbed into a redefinition of the RG scale change
ξ ; it does not alter the ground-state phase diagram. Only two
dimensionless parameters, A and B ≡ 4k2

F l2 in Eqs. (74) and
(75), play vital role in a determination of the ground-state
phase diagram.

We solved Eqs. (63)–(66) numerically, with �μ(r) (μ =
b, d, e, g) and �g(r) at the initial RG scale (ξ = 0) being given
by Eqs. (70)–(75). By doing so, we numerically observed that
in the two-dimensional A-B space, either a set of �b(r, ξ ) =
�d (r, ξ ) and �g(r, ξ ) or a set of �e(r, ξ ) and �g(r, ξ ) show
divergences at certain values of r and ξ (see the next section).
The divergence indicates a certain type of pairing instabilities
in the ground state. To identify the favored pairings and
natures of resulting symmetry-broken phases, we rewrite the
interaction potentials in Eq. (48) in the same basis of the
Landau gauge. For example, we put e− and h+ as well as
e+ and h− in the basis of the x-gauge eigenstates by using
Eqs. (13) and (14). This leads to

S1 =
∫

1,2,3

∫
dk1dk1dk2 �b(k2 − k1, k1 − k2) {e†

+(k1, 1)e†
−(k1, 2)e−(k2, 3)e+(k1 + k1 − k2, 1 + 2 − 3)

+ h†
−(k1, 1)h†

+(k1, 2)h+(k2, 3)h−(k1 + k1 − k2, 1 + 2 − 3)}

+
∫

1,2,3

∫
dk1dk1dk2 �e(k2 − k1, k1 − k2){e†

+(k1, 1)h†
+(k1, 2)h+(k2, 3)e+(k1 + k1 − k2, 1 + 2 − 3)

+ h†
−(k1, 1)e†

−(k1, 2)e−(k2, 3)h−(k1 + k1 − k2, 1 + 2 − 3)}

+
∫

1,2,3

∫
dk1dk2dk2 �g(k1 − k2, k2 − k2)e†

+(k1, 1)h†
−(k2, 2)h+(k2, 3)e−(k1 + k2 − k2, 1 + 2 − 3) + H.c., (76)

where k1, k1, k2, and k2 are the momentum along the y
direction. Note that due to the translational symmetry along
the y direction in the x gauge, all the interaction potentials
preserve a center of mass in the momentum. From Eqs. (58),
(60), and (61), one can readily see that �b(k, k′), �e(k, k′),
and �g(k, k′) in Eq. (76) are given by �b(r) = �d (r), �e(r),
�g(r) and �g(r) as follows:

�b(k, k′) ≡
∫

drx

2π
eikrx �b

(√
r2

x + k′2), (77)

�e(k, k′) ≡
∫

drx

2π
eikrx �e

(√
r2

x + k′2), (78)

�g(k, k′) ≡
∫

drx

2π
eikrx �g

(√
r2

x + k′2), (79)

≡
∫

dry

2π
eik′ry�g

(√
k2 + r2

y

)
. (80)

One could also rewrite e+ and h− as well as e− and h+ in the
basis of the y-gauge eigenstates. Of course, this leads to the
same conclusions as we will reach in the x-gauge eigenstates
(see the following two sections).

V. GROUND-STATE PHASE DIAGRAM IN THE PRESENCE
OF REPULSIVE COULOMB INTERACTION

The parquet RG equations have a dual structure; �b(r) =
�d (r) and �g(r) couple with each other exactly in the same
way as �e(r) and �g(r) do, and �g(r) and �g(r) are Fourier
transforms of the other [Eqs. (68) and (69)]. In the case of the
repulsive interaction, this dual structure in the RG equations
leads to a ground-state competition between the excitonic
insulator phase [48] and Ising-type spin density wave phase
(Fig. 1). The numerical solution of the RG equations shows
that in the two-dimensional A-B parameter space, either a set
of �e(r) and �g(r) or a set of �b(r) and �g(r) diverge at a
certain critical RG scale, ξ = ξc.

A. Strong screening region

To understand the phase diagram qualitatively, let us keep
only those terms in the parquet RG equations that couple the
functions locally in the radial coordinate r [20,31,33,48];

d�b/d (r, ξ )

dξ
= �2

b/d (r, ξ ) + �2
g (r, ξ ), (81)

d�g(r, ξ )

dξ
= �2

g (r, ξ )(�b(r, ξ ) + �d (r, ξ )), (82)
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and

d�e(r, ξ )

dξ
= �2

e (r, ξ ) + �
2
e (r, ξ ), (83)

d�g(r, ξ )

dξ
= 2�

2
g(r, ξ )�e(r, ξ ). (84)

When the RG scale is near (but below) the critical RG scale,
ξ � ξc, the local terms become leading order than those terms
neglected, and the approximation and solutions below are
justified. Without the constraint between �g(r) and �g(r)
[Eqs. (68) and (69)], the approximate RG equations can be
solved and the solutions are determined only by the initial
forms of the interaction potentials,

�b/d (r, ξ ) = 1

2

{
1

1
�b/d (r,0)+�g(r,0) − ξ

+ 1
1

�b/d (r,0)−�g(r,0) − ξ

}
,

(85)

�g(r, ξ ) = 1

2

{
1

1
�b/d (r,0)+�g(r,0) − ξ

− 1
1

�b/d (r,0)−�g(r,0) − ξ

}
,

(86)

and

�e(r, ξ ) = 1

2

⎧⎨
⎩ 1

1
�e(r,0)+�g(r,0)

− ξ
+ 1

1
�e(r,0)−�g(r,0)

− ξ

⎫⎬
⎭,

(87)

�g(r, ξ ) = 1

2

⎧⎨
⎩ 1

1
�e(r,0)+�g(r,0)

− ξ
− 1

1
�e(r,0)−�g(r,0)

− ξ

⎫⎬
⎭.

(88)

With Eqs. (70)–(75) at the initial RG scale (ξ = 0), �e(r, 0) +
�g(r, 0) takes the largest positive value at r = 0 among the
other three at any r,

�e(r = 0, 0) + �g(r = 0, 0)

> �e(r, 0) ± �g(r, 0), �b(r, 0) ± �g(r, 0).

Thus the approximate solution dictates that positive �e(r, ξ )
and positive �g(r, ξ ) diverge at r = 0 simultaneously on the
renormalization as [48]

�e(r, ξc) = �g(r, ξc) = A′

r2
+ · · · (A′ > 0). (89)

Figure 7 demonstrates how the four interaction potentials,
�b(r, ξ ) = �d (r, ξ ), �e(r, ξ ), �g(r, ξ ) and �g(r, ξ ), change
their forms under the parquet RG equations, Eqs. (63)–(66),
in the strong screening regime.

When �e(r = 0) and �g(r = 0) dominate over the oth-
ers, an excitonic pairing is formed between electron and
hole bands at the same Fermi point and at the same spatial

FIG. 7. Numerical solution of the parquet RG equations,
Eqs. (63)–(66), with the initial interaction forms given by Eqs. (70)–
(73) in the strong screening regime (log10 A = 0 and log10 B = 0).
The solution tells how the interaction potentials of r, �b(r, ξ ) =
�d (r, ξ ), �e(r, ξ ), �g(r, ξ ) and �g(r, ξ ), grow as a function of the RG
scale ξ . �e(r, ξ ) and �g(r, ξ ) help each other and show the diverge at
r = 0 around ξ = 1.2.

coordinate within the xy plane,

〈e†
+(ky)h+(ky)〉 = 〈e†

−(ky)h−(ky)〉 �= 0, (90)

〈e†
+(qx )h+(qx )〉 = 〈e†

−(qx )h−(qx )〉 �= 0. (91)

Namely, the asymptotic forms of �e(r, ξc) and �g(r, ξc) make
the following scattering channels in Eq. (76) to be dominant
among the others:

�e(k2 − k1, k1 − k2 = 0) → +∞, (92)

�g(k1 − k2 = 0, k2 − k2) → +∞, (93)

for arbitrary k2 − k1 [Eq. (92)] and arbitrary k2 − k2

[Eq. (93)], respectively. These scatterings favor electron-hole
pairings at the same Fermi points and at the same two-
dimensional space coordinates within the xy plane;

S1 = −
∫

1,2,3

∫
k1−k2=0

dk1dk1dk2 �e(k2 − k1, k1 − k2)

× {〈e†
+(k2, 1)h+(k2, 3)〉〈h†

+(k1, 2)e+(k1, 1 + 2 − 3)〉
+ 〈h†

−(k2, 1)e−(k2, 3)〉〈e†
−(k1, 2)h−(k1, 1 + 2 − 3)〉}

−
∫

1,2,3

∫
k1−k2=0

dk1dk1dk2 �g(k1 − k2, k2 − k2)

× {〈e†
+(k2, 1)h+(k2, 3)〉〈h†

−(k2, 2)e−(k2, 1 + 2 − 3)〉
+ c.c.} + · · · . (94)
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Æ ∞

eÆ h∞
∞ ∞

FIG. 8. Schematic picture of Ising-type spin density wave. The ↑
and ↓ arrows are spins along the field. The horizontal axis is along
the field direction.

Note that the relative U(1) phase between the excitonic pairing
field at the right Fermi point and that at the left Fermi point is
locked to be zero by the positively large �g(k1 − k2 = 0, k2 −
k2).

The excitonic pairing between the electron band with ↑
spin and the hole band with ↓ spin results in a ferro-type order
of an XY component of the spin-1 moment;

〈
†
e,↑(r)
h,↓(r)〉 ≡ X (r) + iY (r) ∝ eiθ . (95)

The ferro-type order breaks the U(1) spin rotational symmetry
around the magnetic field. However, detailed microscopic
magnetism of the excitonic phase depends on atomic orbitals
(localized Wannier orbitals) that form the electron band and
the hole band.

B. Weak screening region

When the screening length is longer than the magnetic
length [A � 3 for 2kF l 	 1], the numerical solution shows
that �b(r) and �g(r) diverges at r = 0 as

�b(r, ξc) = �g(r, ξc) = A′

r2
+ · · · (A′ > 0).

The divergence identifies the relevant scattering channels in
Eq. (76) as

�b(k2 − k1, k1 − k2 = 0) → +∞,

for any k2 − k1, and

�g(k1 − k2, k2 − k2 = 0) → +∞,

for any k1 − k2. These scattering channels cause an instability
to a charge density wave of the electron band and that of the
hole band,

〈e†
+(k)e−(k)〉 = eiπ 〈h†

+(k)h−(k)〉. (96)

Both density waves share the same spatial pitch (2π/2kF )
along the field direction. The relative U(1) phase between
the electron-band density wave and hole-hand density wave is
locked to be π by the positively large �g(k1 − k2, k2 − k2 =
0). Due to the π phase shift, the ground state in the weak
screening region is accompanied by Ising-type spin density
wave that preserves the U(1) spin rotational symmetry around
the magnetic field (Fig. 8).

VI. GROUND-STATE PHASE DIAGRAM IN THE
PRESENCE OF EFFECTIVE ATTRACTIVE INTERACTION

In the previous section, we have studied how the repulsive
Coulomb interaction leads to the low-temperature instability
in the semimetal under high magnetic field. As the compli-
mentary aspect, we consider in this section an effect of another

relevant many-body interaction; electron-(acoustic) phonon
interaction. We employ an argument based on an equivalence
between an electron-phonon coupled system and a system
with an electron-electron interaction, and adopt the following
effective attractive electron-electron interaction;

Heff = 1

2

∫
d3rd3r′ρ(r)ρ(r′)Veff (r − r′), (97)

Veff (r) =
∫

d3q
(2π )3

Veff (q)eiqr, (98)

Veff (q) ≡ −U 2
eff (q), (99)

Ueff (q) ≡
(ρ0

M

) 1
2 4πZe2l2

εc

1(
q2

z + q2
⊥
)
l2 + A−1e− 1

2 q2
⊥l2

.

(100)

Here, Ueff (q) is the Fourier transform of a screened
Coulomb potential between electron and (longitudinal acous-
tic) phonon. Z and c are an electron valence of positively
charged nucleus ion and a sound velocity of the acoustic
phonon respectively, ρ0 and M is the density of the charged
nuclei, and a mass of the charged nucleus ion. Within the
random phase approximation, (the square of) the screening
length “A” in Ueff (q) was calculated in the previous section
[Eqs. (45) and (46)]. Here we consider the case with A = A′
for simplicity.

Using Eqs. (97)–(100) as the effective electron-electron in-
teraction, we study low-temperature instabilities in semimetal
under high magnetic field in the presence of the electron-
phonon coupling. To this end, we solve numerically the same
parquet RG equations as in the previous section, while we
use the following set as the interaction forms at the initial RG
scale (ξ = 0);

�b/d (r) ≡ −2π

{∫ ∞

0
r′dr′J0(rr′)I ′

0(r′) − I
′
2kF

(r)

}
, (101)

�e(r) ≡ −2π

∫ ∞

0
r′dr′J0(rr′)I ′

0(r′), (102)

�g(r) ≡ −2π I
′
2kF

(r), (103)

�g(r) ≡ −2π

∫ ∞

0
r′dr′J0(rr′)I ′

2kF
(r′), (104)

with

I
′
0(r) ≡

(
4πZe2l2

εc

)2
ρ0

M

e
1
2 r2(

r2e
1
2 r2 + A−1

)2 , (105)

I
′
2kF

(r) ≡
(

4πZe2l2

εc

)2
ρ0

M

e
1
2 r2

((r2 + B)e
1
2 r2 + A−1)2

. (106)

Again, the overall factor of I
′
0(r) and I

′
2kF

(r) does not play any
role in a determination of the phase diagram within the one-
loop RG analyses. Only the two dimensionless parameters A
and B play the crucial role.
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A. Intermediate screening region

Figure 2 is a phase diagram obtained by the numerical
solutions. In an intermediate screening region (A 	 10−1),
the ground state shows an instability toward a charge Wigner
crystal phase, where �b(r) and �g(r) diverges at nonzero r
(r = rc �= 0) at a certain critical RG scale (ξ = ξc) as

�b(r, ξc) = −�g(r, ξc) = A′′

|r − rc|2 + · · · (A′′ > 0).

(107)

Substituting this into Eqs. (77) and (79), one can see that
dominant scattering channels in Eq. (76) take the following

asymptotic forms:

�b(k2 − k1, k1 − k2 = rc cos θ )

→ cos((k2 − k1)rc sin θ ) × (+∞), (108)

�g(k1 − k2, k2 − k2 = rc cos θ )

→ cos((k1 − k2)rc sin θ ) × (−∞), (109)

for any θ ∈ [0, π ), and for any k2 − k1 [Eq. (108)] and any
k1 − k2 [Eq. (109)], respectively. The scattering channels
induce 2kF density-wave pairings within the electron band
and hole hand. The induced density-wave pairings generally
connect different two-dimensional coordinates within the xy
plane,

S1 ≡
∫ π

0
dθ rc sin θ S1(θ ) + · · · ,

S1(θ ) = −
∫

1,2,3

∫
dk1dk2 �b(k2 − k1, rc cos θ ){〈e†

+(k2 + rc cos θ, 1)e−(k2, 3)〉〈e†
−(k1, 2)e+(k1 + rc cos θ, · · · )〉

+ 〈h†
−(k2 − rc cos θ, 1)h+(k2, 3)〉〈h†

+(k1, 2)h−(k1 − rc cos θ, · · · )〉}

+
∫

1,2,3

∫
dk1dk2 �g(k1 − k2, rc cos θ )〈e†

+(k1, 1)e−(k1 − rc cos θ, · · · )〉〈h†
−(k2 − rc cos θ, 2)h+(k2, 3)〉 + c.c.

(110)

Due to the coordinate-dependent (k-dependent) cosine func-
tions in Eqs. (108) and (109), the action S1(θ ) is fully min-
imized by the pairing fields that have coordinate-dependent
phases,

〈e†
+(k)e−(k − rc cos θ )〉 = 〈h†

+(k)h−(k − rc cos θ )〉
= Be−iλ∓ikrc sin θ . (111)

Such pairings lead to the density waves in the electron and
hole bands, that break the translational symmetries within the
xy plane,

〈
†
e,↑(r)
e,↑(r)〉 = 〈
†

h,↓(r)
h,↓(r)〉
= B′ cos(2kF z + rc(y cos θ ± x sin θ ) + λ′).

The density wave of the electron band with ↑ spin and the
density wave of the hole band with the ↓ spin have the same
phase; the superpose of these two is nothing but the charge
density wave without any spin texture. The spatial pitches
within the xy plane and along the field direction is 2π l/rc and
2π/(2kF ), respectively.

The ‘propagation’ direction of the density wave within the
xy plane is specified by θ , that can take any value in [0, π )
according to Eqs. (108), (109), and (110). The ground state is
generally a superposition of the density waves with different
propagation directions within the xy plane. One of the most
plausible superposition is a symmetric superposition,

〈
†
e,↑(r)
e,↑(r)〉 = 〈
†

h,↓(r)
h,↓(r)〉
∝

∑
j=1,2,3

cos(2kF z+ rcn j · r⊥+ θ )+ const,

(112)

with r⊥ = (x, y), n1 = (1, 0), n2 = (− 1
2 ,

√
3

2 ), and n3 =
(− 1

2 ,−
√

3
2 ) [or its O(2) rotation within the xy plane]. This

leads to a triangle lattice of the charge density within the xy
plane [charge Wigner crystal; Fig. 9(a)].

B. Strong screening region

In a strong screening region (A < 10−2), the ground state
exhibits an instability to an excitonic phase, where �e(r) and
�g(r) diverge at nonzero r (r = rc �= 0) at the critical RG
scale (ξ = ξc) as

�e(r, ξc) = �g(r, ξc) = A′′

|r − rc|2 + · · · , (A′′ > 0).

(113)

The divergence gives rise to the following forms of the domi-
nant scattering channels in Eq. (76):

�e(k2 − k1, k1 − k2 = rc cos θ )

→ cos((k2 − k1)rc sin θ ) × (+∞), (114)

�g(k1 − k2 = rc cos θ, k2 − k2)

→ cos((k2 − k2)rc sin θ ) × (+∞), (115)
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for any θ , and for any k2 − k1 [Eq. (114)] and any k2 − k2 [Eq. (115)], respectively. These scattering channels mediate the
excitonic pairings between different spatial coordinate within the xy plane;

S1 ≡
∫ π

0
dθ rc sin θ S1(θ ) + · · · ,

S1(θ ) = −
∫

1,2,3

∫
dk1dk2 �e(k2 − k1, rc cos θ ){〈e†

+(k2 + rc cos θ, 1)h+(k2, 3)〉〈h†
+(k1, 2)e+(k1 + rc cos θ, · · · )〉

+ 〈h†
−(k2 − rc cos θ, 1)e−(k2, 3)〉〈e†

−(k1, 2)h−(k1 − rc cos θ, · · · )〉}

−
∫

1,2,3

∫
dk2dk2 �g(rc cos θ, k2 − k2)〈e†

+(k2 + rc cos θ, 1)h+(k2, 3)〉〈h†
−(k2, 2)e−(k2 + rc cos θ, · · · )〉 + c.c. (116)

Namely, the action with Eqs. (114) and (115) is minimized
by the excitonic pairing within the same Fermi points but
between different spatial coordinates within the xy plane. The
pairing fields thus determined have the coordinate-dependent
phase factors,

〈e†
+(k2 + rc cos θ )h+(k2)〉 = 〈e†

−(k2 + rc cos θ )h−(k2)〉
= Ceiψ±ik2rc sin θ . (117)

(a) (b)

+1

(c)

+1

+1 +1

+1

- 1 - 1

- 1- 1

- 1 - 1

FIG. 9. Schematic picture of charge Wigner crystal (a), and a
vortex lattice of the XY “spin” moment [(b) and (c)]. The XY spin
moment forms vortices with ± chirality. The vortices with +/−
chirality enters A/B sublattice of the two-dimensional honeycomb
lattice. Note that the lattice constant of these two-dimensional tex-
tures is given by l/rc, where l is the magnetic length.

Such excitonic pairings leads to a density wave of the XY
component of the spin-1 moment, that breaks the translational
symmetry within the xy plane;

〈
†
e,↑(r)
h,↓(r)〉 ≡ X (r) + iY (r) = eiψ+irc (y cos θ±x sin θ ).

(118)

The propagation direction of the XY spin density wave
is characterized by the arbitrary phase θ ; the ground state
takes a form of the superposition of the density waves over
different propagation directions within the xy plane. From
an analogy of the charge Wigner crystal phase, one of the
possible spatial structures of the XY spin moment is the
symmetric superposition,

X (r) + iY (r) ∝
∑

j=1,2,3

eiθ j+ircn j ·r⊥

= eiθT
∑

j=1,2,3

eircn j ·(r⊥−r⊥,0 ) (119)

with n1 = (1, 0), n2 = (− 1
2 ,

√
3

2 ), and n3 = (− 1
2 ,−

√
3

2 ). This
results in a two-dimensional vortex lattice, where vortices
of the XY spin with ±1 charges form a two-dimensional
honeycomb structure [Figs. 9(b) and 9(c)].

In actual semimetal compounds, the emergent two-
dimensional lattice structure of the XY spin moment as well
as the charge density wave must be extremely sensitive to
actual crystal symmetry of underlying lattice structure in
each compound. Especially, k-p expansion around a high
symmetric momentum line (parallel to the magnetic field ‖ z)
often gives rise to an anisotropy in the effective mass or
effective velocity within a plane perpendicular to the field (xy
plane). The anisotropy reduces the in-plane O(2) symmetry
in the model dictated by Eqs. (4)–(6) down to a discrete
rotational symmetry around the field. For example, in the case
of the graphite, the relevant electron and hole pockets around
the zone boundary lines (H-K-H and H ′-K ′-H ′) respect a
Z3 discrete rotational symmetry, reflecting the graphite crys-
tal structure. Speaking symmetry, the triangle lattice struc-
ture of the charge density [Fig. 9(a)] as well as the two-
dimensional vortex lattice structure of the XY spin moment
[Fig. 9(c)] is compatible with this Z3 discrete rotational
symmetry.
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C. Weak screening region

In the weak screening region (A � 1), the phase diagram
is covered by either charge density wave (smaller kF l region)
or possible non-Fermi liquid (larger kF l region). In the charge
density wave phase, �b(r) and �g(r) diverges at r = 0 at a
certain critical RG scale as

�b(r, ξc) = −�g(r, ξc) = A′′

r2
+ · · · (A′′ > 0).

Equivalently, the effective potentials in Eq. (76) will be dom-
inated by the following scattering channels:

�b(k2 − k1, k1 − k2 = 0) → +∞,

�g(k1 − k2, k2 − k2 = 0) → −∞,

for any k2 − k1 and any k1 − k2, respectively. As in the
previous section, the scatterings give rise to the 2kF density
wave of the electron band and that of the hole band. The
relative U(1) phase between the two density waves is locked
to be zero by the negatively large �g(k1 − k2, k2 − k2 = 0),

〈e†
+(k)e−(k)〉 = 〈h†

+(k)h−(k)〉 �= 0. (120)

The resulting ground state has a simple charge density mod-
ulation along the field direction (without any spin texture),
whose spatial pitch is 2π/(2kF ).

When the spatial pitch of the charge density modulation
becomes shorter than the magnetic length (1/(2kF l ) � 1), the
density wave undergoes a phase transition, and the ground
state becomes a critical phase. In the critical phase, �g(r) as
well as �g(r) get renormalized to the zero at any r. Since
�g(r) ≡ �g(r) ≡ 0, the coupled parquet RG equations are
decoupled into two RG equations,

d�μ(r)

dξ
= �2

μ(r) −
∫

dr′dr′′�μ(r′)�μ(r′′)K (r, r′, r′′),

(121)

for μ = e, b. Being attractive, both �b(r) and �e(r) converge
to universal functions of r. The universal functions are solu-
tions of the decoupled RG equation at larger RG scale, ξ � ξ1

where ξ1 is a certain short-range cutoff of the RG scale. The
functions have a “self-similar” structure (Fig. 10) [20],

�b(r, ξ � ξ1) = Wb,∗
(
(ξ − ξ1)

1
6 r

)
, (122)

�e(r, ξ � ξ ′
1) = We,∗

(
(ξ − ξ ′

1)
1
6 r

)
. (123)

Yakovenko previously discovered this critical phase in single
band model under the magnetic field and characterized this
critical phase as marginal Fermi liquid phase, where the
renormalization factor of the electron Green function vanishes
in the large ξ limit [20].

D. Topological excitonic insulator

The numerical solutions also found a three-dimensional
topological excitonic insulator phase between the charge
Wigner crystal phase and the excitonic insulator phase with
the XY -spin vortex lattice. Thereby, �e(r) and �g(r) diverge
at r = 0 as

�e(r) = −�g(r) = A′′

r2
+ · · · (A′′ > 0). (124)
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FIG. 10. Numerical solution of �b(r, ξ ) as a function of ρ ≡

(ξ − ξ1)
1
6 r) near for larger ξ = 0, 5, 25, 50, 100 (from bottom to

top) in the possible non-Fermi liquid phase with ξ1 = −40.2.

The divergence chooses Eqs. (92) and (93) as the dominant
scattering channels in Eq. (76), while the sign of �g(k1 −
k2 = 0, k2 − k2) is negative. Such scattering channels lead to
a formation of a “(spatially) odd-parity” excitonic pairing that
connects the same spatial coordinate within the xy plane;

〈e†
+(ky)h+(ky)〉 = −〈e†

−(ky)h−(ky)〉 = |�|eiθ . (125)

Due to the opposite sign between the two pairings at the right
and left Fermi points, the XY components that come from
these two Fermi points cancel each other. The phase has no
local XY component of the spin-1 moment.

As shown by the author previously, the excitonic insulator
phase can be regarded as a topological band insulator that has
a single copy of (2 + 1)D massless Dirac surface fermion at
its side surface (side surface is along the field direction; zx
plane or yz plane) [36]. The emergence of the surface state
results from the odd-parity excitonic pairing in the bulk and is
a direct consequence of a Z2 topological integer defined in a
bulk mean-field electronic Hamiltonian.

To explain this, note first that the bulk mean-field Hamilto-
nian takes a form of a sum of “one-dimensional” Hamiltonian,
as the excitonic pairing connects the same two-dimensional
spatial coordinate within the xy plane, Hmf ≡ ∫

dkyH1D(ky)
with

H1D(ky) ≡
∫

dkz(e†(kz, ky) h†(kz, ky))

×
(

M(kz, ky ) �(kz )e−iθ

�(kz )eiθ −M(kz, ky)

)(
e(kz, ky)
h(kz, ky)

)
,

(126)

M(kz, ky) ≡ h̄2k2
z

2m
− μ0 + Vc(kyl2), (127)

and μ0 ≡ Eg + Hz − 1
2 h̄ω. Here we went back to Eq. (7) and

wrote down explicitly the whole kz-dependence of the kinetic
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energy along the field. Besides, we put a confining potential
Vc(x) in the x gauge (Landau gauge) with x = kyl2. Vc(x) is
zero in the bulk region (|x| < L/2) and it becomes positively
large in the vacuum region (|x| > L/2). �(kz ) is the excitonic
pairing potential. From Eqs. (94) and (125), the potential is an
odd function of the momentum along the field,

�(kz = ±kF ) = ∓|�|
∫

dk(�e(k, 0) − �g(0, k)). (128)

When the U(1) phase in Eq. (125) is spatially uniform, one
can absorb the phase into a relative gauge between the electron
and hole bands. For a fixed θ , one defines a winding number
for the one-dimensional mean-field Hamiltonian [58,59],

Z ≡
∫

dkz

2π
(N3∂kz N1 − N1∂kz N3), (129)

with

h1D(kz, ky) ≡
(

M(kz, ky) �(kz )
�(kz ) −M(kz, ky )

)

≡ X3(kz, ky)σ3 + X1(kz, ky)σ1,

(X3, X1) ≡
√

X 2
3 + X 2

1 (N3, N1). (130)

Note that in the bulk region (Vc(kyl2) = 0), N3(kz, ky ) is neg-
ative for |kz| < kF and positive otherwise. Thus the winding
number must be an odd integer (±1), since N1(kz, ky) is an odd
function in kz. Meanwhile, in the vacuum region (Vc(kyl2) =
+∞), the confining potential becomes positively large, so that
the winding number is always zero; the electron band and the
hole band are “reinverted” and N3 is always positive for all kz.

The odd-even difference in the winding number in the
one-dimensional mean-field Hamiltonians causes the emer-
gence of the surface state in a boundary region between bulk
and vacuum. Namely, by regarding kyl2 as a “parameter”
of one-dimensional electronic system, one can expect that
the one-dimensional topological band insulator “phase” with
the odd integer winding (|kyl2| < L/2) and one-dimensional
trivial band insulator phase with the zero winding (|kyl2| >

L/2) must be intervened by a one-dimensional topological
“critical point” that comes at the boundaries (|kyl2| 	 L/2).
In fact, since the excitonic pairing is spatially odd, the critical
point is generally described by the (1 + 1)D massless Dirac
fermion with a linear dispersion along the momentum kz at
kz = 0. Besides, M(kz = 0, ky) changes its sign at |kyl2| 	
L/2. Thus the mean-field Hamiltonian forms the (2 + 1)D
massless Dirac Hamiltonian in the kz-ky plane around kz = 0
and |kyl2| 	 L/2;

h1D(kz, ky) = Ckzσ1 ± D

(
kyl2 ∓ L

2

)
σ3 + O

(
k2

z , (δky)2
)
.

Note that the massless surface Dirac fermion has helical
velocities in any directions within the side surface (yz plane
in the x gauge). It has a helical velocity not only along the
field direction (‖ z) but also along the perpendicular direction
(‖ y). From these observations, the excitonic insulator phase
with the odd-parity excitonic pairing can be regarded as a
three-dimensional topological band insulator in the quantum
limit.

x

z

H

θ

y
x

z

H

X

Z

θ

θX

θ

θ

(a) (b)

FIG. 11. Geometry of the system (a) under tilted magnetic field
along Z ≡ −x cos θ + z sin θ with a side surface (yz plane) and
(b) under the magnetic field along z with a tilted “side” surface
(yZ plane). The system has the translational symmetry along the y
direction.

In the next section, we will describe the effect of the tilted
magnetic field on the topological surface state on the side
surface.

VII. EFFECT OF TITLED MAGNETIC FIELD
ON TOPOLOGICAL SURFACE STATES

When the magnetic field is tilted from the z axis to Z
axis with Z ≡ −x sin θ + z cos θ (0 � θ < π ), the excitonic
pairing in the bulk remains intact; the three-dimensional
semimetal model has a spatially isotropic effective mass
[Eqs. (4) and (5)]. Meanwhile, the (2 + 1)D massless surface
Dirac fermion on the side surface (yz plane) forms Landau
levels due to a finite out-of-surface component of the magnetic
field. Equivalently, we can consider the same situation by
tilting the “side” surface from the yz plane to the yZ plane,
and keep the field along the z axis (Fig. 11).

Specifically, we add in Eqs. (5) and (6) a confining po-
tential Vc(X ) that depends only on X ≡ x cos θ + z sin θ . For
simplicity, we take the system is translationally symmetric
along the y direction, so that −ih̄∂y in Eqs. (5) and (6) is
replaced by h̄ky. This gives out

H1D(ky)

=
∫

dx
∫

dz
(
e†(x, z, ky) h†(x, z, ky )

)
ĥ1D(ky, x, z,∇x,∇z )

×
(

e(x, z, ky )
h(x, z, ky)

)
, (131)

ĥ1D(ky, x, z,∇x,∇z )

≡
(

M(ky, x, z,∇x,∇z ) i�0∇z

i�0∇z −M(ky, x, z,∇x,∇z )

)
, (132)

M(ky, x, z,∇x,∇z )

≡ − h̄2∇2
z

2m
− h̄2∇2

x

2m
+ 1

2
mω2(kyl2 + x)2 + Vc(X ). (133)

Here we assume that the odd-parity excitonic pairing is linear
in kz, �(kz ) ≡ �0kz. The confining potential Vc(X ) takes a
constant value, Vc(X ) = −Eg − Hz, for those X in the bulk
region. Vc(X ) becomes increasingly large for those X in the
vacuum region. In the following, we obtain the eigenstates and
eigenvalues of this mean-field Hamiltonian, that are localized
at the boundary region. To this end, we Taylor-expand Vc(X )
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around the boundary and keep only up to the linear term in the
spatial coordinate,

Vc(X ) = Vc

(
X = L

2

)
+

(
X − L

2

)
∂XVc(X )|X= L

2
+ · · ·

= V0 + V1X + O
((

X − L

2

)2
)

(134)

with positive V1. We define the boundary, L, such that for θ =
0, M(ky, kz = 0) changes its sign at X = x = −kyl2 − V1

mω2 =
L
2 . This definition of L gives out

h̄ω

2
+ V0 + 1

2
V1L + V 2

1

2mω2
= 0. (135)

The Taylor expansion will be a priori justified, provided that
the potential varies in space much slower than the magnetic
length; l∂XVc � h̄ω (see below).

Under a proper basis change of the 2 by 2 Pauli matrices,
ĥ1D(ky) thus given can be expressed in terms of raising and
lower operators,

ĥ1D(ky) ≡
(

0 βa† + h̄ωb†b
βa + h̄ωb†b 0

)
, (136)

with β ≡ √
2�0V1 sin θ . The raising and lower operators,

[a, a†] = [b, b†] = 1, are defined in the following way:

a† = − h̄2∇2
z̃

2mβ
+ 1√

2

(
1

l⊥
z̃ − l⊥∇z̃

)
, (137)

a = − h̄2∇2
z̃

2mβ
+ 1√

2

(
1

l⊥
z̃ + l⊥∇z̃

)
, (138)

b† = 1√
2

(
1

l
x̃ − l∇x̃

)
, b = 1√

2

(
1

l
x̃ + l∇x̃

)
. (139)

with l⊥ ≡
√

�0
V1 sin θ

, x̃ ≡ x − x0, z̃ ≡ z − z0, and

x0 ≡ −
(

kyl2 + V1 cos θ

mω2

)
,

z0 ≡ cos θ

sin θ

(
kyl2 + V1 cos θ

2mω2

)
− 1

V1 sin θ

(
h̄ω

2
+ V0

)
.

The raising (lowering) operators, a† (a) and b† (b), have
ladders of number states, |n〉a, |n〉b,

a|0〉a = 0, a†|n − 1〉a = √
n|n〉a,

b|0〉b = 0, b†|n − 1〉b = √
n|n〉b.

These number states are functions only of z and x. They are
localized around z = z0 and x = x0 with localization length
l⊥ and l , respectively. Especially, |0〉a is given by the Airy
function.

ĥ1D(ky) thus given has following set of eigenstates and
eigenvalues;

φ0(x, z) ≡
(|0〉a|0〉b

0

)
(E = 0), (140)

φ±|n|(x, z) ≡ 1√
2

( |n〉a|0〉b

±|n − 1〉a|0〉b

)
(E = ±|En|), (141)

with n � 1 and En ≡ √
2�0 sin θH |n|. The ky dependence is

encoded into x0 and z0 in the number states. Irrespective of
ky, the eigenstates are localized around X = L

2 along the X
direction;

X0 ≡ x0 cos θ + z0 sin θ

= − 1

V1

(
h̄ω

2
+ V0

)
− 1

2

V1 cos2 θ

mω2
= L

2
+ O

(
l2

λ

)
.

(142)

Here, λ is a characteristic length scale with which the confin-
ing potential varies in space around the boundary, λV1 ≡ h̄ω.
Provided that λ � l , the eigenstates with different ky are all
localized at X = L/2. The localized feature of the eigenstates
a priori justifies the Taylor expansion of Vc(X ) around X =
L/2 in ĥ1D(ky).

The eigenstates with different ky are energetically degen-
erate in each sLL and they are localized at different locations
along the Z axis,

Z0 ≡ −x0 sin θ + z0 cos θ

= cos θ

sin θ

L

2
+ kyl2

sin θ
+ O

(
l2

λ

)
. (143)

Accordingly, the degeneracy at each surface Landau level is
proportional to an area of the side surface and the out-of-
surface component of the magnetic field,

ky = 2πm

Ly

(
m = 1, 2, . . . ,

LyLZ sin θ

2π l2

)
. (144)

In conclusion, the (2 + 1)D massless surface Dirac state
in the topological excitonic insulator under the tilted mag-
netic field forms a sequence of the surface Landau levels,
En = sgn(n)

√
2�0H⊥|n| (n = . . . ,−1, 0, 1, . . . ). Each sur-

face Landau level has an degeneracy of LyLZ sin θ/(2π l2),
where H⊥ is the out-of-surface component of the magnetic
field, H⊥ ≡ H sin θ .

VIII. SUMMARY AND DISCUSSION ON EXPERIMENT

In this paper, we clarify comprehensive ground-state phase
diagrams of a three-dimensional semimetal model in the quan-
tum limit. The semimetal model has a pair of electron and hole
pocket. We study two limiting cases at the charge neutrality
point, (i) the model with screened Coulomb interaction and
(ii) the model with an effective attractive interaction mediated
by the screened electron-phonon interaction. The results show
rich phase diagram structures as a function of the Fermi wave-
length and the screening length (normalized by the magnetic
length). In the repulsive interaction case, we found that an
Ising-type spin density wave phase /excitonic insulator phase
with ferro-type order of XY spin moment is stabilized in the
weak / strong screening regime, respectively. In the attrac-
tive interaction case, we found that the plain charge density
phase or a possible non-Fermi liquid phase is stabilized for
weak screening regime, while from the intermediate to strong
screening regimes, the ground state is dominated by charge
Wigner crystal phase, topological excitonic insulator phase,
and excitonic insulator with a two-dimensional vortex lattice
of the XY component of the spin-1 moment.
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The topological excitonic insulator phase in the attractive
interaction case is an three-dimensional interaction-driven
topological band insulator in the quantum limit. Thereby,
the odd-parity excitonic pairing in the bulk gives rise to a
single copy of the (2 + 1)D massless surface Dirac fermion
state at those surfaces parallel to the magnetic field. We
show that when an in-plane transport is dominated by the
surface transport through the (2 + 1)D massless Dirac state,
the in-plane resistivity must show a

√
H⊥-type surface SdH

oscillation under canted magnetic field H⊥.
Recently, a comprehensive resistivity measurement in

graphite under high magnetic field has been carried out up to
90 T [13]. The graphite under the high magnetic field (the field
⊥ the graphene plane) exhibits consecutive metal-insulator
transitions as well as insulator-metal re-entrant transition
at low temperature in an electric resistivity along the out-
of-plane (field) direction [12–14,16,17,60]. Experimentally,
there exists two insulating phases, one insulating phase in
the range of 30 T < H < 53 T and the other in the range
of 53 T < H < 75 T. The recent experiment shows that
the resistivity within the in-plane direction shows unusual
“metallic” behavior in the second “insulating” phase at 53 T
< H < 75 T [12,13,16,17].

The semimetal model studied in this paper can be applica-
ble to the latter field regime (53 T < H < 75 T), where an
electron pocket locates around the K point and a hole pocket
locates around the H point in the first Brillouin zone of the
graphite under H . Previously, the authors argued that the low-
T insulator phase in the range of 53 T < H < 75 T could be
the topological EI phase, where the unusual metallic in-plane
resistivity was attributed to the surface transport through the
(2 + 1)D massless Dirac states [36].

A relevant electronic energy band in graphite under the
high magnetic field has a band width of 40 meV, the lattice
constant along the out-of-plane direction c0 is 6.7 Å, and
the relative permittivity ε in graphite is from 9 to 16. We
assume that kF = π/(6c0) for H = 64 T. For H = 64 T, this
gives out h̄vF = −∂t cos(kc0)/∂k|k=kF = tc0/2 = 10 meV
×6.7 Å with t = 20 meV, log10 B = 2 log10(2kF l ) 	 1.4.
From Eq. (45), 1/A = (4e2)/(h̄πvF ε) 	 22 and log10 A 	
−1.34. The sound velocity in graphite along the c0 axis is
around 500 m/s. Carbon is 12 amu heavy (M = 12 amu), and

the density of carbon atom in graphite is ρ0 = 0.12, . . . , Å
−3

.
From low-carrier density feature in graphite in the zero field
(at most n = 1018 cm−3), we take Z = 10−5. For H = 64 T
with 1/A = 22, this set of parameters give a ratio between the
overall factor of the effective attractive interaction mediated
by the screened electron-phonon interaction and that of the
screened repulsive Coulomb interaction. It turns out that
the effective attractive interaction is much smaller than the
screened repulsive Coulomb interaction,

4πe2Al2

ε
:

ρ0

Mc2

(
4πe2Al2Z

ε

)2

= 1 : 2.5 × 10−7. (145)

The small value of the effective attractive interaction is mainly
because of tiny electron valence of charged nucleus ion
(carbon atom), Z . The tiny Z even overcomes very large
screening length, e.g., lscr ≡ √

Al = 6.8 Å for H = 64 T.
Thereby, if we simply add these two interactions with the

opposite signs at the initial RG scale, the repulsive interaction
clearly dominates over the attractive interaction. This would
be the case even if we used 100 times larger value of Z than
the value given above. From this observation, we consider
in the following the case with only the repulsive Coulomb
interaction.

In Fig. 1, the parameter point with (log10 A, log10 B) 	
(−1.34, 1.4) corresponds to the EI phase with the broken U(1)
spin rotational symmetry around the field direction. Please
note that the excitonic pairing in the EI phase in Fig. 1 has
the spatially even parity [see Eqs. (90) and (91)], and thereby
it is nontopological EI instead of the topological EI. In fact,
the nontopological EI phase seems to be consistent with the
second “insulating” phase in a recent graphite experiment.
The recent in-plane resistivity experiment under the canted
magnetic field does not show any SdH oscillation as a function
of the canted component of the magnetic field [13], unlike the
expectation from the surface transport in the topological EI
phase.

Depending on other factors, the excitonic pairing in the
nontopological EI phase in the repulsive interaction case
could be formed between electron band and hole band at
different spatial coordinates within the xy plane, as was the
case in Sec. VI B and Fig. 9(c). For example, a ratio be-
tween A and A′ may not be 1. A itself could be smaller by
several factors than the value given above, due to additional
screening from the higher LLs and from the other valley in
graphite.

The excitonic pairings between different spatial coordi-
nates within the xy plane could induce coherent carrier trans-
ports within the plane. Since the excitonic pairing is between
↑ spin electron-type band and ↓ spin hole-type band, the
transport must be free from pinning effect due to charged
impurities [61]. Thereby, we can expect that such EI phase
with broken translational symmetries within the xy plane may
give a simple theory explanation for the in-plane metallic
bulk-transport behavior in the second ‘insulating’ phase of
53 T < H < 75 T in the graphite experiment [12,13,16,17].
In fact, the recent transport experiment up to 90 T shows
that the in-plane resistivity in the second ‘insulating’ phase is
nearly constant in the field [13]. This observation is consistent
with the two-dimensional XY -spin vortex lattice shown in
Fig. 9(c) whose lattice constant is proportional to the magnetic
length l . Since the lattice constant within the xy plane is
scaled by l , an Aharonov-Bohm (AB) flux that penetrates
through a unit cell of the two-dimensional spin vortex lattice
is independent of the field. This results in an absence of any
SdH-like oscillation in the in-plane transport inside the second
“insulating” phase. Nonetheless, for further understandings
of the unusual transport in graphite as well as the re-entrant
insulator-metal transition, we need further theoretical studies
and relevant results will be discussed elsewhere.
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APPENDIX A: RPA SCREENING

The interaction potentials that carry the zero momentum along the field, i.e., �μν in Eq. (16), are screened by low-energy
density fluctuations within each branch (right-mover or left-mover branch) of the electron-type band or hole-type band. The
screened interaction comprises of a sum of the bare interaction part and an effective interaction mediated by the density
fluctuations [51]. According to the linear response theory, the effective interaction part is given by a retarded correlation functions
between the density fluctuations;

H1 ≡ 1

2

∫
d p

2π

∫
d (lQ1)d (lQ′

1)d (lQ′
2)d (lQ2)

× �μν (Q1, Q′
1, Q′

2, Q2; I0)
∫

d p2

2π
a†

μ(Q′
1, p2 + p)aμ(Q′

2, p2)
∫

d p1

2π
a†

ν (Q1, p1 − p)aν (Q2, p1)

+ 1

2h̄

∑
μ,ν,λ,ψ

∫
d p′

2π

d p

2π

∫
d (lQ1)d (lQ′

1)d (lQ′
2)d (lQ2)

∫
d p2

2π
a†

μ(Q′
1, p2+ p′)aμ(Q′

2, p2)
∫

d p1

2π
a†

ν (Q1, p1 − p)aν (Q2, p1)

×
∫

d (lQ′′
1 )d (lQ′′′

1 )d (lQ′′′
2 )d (lQ′′

2 ) �μλ(Q′′
1, Q′

1, Q′
2, Q′′

2; I0)DR
λψ (−p′, p, ω = 0)�ψν (Q1, Q′′′

1 , Q′′′
2 , Q2; I0) (A1)

with μ, ν, λ,ψ = e+, e−, h+, h− and Eq. (18). The first term in the right-hand side is the bare interaction part and second term
is the effective interaction part. The retarded correlation function DR

λψ (−p′, p, ω) is obtained from a time-ordered correlation
function in the static limit, DR

λψ (−p′, p, ω = 0) = DT
λψ (−p′, p, ω = 0) with

iDT
λψ (−p′, p, t − t ′) ≡ 〈
0|T {δT̂λ,H (Q′′

1, Q′′
2,−p′, t )δT̂ψ,H (Q′′′

1 , Q′′′
2 , p, t ′)}|
0〉

〈
0|
0〉 ,

DT
λψ (−p′, p, ω) ≡

∫ ∞

−∞
dteiωt DT

λψ (−p′, p, t ).

Here, |
0〉 is a many-body ground-state wave function and (real-)time dependence of the operator is in the Heisenberg picture.
δT̂μ(Q1, Q2, q) is the density fluctuation operator within every branch μ = e+, e−, h+, h−,

T̂μ(Q1, Q2, p) ≡
∫

d p1

2π
a†

μ(Q1, p1 + p)aμ(Q2, p1),

δT̂μ(Q1, Q2, p) ≡ T̂μ(Q1, Q2, p) − 〈
0|T̂μ(Q1, Q2, p)|
0〉
〈
0|
0〉 .

According to the Feynman-Dyson perturbation theory [51,52], the time-ordered correlation function is given by a proper part of
the polarization function. The RPA approximates the proper part by its lowest order in the electron correlation. This gives out

DT,RPA
λψ (−p′, p, ω)

= δ(p′ − p){δ(l (Q′′
2 − Q′′′

1 ))δ(l (Q′′′
2 − Q′′

1 ))�0,λ(ω)δλψ + 1

2π h̄
�λψ (Q′′′

2 , Q′′
2, Q′′

1, Q′′′
1 ; I0)�0,λ(ω)�0,ψ (ω)

+ 1

(2π h̄)2

∫
d (lQ̃1)d (lQ̃2)�0,λ(ω)�λρ (Q̃2, Q′′

2, Q′′
1, Q̃1; I0)�0,ρ (ω)�ρψ (Q′′′

2 , Q̃1, Q̃2, Q′′′
1 ; I0)�0,ψ (ω) + · · · }, (A2)

where the summation over ρ = e+, e−, h+, h− is omitted in the right hand side. In the static limit, the bare polarization function
�0,λ(ω) for λ = e+, e−, h+, h− is given by Eqs. (33) and (34). In terms of the homomorphic nature of the interaction potential
functional, Eq. (29), Eq. (A1) with the RPA correlation function Eq. (A2) reduces to

H1 = 1

2

∑
μ,ν

∫
d pd p1 d p2

(2π )3

∫
d (lQ1) · · · d (dQ2)a†

μ(Q′
1, p2 + p)aμ(Q′

2, p2)a†
ν (Q1, p1 − p)aν (Q2, p1)�μν (Q1, Q′

1, Q′
2, Q2; I0),

(A3)

where I0(qx, ky) is given by Eq. (31).
The interaction potentials that carry 2kF momentum along the field, �+−

μν in Eq. (17), are also screened by 2kF density
fluctuations. As above, the screened interaction is characterized by the retarded density correlation function between the 2kF
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density fluctuation operators;

H2 =
∑

μ,ν=e,h

∫
d p

2π

∫
d (lQ1)

∫
d (lQ′

1)
∫

d (lQ′
2)

∫
d (lQ2)

× �+−
μν (Q1, Q′

1, Q′
2, Q2; I2kF )

∫
d p2

2π
a†

μ+ (Q′
1, p2 + p)aμ− (Q′

2, p2)
∫

d p1

2π
a†

ν− (Q1, p1 − p)aν+ (Q2, p1)

+ 1

h̄

∑
μ,ν,λ,ψ

∫
d p′

2π

d p

2π

∫
d (lQ1)d (lQ′

1)d (lQ′
2)d (lQ2)

∫
d p2

2π
a†

μ+ (Q′
1, p2 + p′)aμ− (Q′

2, p2)

×
∫

d p1

2π
a†

ν− (Q1, p1 − p)aν+ (Q2, p1)
∫

d (lQ′′
1 )d (lQ′′′

1 )d (lQ′′′
2 )d (lQ′′

2 ) �+−
μλ (Q′′

1, Q′
1, Q′

2, Q′′
2; I2kF )DR,−+

λψ (−p′, p, ω = 0)

× �+−
ψν (Q1, Q′′′

1 , Q′′′
2 , Q2; I2kF ). (A4)

In the static limit (ω = 0), the retarded correlation function DR,−+
λψ (−p′, p, ω) is identical to the corresponding time-ordered

correlation function;

iDT,−+
λψ (−p′, p, t − t ′) ≡ 〈
0|T {δŜ−

λ,H (Q′′
1, Q′′

2, t )δŜ+
ψ,H (Q′′′

1 , Q′′′
2 , t ′)}|
0〉

〈
0|
0〉 ,

DT,−+
λψ (−p′, p, ω) =

∫ ∞

−∞
dteiωt DT,−+

λψ (−p′, p, t ).

δŜ±
μ is the ±2kF density fluctuation operator within electron pocket (μ = e) or hole pocket (μ = h),

Ŝ±
μ (Q1, Q2, p) ≡

∫
d p1

2π
a†

μ± (Q1, p1 + p)aμ∓ (Q2, p1),

δŜ±
μ (Q1, Q2, p) ≡ Ŝ±

μ (Q1, Q2, p) − 〈
0|Ŝ±
μ (Q1, Q2, p)|
0〉
〈
0|
0〉 .

Within the RPA, the time-ordered correlation function is given by a bare polarization function that carries 2kF momentum;

DT,−+
λψ (−p′, p, ω)

= δ(p′ − p)

{
δ(l (Q′′

2 − Q′′′
1 ))δ(l (Q′′′

2 − Q′′
1 ))�−+

0,λ (ω)δλψ + 1

2π h̄

+−

λψ (Q′′′
2 , Q′′

2, Q′′
1, Q′′′

1 ; I2kF )�−+
0,λ (ω)�−+

0,ψ (ω)

+ 1

(2π h̄)2

∫
d (lQ̃1)d (lQ̃2)�−+

0,λ (ω)
+−
λρ (Q̃2, Q′′

2, Q′′
1, Q̃1; I2kF )�−+

0,ρ (ω)
+−
ρψ (Q′′′

2 , Q̃1, Q̃2, Q′′′
1 ; I2kF )�−+

0,ψ (ω) + · · ·
}
,

(A5)

where the polarization function at pz = 2kF , �−+
0,λ (ω = 0), is given by Eq. (35). In terms of the homomorphic relation, Eq. (30),

Eq. (A4) with Eq. (A5) reduces to

H2 =
∑
μ,ν

∫
d pd p1 d p2

(2π )3

∫
d (lQ1) · · · d (lQ2)a†

μ+ (Q′
1,p2+ p)aμ− (Q′

2,p2)a†
ν− (Q1, p1− p)aν+ (Q2, p1)�+−

μν (Q1, Q′
1, Q′

2, Q2; I2kF ),

(A6)

where I2kF (qx, ky) is given by Eq. (32).

APPENDIX B: DERIVATION OF PARQUET RG EQUATION

A derivation of the one-loop parquet RG equation can be implemented by a standard momentum shell renormalization.
Thereby, we begin with a partition function of the interacting fermion model, Eqs. (47) and (48), and decompose the fermionic
field into fast mode (e±,>, h±,>) and slow mode (e±,<, h±,<) in the momentum space

e±(Q, p, ω) =
{

e±,<(Q, p, ω) (|p| < �′)
e±,>(Q, p, ω) (�′ < |p| < �)

, (B1)

h±(Q, p, ω) =
{

h±,<(Q, p, ω) (|p| < �′)
h±,>(Q, p, ω) (�′ < |p| < �)

(B2)
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with �′ ≡ �e− ln b. The integration of the fast mode in the partition function leads to a renormalization of the effective action for
the slow mode,

Z =
∫

De<Dh<e−S0,<−S1,<

∫
De>Dh>e−S0,>−S1,> = Z0,>

∫
De<Dh< e−S0,<−S1,<e−〈S1,>〉0,>+ 1

2 (〈S2
1,>〉0,>−〈S1,>〉2

0,> )+···, (B3)

where

〈· · · 〉0,> = 1

Z0,>

∫
De>Dh>e−S0,> · · · , Z0,> ≡

∫
De>Dh>e−S0,> ,

and

S0,<(>) =
∑

σ

∫
dlω

2π

∫
|p|<�′(�′<|p|<�)

d p
∫

dQ{(−iω + σvF p)e†
σ,<(>)eσ,<(>) + (−iω − σvF p)h†

σ,<(>)hσ,<(>)}.

S1,< is the interaction part that is comprised only of the slow modes. S1,> is the other part of the interaction term that contains
the fast modes. 〈S1,>〉0,> in Eq. (B3) renormalizes the Fermi velocity of the electron and hole pocket. Due to a particle-hole
symmetry that exchanges the electron ahd hole bands (me = mh), the renormalization of the Fermi velocity of the electron band
and that of the hole band are identical to each other at the charge neutrality point. At the one-loop level of the renormalization
group (RG), the Fermi velocity renormalization can be always absorbed into a scale change of the RG [see Eq. (B14)]. Thereby,
we do not keep track of the Fermi velocity renormalization from 〈S1,>〉0,> in Eq. (B3).

〈S2
1,>〉0,> − 〈S1,>〉2

0,> gives rise to a renormalization of the interaction potentials. To calculate the renormalization, we have
only to consider the following part of S1,>:

S1,> =
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2Wb(k1 − k2){e†

+,>e†
−,>e−,<e+,< + e†

+,<e†
−,<e−,>e+,> + e†

+,>e†
−,<e−,>e+,<

+ e†
+,<e†

−,>e−,<e+,>} +
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2Wd (k1 − k2){h†

−,>h†
+,>h+,<h−,< + h†

−,<h†
+,<h+,>h−,>

+ h†
−,>h†

+,<h+,>h−,< + h†
−,<h†

+,>h+,<h−,>} +
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2We(k1 − k2){e†

+,>h†
+,>h+,<e+,<

+ e†
+,<h†

+,<h+,>e+,> + e†
+,>h†

+,<h+,>e+,< + e†
+,<h†

+,>h+,<e+,>} +
∫

1,2,3

∫
dk1dq1dk2dq2 eik1∧k2We(k1 − k2)

× {h†
−,>e†

−,>e−,<h−,< + h†
−,<e†

−,<e−,>h−,> + h†
−,>e†

−,<e−,>h−,< + h†
−,<e†

−,>e−,<h−,>}

+
∫

1,2,3

∫
dk1dq1dk2dq2 ei(k1q1+k2q2 )Wg(k1 − k2){e†

+,<h†
−,>h+,>e−,< + e†

+,<h†
−,>h+,<e−,>

+ e†
+,>h†

−,<h+,>e−,< + e†
+,>h†

−,<h+,<e−,>} +
∫

1,2,3

∫
dk1dq1dk2dq2 e−i(k1q1+k2q2 )W ∗

g (k1 − k2)

× {h†
+,<e†

−,>e+,>h−,< + h†
+,<e†

−,>e+,<h−,> + h†
+,>e†

−,<e+,>h−,< + h†
+,>e†

−,<e+,<h−,>} (B4)

(the others do not contribute to the renormalization of the interaction potentials at the one-loop level RG).
〈S2

1,>〉0,> − 〈S1,>〉2
0,> in Eq. (B3) gives out the following one-loop renormalization to the interaction potentials in Eqs. (48);

dWb(k) = 1

(2π )3l2

d�

vF �

∫
dk′{Wb(k′)Wb(k − k′)(1 − e−ik∧k′

) + Wg(k′,−q′)W ∗
g (k − k′,−q + q′)}, (B5)

dWd (k) = 1

(2π )3l2

d�

vF �

∫
dk′{Wd (k′)Wd (k − k′)(1 − e−ik∧k′

) + Wg(k′,−q′)W ∗
g (−k + k′, q − q′)}, (B6)

dWe(k) = 1

(2π )3l2

d�

vF �

∫
dk′{We(k′)We(k − k′)(1 − e−ik∧k′

) + e−ikq+ikq′+ik′qWg(k′)W ∗
g (k − k′)}, (B7)

dWg(k) = 1

(2π )3l2

d�

vF �

∫
dk′Wg(k − k′){Wb(k′,−q′) + Wd (−k′, q′) + e−ikq′−ik′q+ik′q′

(We(k′) + We(−k′))}, (B8)

with d� ≡ � ln b k ≡ (k, q), k′ ≡ (k′, q′), and dk′ ≡ dk′dq′. After the integration of the fast modes, we scale the momentum
along the field (p), single-particle frequency (ω) and the field operators (eσ and hσ ) as

p = p′/b, ω = ω′/b, eσ (Q, p, ω) = e
3
2 ln be′

σ (Q, p′, ω′), hσ (Q, p, ω) = e
3
2 ln bh′

σ (Q, p′, ω′). (B9)
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This (tree-level) scale change keeps S0,< as well as S1,< to be invariant, while putting �′ in S0,< and S1,< back to �. Accordingly,
Eqs. (B5)–(B8) lead to the following one-loop renormalization group equations for the interaction potentials:

dWb(k)

dξ
=

∫
dk′Wb(k′)Wb(k − k′)(1 − e−ik∧k′

) +
∫

dk′Wg(k′,−q′)W ∗
g (k − k′,−q + q′), (B10)

dWd (k)

dξ
=

∫
dk′Wd (k′)Wd (k − k′)(1 − e−ik∧k′

) +
∫

dk′Wg(k′,−q′)W ∗
g (−k + k′, q − q′), (B11)

dWe(k)

dξ
=

∫
dk′We(k′)We(k − k′)(1 − e−ik∧k′

) +
∫

dk′ e−ikq+ik′q+ikq′
Wg(k′)W ∗

g (k − k′), (B12)

dWg(k)

dξ
=

∫
dk′{Wb(k′,−q′) + Wd (−k′, q′) + e−ikq′−ik′q+ik′q′

(We(k′) + We(−k′))}Wg(k − k′) (B13)

with

dξ ≡ 1

(2π )3l2

d�

vF �
. (B14)

Note that the above one-loop RG equations as well as the initial forms of the interaction potentials, Eqs. (49)–(51), respect the
following symmetries:

W ∗
b (k, q) = Wb(k, q) = Wb(k,−q) = Wb(−k, q), W ∗

d (k, q) = Wd (k, q) = Wd (k,−q) = Wd (−k, q),

W ∗
e (k, q) = We(k,−q) = We(−k, q), W ∗

g (k, q) = Wg(k,−q) = Wg(−k, q).

Using these symmetries, the RG equations can be also written in Eqs. (52)–(55).
Consider the Fourier transform of Wμ(k),

Fμ(r) ≡
∫

dke−ikrWμ(k), (B15)

Wμ(k) ≡
∫

dr
(2π )2

eikrFμ(r), (B16)

for μ = b, d, e, g with

F̃g(r) ≡ e−irxry Fg(r), (B17)

and r ≡ (rx, ry), k ≡ (k, q). In terms of this dual representation, Eqs. (52)–(55) reduce to

dFb/d (r)

dξ
= F 2

b/d (r) + F̃g(r)F̃g(−r) −
∫

dr′dr′′

(2π )2
Fb/d (r′)Fb/d (r′′)e−ir∧r′−ir′∧r′′−ir′′∧r, (B18)

dFe(r)

dξ
= F 2

e (r) +
∫

dr′dr′′

(2π )2
F̃g(r′)F̃g(−r′′)ei(rxr′

y+r′
xry )−i(rxr′′

y +r′′
x ry ) −

∫
dr′dr′′

(2π )2
Fe(r′)Fe(r′′)e−ir∧r′−ir′∧r′′−ir′′∧r, (B19)

dF̃g(r)

dξ
= F̃g(r)(Fb(r) + Fd (r)) + 2

∫
dr′dr′′

(2π )2
Fe(r′)F̃g(r′′)e−i(r′

xry+rxr′
y )+i(r′′

x r′
y+r′

xr′′
y ). (B20)

From Eqs. (49)–(51), the initial function forms for Fμ(r) (μ = b, d, e) and F̃g(r) are as follows:

Fb(r) = Fd (r) =
∫

dke−ikrI0(q, k) − 2π I2kF (rx,−ry), (B21)

Fe(r) =
∫

dke−ikrI0(q, k), (B22)

F̃g(r) = 2π I2kF (rx, ry), (B23)

with k ≡ (k, q). These initial forms as well as the RG equations in the dual space respect the following symmetries:

Fμ(rx, ry) = F ∗
μ (rx, ry) = Fμ(−rx, ry) = Fμ(rx,−ry), (B24)

F̃g(rx, ry) = F̃ ∗
g (rx, ry) = F̃g(−rx, ry) = F̃g(rx,−ry). (B25)
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Accordingly, Eqs. (B18)–(B20) can be rewritten into more symmetric forms,

dFb/d (r)

dξ
= F 2

b/d (r) + F̃g(r)F̃g(r) −
∫

dr′dr′′

(2π )2
Fb/d (r′)Fb/d (r′′)e−ir∧r′−ir′∧r′′−ir′′∧r, (B26)

dFe(r)

dξ
= F 2

e (r) +
∫

dr′dr′′

(2π )2
F̃g(r′)F̃g(r′′)ei(r∧r′−r′′∧r) −

∫
dr′dr′′

(2π )2
Fe(r′)Fe(r′′)e−ir∧r′−ir′∧r′′−ir′′∧r, (B27)

dF̃g(r)

dξ
= F̃g(r)(Fb(r) + Fd (r)) + 2

∫
dr′dr′′

(2π )2
Fe(r′)F̃g(r′′)ei(r∧r′+r′∧r′′ ). (B28)

The RG equations thus obtained as well as the initial forms have the following O(2) symmetry:

Fμ(R̂θ r) = Fμ(r) ≡ �μ(r), (B29)

F̃g(R̂θ r) = F̃g(r) ≡ �g(r), (B30)

R̂θ ≡
(

cos θ sin θ

− sin θ cos θ

)
. (B31)

with r ≡ |r| for μ = b, d, e and arbitrary θ ∈ (0, 2π ]. Utilizing this symmetry, we can reduce Eqs. (B26)–(B28) into the RG
equations for �μ(r) (μ = b, d, e) and �g(r), Eqs. (63)–(65).
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