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We study theoretically the magnetoresistance oscillations near a half-filled lowest Landau level (ν = 1/2)
that result from the presence of a periodic one-dimensional electrostatic potential. We use the Dirac composite
fermion theory of Son [Phys. Rev. X 5, 031027 (2015)], where the ν = 1/2 state is described by a (2 + 1)-
dimensional theory of quantum electrodynamics. We extend previous work that studied these oscillations in
the mean-field limit by considering the effects of gauge-field fluctuations within a large flavor approximation.
A self-consistent analysis of the resulting Schwinger-Dyson equations suggests that fluctuations dynamically
generate a Chern-Simons term for the gauge field and a magnetic field–dependent mass for the Dirac composite
fermions away from ν = 1/2. We show how this mass results in a shift of the locations of the oscillation minima
that improves the comparison with experiment [Kamburov et al., Phys. Rev. Lett. 113, 196801 (2014)]. The
temperature-dependent amplitude of these oscillations may enable an alternative way to measure this mass. This
amplitude may also help distinguish the Dirac and Halperin, Lee, and Read composite fermion theories of the
half-filled Landau level.
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I. INTRODUCTION AND SUMMARY

A. Motivation

In recent years, there has been a renewed debate about
how effective descriptions of the non-Fermi-liquid state at
a half-filled lowest Landau level (ν = 1/2) of the two-
dimensional electron gas might realize an emergent Landau-
level particle-hole (PH) symmetry [1,2], found in electrical
Hall transport [3–5] and numerical [6,7] experiments. The
seminal theory of the half-filled Landau level of Halperin,
Lee, and Read (HLR) [8], which has received substantial
experimental support [9], describes the ν = 1/2 state in terms
of nonrelativistic composite fermions in an effective magnetic
field that vanishes at half-filling (see [10,11] for pedagogical
introductions). However, the HLR theory appears to treat
electrons and holes asymmetrically [12,13]. For instance, it
is naively unclear how composite fermions in zero effective
magnetic field might produce the Hall effect σ cf

xy = − 1
4π

that
PH symmetry requires [12]. (We use the convention kB = c =
h̄ = e = 1).

Two lines of thought point towards a possible resolution.
The first comes by way of an a priori different composite
fermion theory, introduced by Son [14]. In this Dirac com-
posite fermion theory, the half-filled Landau level is described
by a (2 + 1)-dimensional theory of quantum electrodynamics
in which PH symmetry is a manifest invariance. This theory
is part of a larger web of (2 + 1)-dimensional quantum field
theory dualities [15]. On the other hand, it has recently been
shown that HLR mean-field theory can produce PH sym-
metric electrical response, if quenched disorder is properly
included in the form of a precisely correlated random chem-
ical potential and magnetic flux [16–18]. (Mean-field theory
means that fluctuations of an emergent gauge-field coupling
to the composite fermion are ignored). Furthermore, both
composite fermion theories yield identical predictions for a

number of observables in mean-field theory [14,16,19–21],
e.g., thermopower at half-filling and magnetoroton spectra
away from half-filling. These results suggest that the HLR
and Dirac composite fermion theories may belong to the same
universality class.

To what extent do these results extend beyond the mean-
field approximation? How do alternative experimental probes
constrain the description of the ν = 1/2 state? The aim of
this paper is to address both of these questions within the
Dirac composite fermion theory. Prior work has identified
observables that may possibly differ in the two composite
fermion theories: Levin and Son [22] have derived a linear
relation between the Hall conductivity and susceptibility that
any PH symmetric theory must satisfy; Wang and Senthil [23]
have determined how PH symmetry constrains the thermal
Hall response of the HLR theory; using the microscopic
composite fermion wave function approach, Balram et al. [24]
found that Friedel oscillations in the pair-correlation function
are symmetric about ν = 1/2.

B. Weiss oscillations and the ν = 1/2 state

Here, we study theoretically commensurability oscillations
in the magnetoresistance near ν = 1/2, focusing on those
oscillations that result from the presence of a periodic one-
dimensional static potential [9]. These commensurability os-
cillations are commonly known as Weiss oscillations [25–28].
For a free two-dimensional Fermi gas, the locations of the
Weiss oscillation minima, say, as a function of the transverse
magnetic field b, satisfy

�2
b = d

2kF
(p + φ), p = 1, 2, 3, . . . , (1.1)

where �b = 1/
√|b| is the magnetic length; d is the period of

the potential; kF is the Fermi wave vector; and φ = +1/4
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for a periodic vector potential, while φ = −1/4 for a peri-
odic scalar potential [29,30]. (Expressions for the oscillation
minima when both potentials are present can be found in
Refs. [31,32]).

Early experiments [9] saw p = 1 Weiss oscillation minima
about ν = 1/2 due to an electrostatic scalar potential, upon
identifying, in Eq. (1.1), b = B − 4πne with the effective
magnetic field experienced by composite fermions (B is the
external magnetic field and ne is the electron density) and
kF = √

4πne with the composite fermion Fermi wave vector,
and choosing φ = +1/4. These results, along with other com-
mensurability oscillation experiments [9], provided strong
support for the general picture of the ν = 1/2 state suggested
by the HLR theory. In particular, the phenomenology near the
ν = 1/2 state could be well described by an HLR mean-field
theory in which composite fermions respond to an electronic
scalar potential as a vector potential.

Recent improvements in sample quality and experimental
design have allowed for an unprecedented refinement of these
measurements. Through a careful study of the oscillation min-
ima corresponding to the first three harmonics (p = 1, 2, 3),
Kamburov et al. [33] came to a remarkable conclusion that is
in apparent disagreement with the above hypothesis (see [34]
for a review of these and related experiments): Weiss oscil-
lation minima are well described by Eq. (1.1) upon taking
kF = √

4πne for ν < 1/2, as before; but for ν > 1/2, the in-
ferred Fermi wave vector, kF =

√
4π ( B

2π
− ne), is determined

by the density of holes. In both cases, φ = +1/4. Might a
theory of the ν = 1/2 state require two different composite
fermion theories [13,33]: a theory of composite electrons for
ν < 1/2 and a theory of composite holes for ν > 1/2? If kF =√

4πne is instead taken for 1/2 < ν < 1, there is a roughly
2% mismatch between the locations of the p = 1 minimum
obtained from Eq. (1.1) and the nearest observed minimum;
this discrepancy between theory and experiment decreases in
magnitude as p increases [33]. While the mismatch is small,
it is systematic: it persists in a variety of different samples of
varying mobilities and densities, as well as two-dimensional
hole gases, which typically have larger effective masses (as
well as near half-filling of other Landau levels [34]). [This
mismatch is the same magnitude as the difference between the
electrical Hall conductivities produced by an HLR theory with
σ cf

xy = 0 and an HLR theory with σ cf
xy = −1/4π , the composite

fermion Hall conductivity required by PH symmetry; an equal
value of the dissipative resistance [9] is assumed in both cases
for this comparison. See Eq. (48) of [12]].

The hypothesis that composite fermions respond to an
electric scalar potential as a purely magnetic one approx-
imates HLR mean-field theory. In fact, an electric scalar
potential generates both a scalar and vector potential in the
HLR theory. (This observation by Wang et al. [16] is crucial
for obtaining PH symmetric electrical Hall transport within
HLR mean-field theory). However, the magnitude of the scalar
potential is suppressed relative to the vector potential by a
factor of �B/d ≈ 1/50 [13]. Cheung et al. [20] found that
upon including the effects of the scalar potential in HLR
mean-field theory, there is a slight correction to the expected
locations of the oscillation minima both above and below
ν = 1/2. The nature of the corrections are such that HLR
mean-field theories of composite electrons or composite holes

FIG. 1. Weiss oscillations of the Dirac composite fermion theory
at fixed electron density ne and varying magnetic field B about half-
filling B1/2 (�B1/2/d = 0.03 and kBT = 0.3

√
2B1/2). The blue curve

corresponds to Dirac composite fermion mean-field theory [20]. The
orange curve includes the effects of a Dirac composite fermion mass
m ∝ |B − 4πne|1/3B1/6 induced by gauge fluctuations. Vertical lines
correspond to the observed oscillation minima [33].

that take either kF = √
4πne or kF =

√
4π ( B

2π
− ne) produce

identical results. In addition, the shifted oscillation minima
are in agreement with the mean-field predictions of the Dirac
composite fermion theory (at least within the regime of elec-
tronic parameters probed by experiment). Unfortunately, the
small disagreement between composite fermion mean-field
theory and experiment persists, in this case for all values of
0 < ν < 1: for a given p, the observed oscillation minima
are shifted inward relative to the theoretical prediction by an
amount that decreases as ν = 1/2 is approached (see Fig. 1).

C. Outline

In this paper, we consider the mismatch from the point of
view of the Dirac composite fermion theory. In perturbation
theory about mean-field theory, we argue that the comparison
with experiment can be improved if the effects of gauge-
field fluctuations are considered. Our strategy is to include
their effects by determining the fluctuation corrections to the
mean-field Hamiltonian. We obtain this corrected Hamilto-
nian through an approximate large N flavor analysis of the
Schwinger-Dyson equations [35] for the Dirac composite
fermion theory. The resulting Dirac composite fermion prop-
agator specifies the input parameters, namely, the chemical
potential and mass, of the corrected mean-field Hamiltonian.
We then follow the analysis by Cheung et al. [20] to deter-
mine the corrected Weiss oscillation curves. Our results are
summarized in Fig. 1.

To understand our results, it is helpful to reinterpret
Eq. (1.1) as a measure of a Dirac fermion density n by
replacing kF �→ √

4πn (we set the Fermi velocity to unity).
Any decrease in the density induces an inward shift of the
Weiss oscillation minima determined by Eq. (1.1) towards
b = 0. Dirac fermions of mass m, placed at chemical potential
μ have a density n = (μ2 − m2)/4π . Our leading order anal-
ysis of the Schwinger-Dyson equations indicates that gauge
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fluctuations generate a mass m away from ν = 1/2, while the
chemical potential is unchanged.

Such dynamical mass generation in a nonzero magnetic
field is known to occur in various (2 + 1)-dimensional theo-
ries of Dirac fermions (see [36] for a review). For example,
in the theory of a free Dirac fermion at zero density, a
uniform magnetic field sources a vacuum expectation value
for the mass operator. Short-ranged attractive interactions then
induce a nonzero mass term in its effective Lagrangian [37].
We show how a similar phenomenon occurs in the Dirac
composite fermion theory. This effect is also expected from
the point of view of symmetry: PH symmetry forbids a Dirac
composite fermion mass (see Sec. II). (Manifest PH symmetry
is the essential advantage that the Dirac composite fermion
theory confers to our analysis). Away from ν = 1/2, PH sym-
metry is broken and so all terms, consistent with the broken
PH symmetry, are expected to be present in the effective
Lagrangian. Note there is no symmetry preventing corrections
to the Dirac composite fermion chemical potential; rather, it is
found to be unaltered to leading order within our analysis.

We also comment upon the finite-temperature behavior of
quantum oscillations near ν = 1/2. This behavior is interest-
ing to consider because at finite temperatures, away from the
long-wavelength limit, differences in the HLR and Dirac com-
posite fermion theories should appear. We discuss how the
temperature dependence of the Weiss oscillation amplitude
might exhibit subtle differences between the two theories.

The remaining sections are organized as follows. In Sec. II,
we review the Dirac composite fermion theory. In Sec. III,
we obtain an approximate solution to the Schwinger-Dyson
equations. In Sec. IV, we use the chemical potential and
mass of the resulting Dirac composite fermion propagator as
input parameters for the “fluctuation-improved” mean-field
Hamiltonian and determine the resulting Weiss oscillations.
We discuss a few consequences of this analysis in Sec. V and
we conclude in Sec. VI. The Appendix contains details of the
calculations summarized in the main text.

II. DIRAC COMPOSITE FERMIONS: REVIEW

Electrons in the lowest Landau level near half-filling can be
described by a Lagrangian of a two-component Dirac electron
�e [14]:

Le = �eγ
α (i∂α + Aα )�e − me�e�e

+ 1

8π
εαβσ Aα∂βAσ + . . . , (2.1)

where Aα with α ∈ {0, 1, 2} is the background electromag-
netic gauge field; �e = �†

e γ 0; the γ matrices γ 0 = σ 3, γ 1 =
iσ 1, and γ 2 = iσ 2 satisfy the Clifford algebra {γ α, γ β} =
2ηαβ with ηαβ = diag(+1,−1,−1); the antisymmetric sym-
bol ε012 = 1; and we set the Fermi velocity vF = 1 here and
in the Dirac composite fermion dual. The benefit of the Dirac
formulation is that the limit of infinite cyclotron energy ωc =
B/me can be smoothly achieved at fixed external magnetic
field B = ∂1A2 − ∂2A1 > 0 by taking the electron mass me →
0. The . . . include additional interactions, e.g., the Coulomb
interaction and coupling to disorder.

The electron density,

ne = �†
e �e + B

4π
. (2.2)

Consequently, when ν ≡ 2πne/B = 1/2, the Dirac electrons
half-fill the zeroth Landau level. For me = 0 and ν = 1/2, the
Dirac Lagrangian is invariant under the antiunitary (i �→ −i)
PH transformation that takes (t, x, y) �→ (−t, x, y),

�e �→ −γ 0�∗
e ,

(2.3)
(A0, A1, A2) �→ (−A0, A1, A2),

and shifts the Lagrangian by a filled Landau level Le �→ Le +
1

4π
εαβσ Aα∂βAσ .
Son [14] conjectured that Le is dual to the Dirac composite

fermion Lagrangian,

L = ψγ α (i∂α + aα )ψ − mψψ − 1

4π
εαβσ aα∂βAσ

+ 1

8π
εαβσ Aα∂βAσ − 1

4g2
f 2
αβ + . . . , (2.4)

where ψ is the electrically-neutral Dirac composite fermion;
aα is a dynamical U (1) gauge field with field strength fαβ =
∂αaβ − ∂βaα and coupling g; and m ∝ me is the Dirac com-
posite fermion mass. Aα remains a nondynamical gauge field,
whose primary role in L is to determine how electromag-
netism enters the Dirac composite fermion theory. As before,
the . . . represent additional interactions, which can now in-
volve the gauge field aα . The duality between Le and L is
obtained in the low-energy limit when g → ∞. See [7,38–45]
for additional details about this duality and [15] for a recent
review.

At weak coupling, the a0 equation of motion implies the
Dirac composite fermion density,

ψ†ψ = B

4π
. (2.5)

At strong coupling, the right-hand side of Eq. (2.5) receives
corrections from the . . . in L and should be replaced by
− δL

δa0
+ ψ†ψ . In the Dirac composite fermion theory, the

electron density,

ne = 1

4π
(−b + B), (2.6)

where the effective magnetic field b = ∂1a2 − ∂2a1. In the
Dirac composite fermion theory, the PH transformation takes
(t, x, y) �→ (−t, x, y),

ψ �→ γ 2ψ,

(a0, a1, a2) �→ (a0,−a1,−a2), (2.7)

(A0, A1, A2) �→ (−A0, A1, A2),

and shifts the Lagrangian by a filled Landau level. Intuitively,
the PH transformation acts on the dynamical fields of L like a
time-reversal transformation. As such, PH symmetry requires
m = 0 and forbids a Chern-Simons term for aα .

Away from half-filling, PH symmetry is necessarily
broken since Eq. (2.6) implies the effective magnetic field
b = B − 4πne �= 0. Consequently, we can no longer exclude
any PH breaking term allowed by symmetry. In particular, we
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generally expect a Dirac mass to be induced by fluctuations.
Scaling implies the mass m = √

B f (ν), where f (ν) is a
scaling function of the filling fraction ν. Unbroken PH
symmetry at half-filling requires f (ν = 1/2) = 0; away from
ν = 1/2, it is possible that m can have a nontrivial dependence
on B and ne, as determined by f (ν). In the next section, we
study the Schwinger-Dyson equations to determine how
fluctuations generate a mass m away from ν = 1/2 within
an expansion where the number of Dirac composite fermion
flavors N → ∞.

III. DYNAMICAL MASS GENERATION IN AN EFFECTIVE
MAGNETIC FIELD

Beginning with the works of Schwinger [46] and Ri-
tus [47], there have been a number of studies on the effects
of a background magnetic field on quantum electrodynamics
in various dimensions. In this paper, we rely most heavily on
Refs. [48–50]; see Ref. [36] for an excellent introduction to
this formalism and for additional references. We first sum-
marize the relevant aspects of this formalism. Then, we ana-
lyze the Schwinger-Dyson equations for the Dirac composite
fermion theory away from half-filling when the fluctuations
of the emergent gauge field aα about a uniform b �= 0 are
considered.

A. Dirac fermions in a magnetic field

At tree level, i.e., in mean-field theory, the time-ordered
real-space propagator G0(x, y) for a massive Dirac fermion
in a uniform magnetic field (a0, a1, a2) = (0, 0, bx1) can be
written in the form

G0(x, y) = ei�(x,y)
∫

d3 p

(2π )3
eipα (x−y)α G0(p), (3.1)

where the Schwinger phase,

�(x, y) = −b

2
(x2 − y2)(x1 + y1). (3.2)

The tree-level pseudomomentum-space propagator,

−iG0(p) = i
∫ ∞

0
ds eis{(p0+μ0+iεp0 )2−m2

0+iδ−[(p2
1+p2

2 )/bs] tan(bs)}

× {(pα+μ0δα,0)γ α−ib[(p0 + μ0)I+m0γ
0]

× tan(bs) + piγ
i tan2(bs)}, (3.3)

where the pseudomomenta p = (p0, p1, p2) are analogous to
the conserved momenta in a translationally invariant system,

μ0 is a chemical potential, m0 is a mass, εp0 = sgn(p0)ε with
the infinitesimal ε > 0 ensures the Feynman pole prescription
is satisfied, δ > 0 is an infinitesimal included for convergence
of the s integral, and I is the 2 × 2 identity matrix. Expanding
in b:

−iG0(p) ≡ (pα + μ0δα,0)γ α + m0I(
p0 + μ0 + iεp0

)2 − p2
i − m2

0

+ b
(p0 + μ0)I + m0γ

0((
p0 + μ0 + iεp0

)2 − p2
i − m2

0

)2 + O(b2).

(3.4)

We imagine applying this formalism to the vicinity of ν = 1/2
when the effective magnetic field b is small. As such, we drop
all O(b2) and higher terms in the pseudomomentum-space
propagator. For convenience, we use G0(p) to denote the
linear expansion in Eq. (3.4) with higher order in b terms
excluded.

The tree-level inverse propagator G−1
0 (x, y) satisfies∫

d3y G−1
0 (x, y)G0(y, z) = δ(3)(x − z). (3.5)

It takes a particularly simple form:

iG−1
0 (x, y) = ei�(x,y)

∫
d3 p

(2π )3
eipα (x−y)α

× [(pα + μ0δα,0)γ α − m0I]. (3.6)

In contrast to G0(x, y), the magnetic field dependence is
entirely parametrized by the Schwinger phase in G−1

0 (x, y).
Both the propagator and its inverse are obtained after

performing an infinite sum over all Landau levels. Thus,
G0(x, y) and G−1

0 (x, y) in Eqs. (3.1) and (3.6) allow for a
straightforward expansion about their translationally invariant
forms at b = 0; see [49] for further discussion. In the Dirac
composite fermion theory, G−1

0 (x, y) defines the mean-field
Lagrangian, from which the Hamiltonian readily follows; the
Schwinger phase �(x, y) reminds us to include a nonzero
magnetic field by the Peierls substitution.

We use the following Ansatz for the exact real-space
propagator:

G(x, y) = ei�(x,y)
∫

d3 p

(2π )3
eipα (x−y)α G(p). (3.7)

For the exact pseudomomentum propagator G(p), we write

−iG(p) = −iG(0)(p) − iG(1)(p), (3.8)

where

−iG(0)(p) = [pα + μ0δα,0 − �α (p)]γ α + �m(p)I

[p0 + μ0 − �0(p) + iεp0 ]2 − [pi − �i(p)]2 − �2
m(p)

, (3.9)

−iG(1)(p) = b
[p0 + μ0 − �0(p)]I + �m(p)γ 0{[

p0 + μ0 − �0(p) + iεp0

]2 − [pi − �i(p)]2 − �2
m(p)

}2 . (3.10)
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In contrast to the tree-level pseudomomentum propagator,
G0(p), both G(0)(p) and G(1)(p) are expected to depend on b
through the self-energies �m(p) and �α (p), in addition to the
explicit linear dependence that appears in G(1)(p). We write
the exact inverse propagator as

iG−1(x, y) = ei�(x,y)
∫

d3 p

(2π )3
eipα (x−y)α

× {[pα + μ0δα,0 − �α (p)]γ α − �m(p)I}.
(3.11)

In G(p) and G−1(p), we set the tree-level mass m0 = 0; this is
consistent with the assumption of unbroken PH symmetry at
ν = 1/2. The Ansätze for the exact propagator and its inverse
are simplifications of that which symmetry allows for a Dirac
fermion in a magnetic field [49]. Nevertheless, our Ansätze are
consistent to leading order in a 1/N analysis of the Schwinger-
Dyson equations described in the next section.

In general, the self-energies �m(p) and �α (p) are non-
trivial functions of the pseudomomenta p. We expect the
low-energy dynamics of the fermions to be dominated by
fluctuations about the Fermi surface. Thus, we replace the
self-energies as follows:

�m(pFS + δp) �→ �m(pFS), (3.12)

�α (pFS + δp) �→ δ0α�0(pFS) + δpα�′
α (pFS), (3.13)

where pFS = (0, pi ) lies on the Fermi surface (in mean-field
theory, this is defined by p2

i = μ2
0 and p0 = 0), |δpα|  μ0,

�′
α (pFS) = ∂pα

�α (p = pFS), and there is no sum over α in
Eq. (3.13).

G−1(x, y) determines the “fluctuation-corrected” Dirac
composite fermion mean-field Hamiltonian. The tree-level
chemical potential and mass are corrected by the fermion
self-energies �α and �m. We define the physical mass,

m = �m(pFS)

1 − �′
0(pFS)

≡ �m

1 − �′
0

, (3.14)

and chemical potential,

μ = μ0 − �0

1 − �′
0

. (3.15)

The Schwinger phase �(x, y) in G−1(x, y) reminds us to in-
clude the effective magnetic field b via the Peierls substitution.

B. Schwinger-Dyson equations: Setup

The Schwinger-Dyson equations [35] are a set of coupled
integral equations that relate the exact fermion- and gauge-
field propagators to one another by way of the exact cubic
interaction vertex �α coupling the Dirac composite fermion
current to aα . We will not solve the equations exactly; rather,
we seek an approximate solution that one obtains within a
large flavor generalization of the Dirac composite fermion the-
ory. We hope this approximate solution reflects a qualitative
behavior of the Dirac composite fermion theory.

Specifically, we consider the Lagrangian,

LN = ψnγ
α (i∂α + aα )ψn − N

4π
εαβσ aα∂βAσ

+ N

8π
εαβσ Aα∂βAσ − 1

4g2
f 2
αβ, (3.16)

where the different fermion flavors are labeled by n =
1, . . . , N . When N = 1, we recover the Dirac composite
fermion theory. In LN , ne = δLN/δA0 = N

4π
(B − b); thus, in

our large N theory, half-filling means ν = N/2. To make
contact with the formalism of Sec. III A we introduce a
SU (N )-invariant chemical potential μ0 = √

B and we fac-
tor out the uniform effective magnetic field (a0, a1, a2) =
(0, 0, bx1) that is generated away from half-filling from the
dynamical fluctuations of the emergent gauge field aα . Setting
Aα = 0, Eq. (3.16) becomes

LN = ψnγ
α (i∂α + aα + aα )ψn + μ0ψ

†
n ψn − 1

4g2
f 2
αβ.

(3.17)

This is the large N theory that we analyze.
To leading order in N , the Ward identity implies that

there are no corrections to the cubic interaction vertex at ν =
1/2 [51].1 Taking �α = γ α , the Schwinger-Dyson equations
for LN become

iG−1(x, y) − iG−1
0 (x, y) = γ αG(x, y)γ β�−1

αβ (x − y), (3.18)

i�αβ (x − y) − i�αβ

0 (x − y) = N tr[γ αG(x, y)γ βG(y, x)],

(3.19)

where �αβ (x − y) is the gauge-field self-energy, �
αβ

0 (x −
y) is the kinetic term for aα contributed by its Maxwell
term, and we have taken the fermion propagator Gn,n′ (x, y) =
G(x, y)δn,n′ to be diagonal in flavor space. G(x, y) and G0(x, y)
are defined in Eqs. (3.8) and (3.4). The factor of N in
Eq. (3.19) arises from the N flavors in the fermion loop.

Upon substituting the Fourier transform �αβ (p), defined
by

�αβ (x − y) =
∫

d3 p

(2π )3
eipσ (x−y)σ �αβ (p), (3.20)

and Eqs (3.6), (3.8), and (3.11) into the Schwinger-Dyson
equations, (3.18) and (3.19) become [49]

i�α (q)γ α + i�m(q)I =
∫

d3 p

(2π )3
γ αG(p + q)γ β�−1

αβ (p),

(3.21)

i�αβ (δq) = N
∫

d3 p

(2π )3
tr[γ αG(p)γ βG(p + δq)], (3.22)

where q = qFS + δq. We aim to solve these equations.

1Furthermore, there are no corrections to this vertex if the Dirac
composite fermion is given a nonzero bare mass m2

0  μ2
0 at b = 0.

We thank N. Rombes and S. Chakravarty for correspondence on this
point.
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Our Ansatz for the fermion self-energies is motivated by
similar studies of (2 + 1)-dimensional quantum electrody-
namics at zero density [52–54]. We consider the 1/N expan-
sion for the fermion self-energies,

�α = �(1)
α + �(2)

α + . . . ,

�m = �(1)
m + �(2)

m + . . . . (3.23)

All terms and all ratios of successive terms in Eq. (3.23)
vanish as N → ∞. Ignoring terms with i � 2, we set �α =
�(1)

α = 0 and �m = �(1)
m , and find a self-consistent solution to

the Schwinger-Dyson equation in terms of �(1)
m and �αβ . This

choice is consistent with the Ward identity, to leading order
in 1/N . From Eqs. (3.14) and (3.15), the resulting solution
implies m = �(1)

m and μ = μ0 to leading order in 1/N . We
then calculate the leading perturbative correction �(2)

α to �α

and verify that �(2)
α /�(1)

m → 0 as N → ∞.

C. Gauge-field self-energy

The gauge-field self-energy factorizes into PH symmetry
even and odd parts:

�αβ (q) = �αβ
even(q) + �

αβ

odd(q). (3.24)

As the PH transformation acts like time reversal, �
αβ
even(q)

contains the Maxwell term for aα , while �
αβ

odd(q)—which can
only be nonzero when PH symmetry is broken—can contain
a Chern-Simons term for aα .

To leading order in b, we substitute G(p) = G(0)(p) into
Eq. (3.22) and first compute

�
αβ

odd(δq) = iεαβσ δqσ�odd(δq)

= −iN

{∫
d3 p

(2π )3
tr[γ αG(0)(p)γ βG(0)(p+δq)]

}
odd

,

(3.25)

where {·}odd indicates the PH odd term is isolated. We find

�odd(0) = N

4π

[
�(|�m| − μ0)

�m

|�m| + �(μ0 − |�m|)�m

μ0

]
,

(3.26)

where �(x) is the step function. See Appendix 1 for details.
Additional momentum dependence in �odd(q) is subdominant
at low energies. For μ0 > |�m|, Eq. (3.26) implies an effective
Chern-Simons term for αα with level

k = N

2

�m

μ0
(3.27)

is generated if �m �= 0. (This nonquantized Chern-Simons
level is reminiscent of the anomalous Hall effect [55]).

Next, consider

�αβ
even(δq) − �

αβ

0 (δq)

= −iN

{∫
d3 p

(2π )3
tr[γ αG(0)(p)γ βG(0)(p + δq)]

}
even

,

(3.28)

where {·}even indicates the PH even term is isolated and we
have again substituted G(p) = G(0)(p). The Maxwell kinetic

term is

�
αβ

0 (q) = q2ηαβ − qαqβ. (3.29)

Reference [56] finds

�00
even(q0, qi ) − �00

0 (q) = �l (q0, qi ),

�0i
even(q0, qi ) − �0i

0 (q) = q0
qi

q2
i

�l (q0, qi ),

�i j
even(q0, qi ) − �0i

0 (q) =
(

δi j − qiq j

q2
k

)
�t (q0, qi )

+ q2
0qiq j(
q2

k

)2 �l (q0, qi ), (3.30)

where

�l (q0, qi ) = μ0N

(√
q2

0

q2
0 − q2

i

− 1

)
,

�t (q0, qi ) = μ0N − q2
0 − q2

i

q2
k

�l (q0, qi ). (3.31)

We have simplified the expressions for �l and �t by taking
q2

0 − q2
i > 0 and by setting the common proportionality con-

stant to unity. The precise behaviors of �l and �t and their
effects on aα depend upon whether |q0| < |qi| or |qi| < |q0|.
For instance, when |q0| < |qi| (small frequency transfers, but
potentially large ∼2kF momenta transfers) and in the absence
of �

αβ

odd, �l gives rise to the usual Debye screening of the
“electric” component of aα and �t results in the Landau
damping of the “magnetic” component of aα [56], familiar
from Fermi-liquid theory [57]. These corrections dominate the
tree-level Maxwell term for aα at low energies.

In our analysis of the fermion self-energy in the next
section, we focus on the regime |qi| � |q0|. In this case,
�l and �t provide nonsingular corrections to the Maxwell
term for aα and will be ignored. At low energies, g → ∞,
the effects of the Maxwell term are suppressed compared
with the Chern-Simons term [58]. Thus, to find the effective
gauge-field propagator �−1

αβ (q) for use in Eq. (3.21), we drop

�
αβ
even(q), add the covariant gauge fixing term − 1

2ξ
qαqβ to

�
αβ

odd(q), and invert. Choosing Feynman gauge ξ = 0, we
obtain

�−1
αβ (q) = 2π

k

εαβσ qσ

q2
, (3.32)

where k is given in Eq. (3.27). It is with this gauge-field prop-
agator that we find a self-consistent solution to the Schwinger-
Dyson equation for the fermion self-energy �m in Sec. III D.

Instantaneous density-density interactions between elec-
trons give rise to additional gauge-field kinetic terms in L.
Such terms, which should therefore be included in the tree-
level Lagrangian LN , generally contribute to �

αβ

0 ⊂ �
αβ
even.

To understand their possible effects in the kinematic regime
|qi| � |q0|, we set a0 = 0 and decompose the spatial com-
ponents of the gauge field in terms of its longitudinal and
transverse modes:

ai(q) = −iq̂iaL(q) − iε jiq̂ jaT (q), (3.33)
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where the normalized spatial momenta q̂i = qi/| �q |. An un-
screened Coulomb interaction dualizes to a term in L pro-
portional to | �q |z−1aT (−q)aT (q) with z = 2; a short-ranged
interaction gives z = 3 (see Sec. III D of [40]). (We are
working in momentum space for this analysis). On the other
hand, the effective Chern-Simons term is proportional to
iq0aL(−q)aT (q); there is no aL − aL or aT − aT Chern-
Simons coupling. We consider z > 2 in our analysis below.
In this regime, the effects of any such screened interaction
are expected to be subdominant compared with those of
the Chern-Simons term, as such interactions correspond to
higher-order terms in the derivative expansion.

D. Fermion self-energy

We now study Eq. (3.21) for the �m and �0 components of
the Dirac composite fermion self-energy using the effective
gauge-field propagator in Eq. (3.32).

1. �m

Taking the trace of both sides of Eq. (3.21) and setting
δqα = 0, we find

i�m(qFS) = iM(0)(qFS) + iM(1)(qFS), (3.34)

where

iM(0)(qFS)

= 1

2

∫
d3 p

(2π )3
tr

[
γ αG(0)(p + qFS)γ β

(
2π

k

εαβσ pσ

p2

)]
,

(3.35)

iM(1)(qFS)

= 1

2

∫
d3 p

(2π )3
tr

[
γ αG(1)(p + qFS)γ β

(
2π

k

εαβσ pσ

p2

)]
,

(3.36)

and G(0(p) and G(1)(p) are given in Eqs. (3.9) and (3.10).
Recall that we set �α = 0 and only retain �m when using
G(0)(p) and G(1)(p) to evaluate M(0) and M(1). The details
of our evaluation of M(0) and M(1) are given in Appendix 2.
Here, we quote the results:

M(0) = −2μ0sgn(�m)

N
, (3.37)

M(1) = 2

3

bμ2
0

N |�m|3 . (3.38)

Thus, �m solves

�m = −2μ0sgn(�m)

N
+ 2

3

bμ2
0

N |�m|3 . (3.39)

When b = 0, the only solution is �m = 0, consistent with
our expectation that PH symmetry is unbroken at ν = 1/2.
Dimensional analysis and 1/N scaling implies

�m = μ0

N
f

(
bN3

μ2
0

)
. (3.40)

We find that �m has the following asymptotics: for fixed
|b|/μ2

0 ≈ 10−1,

�m = μ0sgn(b)

( |b|
μ2

0N

)1/4
[

c1 + c2

(
μ2

0

|b|N3

)1/4

+ . . .

]
,

(3.41)

where c1 ≈ 0.9, c2 ≈ −0.5, and the . . . are suppressed as
N → ∞; while for fixed N ,

�m = μ0sgn(b)

( |b|
μ2

0

)1/3
[

c3 + c4

( |b|N3

μ2
0

)1/3

+ . . .

]
,

(3.42)

where c3≈0.69, c4≈ − 0.08, and the . . . vanish as
|b|/μ2

0 → 0.

2. �0

We now consider the leading perturbative correction to
�0. This allows us to calculate the corrections to �′

0 and the
chemical potential μ0.

To evaluate the leading correction to �0 that one obtains
when G(p) = G(0)(p), we multiply both sides of Eq. (3.21)
by γ 0 on the left and take the trace to find

i�0(q) = 1

2

∫
d3 p

(2π )3
tr

[
γ 0γ αG(0)(p+q)γ β

(
2π

k

εαβσ pσ

p2

)]
,

(3.43)

where qα = qα
FS + q0δ

α0. As detailed in Appendix 2, we
find the leading correction �

(2)
0 to �0 [see Eq. (3.23)] for

|q0|/μ0  �2
m/μ2

0,

i�(2)
0 (qFS) = −i

2μ0

3N |�m| (q0 + μ0). (3.44)

At large N , we use Eq. (3.41) for �m to find �0 ∝ �′
0 ∝

N−3/4. This vanishes by a factor of N−1/2 faster than �m and
so it is relatively suppressed as N → ∞. Next-order terms
in �α and �m are obtained by self-consistently solving the
Schwinger-Dyson equations with propagators corrected by
the leading self-energy corrections. We have checked that
the other components of �α are likewise suppressed at large
N ; as such and because they do not enter our subsequent
calculations, we will not discuss them further. Because �m

vanishes at half-filling, we may only ignore �′
0 for sufficiently

large |b|/μ2
0 at large N .

3. Dynamically generated mass and corrected chemical potential

We are now ready to evaluate Eq. (3.14) for the dynami-
cally generated mass. We extrapolate our large N solution for
�m to N = 1 using Eq. (3.42):

m = �(1)
m

1 − �
′(1)
0

≈ 0.69sgn(b)|b|1/3B1/6, (3.45)

where we set μ0 = √
B. The specific behavior of the mass

m, away from ν = 1/2, depends on whether the electron
density ne or external magnetic field B is fixed. At fixed B,
the magnitude of m is symmetric as a function of ne about
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half-filling; on the other hand, |m| is asymmetric for fixed
ne and varying B. Using Eqs. (3.15) and (3.23), the chemical
potential

μ = μ0 − �
(1)
0

1 − �
′(1)
0

=
√

B. (3.46)

These results imply that the Dirac composite fermion density
and mass are corrected in such a way that the chemical
potential is unaffected.

In our analysis of the Weiss oscillations in the next section,
we ignore all higher-order in 1/N corrections and assume that
a mass term is the dominant correction to the Dirac composite
fermion mean-field Hamiltonian away from ν = 1/2. The
chemical potential for this fluctuation-improved mean-field
Hamiltonian will be taken to be μ = √

B.

IV. WEISS OSCILLATIONS OF MASSIVE DIRAC
COMPOSITE FERMIONS

Following earlier work [20,59–61], we now study the effect
of the field-dependent mass of Eq. (3.45) on the Weiss oscilla-
tions near ν = 1/2 using the fluctuation-improved Dirac com-
posite fermion mean-field theory. We find that a nonzero mass
results in an inward shift of the locations of the oscillation
minima towards half-filling.

A. Setup

We are interested in determining the quantum oscillations
in the electrical resistivity near ν = 1/2 that result from a one-
dimensional periodic scalar potential. In the Dirac composite
fermion theory, the dc electrical conductivity,

σi j = 1

4π

[
εi j − 1

2
εik (σψ )−1

kl εl j

]
, (4.1)

where σψ is the (dimensionless) dc Dirac composite fermion
conductivity. This equality is true at weak coupling; at strong
coupling, 〈ψγiψ (−q0)ψγ jψ (q0)〉 should be replaced by the
exact gauge-field aα self-energy, evaluated at q1 = q2 = 0.

σ
ψ
i j = lim

q0→0

〈ψγiψ (−q0)ψγ jψ (q0)〉
iq0

. (4.2)

Thus, the longitudinal electrical resistivity,

ρii ∝ |εi j |σψ
j j, (4.3)

where there is no sum over repeated indices. When a one-
dimensional periodic scalar potential A0 = V cos(Kx1) with
K = 2π/d is applied to the electronic system, the a2 equa-
tion of motion following from the Dirac composite fermion
Lagrangian (2.4) implies

ψγ 2ψ = −KV

4π
sin(Kx). (4.4)

We accommodate this current modulation within Dirac com-
posite fermion mean-field theory by turning on a modulated
perturbation to the emergent vector potential,

δ�a = [0,W sin(Kx1)], (4.5)

where W = W (V ) vanishes when V = 0. (Fluctuations will
also generate a modulation in the Dirac composite fermion

chemical potential; we ignore such effects here) Putting to-
gether Eqs. (4.3) and (4.5), our goal in this section is to
determine the correction to σ

ψ
j j due to δ�a,

�ρii ∝ |εi j |�σ
ψ
j j . (4.6)

In Dirac composite fermion mean-field theory, corrected by
Eq. (3.45), the calculation of �σ

ψ
i j simplifies to the determi-

nation of the conductivity of a free massive Dirac fermion. We
use the Kubo formula [62] to find the conductivity correction:

�σ
ψ
i j = 1

L1L2
�M
[
∂EM fD(EM )

]
τ (EM )vM

i vM
j , (4.7)

where L1 (L2) is the length of the system in the x1 direction
(x2 direction), β−1 = T is the temperature, M denotes the
quantum numbers of the single-particle states, f −1

D (E ) = 1 +
exp [β(E − μ)] is the Fermi-Dirac distribution function with
chemical potential μ = √

B, τ (EM ) is the scattering time for
states at energy EM , and vM

i = ∂pi EM is the velocity correc-
tion in the xi direction of the state M due to the periodic
vector potential. As before, the Fermi velocity is set to unity.
Assuming constant τ (E ) = τ �= 0, we only need to calculate
how the energies EM are affected by δ�a, which in turn will
determine the velocities vM

i . We will show that the leading
correction in W to EM only contributes to vM

2 . Calling x1 = x
and x2 = y, this implies the dominant correction is to �ρxx ∝
�σψ

yy . There are generally oscillatory corrections to ρyy and
ρxy; however, their amplitudes are typically less prominent
and so we concentrate on �ρxx here.

B. Dirac composite fermion Weiss oscillations

The Dirac composite fermion mean-field Hamiltonian, cor-
rected by Eq. (3.45),

H = �σ ·
(

∂

∂�x + �a
)

+ mσ3
, (4.8)

where

�a = [0, bx1 + W sin(Kx1)]. (4.9)

To zeroth order in W , H has the particle spectrum,

E (0)
n =

⎧⎨⎩
√

2n|b| + m2, n = 1, 2, . . .

|m|, n = 0.

with the corresponding eigenfunctions,

ψn,p2 (�x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N eip2x2

( −i�n−1
( x1+xb

lb

)
√

m2+2n|b|−m√
2n|b| �n

( x1+xb
lb

)
)

for n = 1, 2, . . .

N eip2x2

(
0

�0
( x1+xb

lb

))
for n = 0,

where the normalization constant

N =
√

n|b|
lbLy(m2 + 2n|b| − m

√
m2 + 2n|b|)

,
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k2 ∈ 2π
L2
Z is the momentum along the x2 direction (L2 → ∞),

xb(p2) ≡ xb = p2l2
b , l−1

b = |b|, and �n(z) = e−z2/2√
2nn!

√
π

Hn(z)

for the nth Hermite polynomial Hn(z). Thus, the states are
labeled by M = (n, p2). We are interested in how the periodic
vector potential in Eq. (4.5) lifts the degeneracy of the flat
Landau-level spectrum and contributes to the velocity vM

i .
(Finite dissipation has already been assumed in using a finite,
nonzero scattering time τ in our calculation of the oscillatory
component of ρxx).

First-order perturbation theory gives the energy level
corrections,

E (1)
n,p2

= W

√
2n

Klb

[√
2n|b|

m2 + 2n|b|

]
cos(Kxb)e−z/2

× [Ln−1(z) − Ln(z)], (4.10)

where Ln(z) is the nth Laguerre polynomial, z = K2l2
b /2, and

terms suppressed as L1, L2 → ∞ have been dropped. Thus, to
leading order, v

n,p2
1 = 0 and

v
n,p2
2 = ∂E (1)

n,p2

∂ p2
= −W lb

√
2n

[√
2n|b|

m2 + 2n|b|

]
sin(Kxb)e−z/2

× [Ln−1(z) − Ln(z)]. (4.11)

We substitute these v
n,p2
i into the Kubo formula (4.7) to

find �σψ
yy . To perform the integral over p2, we approximate

the Fermi-Dirac distribution function by substituting in the
zeroth-order energies E (0)

n (which are independent of p2).
Thus, we obtain the periodic potential correction to the Dirac
composite fermion conductivity:

�σψ
yy ≈ W 2τ̃ β

∞∑
n=0

(
2n|b|

m2 + 2n|b|
)

n exp
[
β
(
E (0)

n − μ
)]{

1 + exp β
[(

E (0)
n − μ

)]}2

× e−z[Ln−1(z) − Ln(z)]2, (4.12)

where τ̃ ∝ τ has absorbed nonuniversal O(1) constants.
�σψ

yy in Eq. (4.12) exhibits both Shubnikov–de Haas (for
large |b|) and Weiss oscillations (for smaller |b|). We are in-
terested in extracting an analytic expression that approximates
Eq. (4.12) at low temperatures near ν = 1/2, following the
earlier analysis in [31]. In the weak-field limit, |b|/μ2  1, a
large number of Landau levels are filled (n → ∞). Thus, we
express the Laguerre polynomials Ln as

Ln(z) −−−→
n→∞ ez/2 cos

(
2
√

nz − π
4

)
(π2nz)1/4

+ O
(

1

n3/4

)
. (4.13)

Next, we take the continuum approximation for the summa-
tion over n by substituting

n → l2
b

2
(E2 − m2),

∑
n

→ l2
b

∫
E dE

into Eq. (4.12):

�σψ
yy = C

∫ ∞

−∞
dE

βeβ(E−μ)

[1 + eβ(E−μ)]2
sin2

(
l2
b K
√

E2−m2−π

4

)
,

(4.14)

where C = W 2τ̃ l2
b K and we have approximated 2n|b|/(m2 +

2n|b|) by unity. (The substitution for n is motivated by the
zeroth-order expression for the energy of the Dirac composite
fermion Landau levels). Anticipating that at sufficiently low
temperatures the integrand in Eq. (4.14) is dominated by
“energies” E near the Fermi energy μ, we write

E = μ + sT (4.15)

so that Eq. (4.14) becomes for |s|T  μ = √
B,

�σψ
yy = C

∫ ∞

−∞
ds

es

(1 + es)2
sin2

×
⎛⎝l2

b K
√

B − m2 + sT l2
b K√

1 − m2

B

− π

4

⎞⎠. (4.16)

Performing the integral over s, we find the Weiss oscillations
[see Eq. (4.6)]:

�ρxx ∝ 1− T/TD

sinh(T/TD)

[
1−2 sin2

(
2π l2

b

√
B−m2

d
− π

4

)]
,

(4.17)

where

T −1
D = 4π2l2

b

d

1√
1 − m2

B

, (4.18)

we have substituted K = 2π/d , l2
b = |b|−1, and the propor-

tionality constant is controlled by the longitudinal resistivity
at ν = 1/2.

Equation (4.17) constitutes the primary result of this
section. The minima of �ρxx occur when

1

|b| = d

2
√

B − m2

(
p + 1

4

)
, p = 1, 2, 3, . . . , (4.19)

where m is given in Eq. (3.45). For either fixed electron
density ne or fixed external field B, the locations of the
oscillation minima for a given p [either B(p) or ne(p)] are
shifted inward towards ν = 1/2. This is shown in Fig. 1 for
fixed ne and in Fig. 2 for fixed B. The magnitude of this shift
is symmetric for fixed B, but asymmetric for fixed ne, given
the form of the mass in Eq. (3.45). Mass dependence also
appears in the temperature-dependent prefactor T/TD

sinh(T/TD ) . In
principle, this mass dependence could be extracted from the
finite-temperature scaling of �ρxx at the oscillation extrema.

V. COMPARISON TO HLR MEAN-FIELD THEORY AT
FINITE TEMPERATURE

A. Shubnikov–de Haas oscillations

In [63], Manoharan et al. found the Shubnikov–de Haas
(SdH) oscillations near half-filling to be well described over
two orders of magnitude in temperature by the formula

�ρxx

ρ0
∝ ξNR

sinh(ξNR)
cos(2πν − π ), (5.1)

where ξNR = 2π2T
ωc

, ωc = |b|/m∗, m∗ is an effective mass,
ν is the electron filling fraction, and ρ0 is the longitudinal
resistivity at half-filling (measured at the lowest accessible
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FIG. 2. Weiss oscillations of the Dirac composite fermion theory
at fixed magnetic field B and varying electron density ne about half-
filling n1/2 = B1/2/4π (�B1/2/d = 0.03 and kBT = 0.3

√
2B1/2). The

blue curve corresponds to Dirac composite fermion mean-field the-
ory [20]. The orange curve includes the effects of a Dirac composite
fermion mass m ∝ |B − 4πne|1/3B1/6 induced by gauge fluctuations.
Vertical lines correspond to the observed oscillation minima [33].

temperature). (Note that these experiments were performed
without any background periodic potential and so no Weiss
oscillations were present) Recall that we are using units where
kB = h̄ = e = c = 1. In particular, it was found that m∗ ∝ √

B
for sufficiently large |b| = |B − 4πne| and that m∗ appeared
to diverge as half-filling was approached. Interpreted within
the HLR composite fermion framework, m∗ corresponds to
the composite fermion effective mass. The

√
B behavior of

the composite fermion effective mass is consistent with the
theoretical expectation [8,64] that the composite fermion mass
scale at ν = 1/2 is determined entirely by the characteristic
energy of the Coulomb interaction. (Away from ν = 1/2,
scaling implies the effective mass can be a scaling function
of B and ne).

Applying previous treatments of SdH oscillations in
graphene [65,66] to the Dirac composite fermion theory,
the temperature dependence of the SdH oscillations is
controlled by

�ρxx

ρ0
∝ ξD

sinh(ξD)
, (5.2)

where ξD = 2π2T
√

B
|b| . Thus, ξNR ∝ ξD if m∗ ∝ √

B. Conse-
quently, the Dirac composite fermion theory is consistent
with the observed temperature scaling with

√
B. We cannot

account for the divergence at small |b| attributed to m∗ in our
treatment.

B. Weiss oscillations

In [20], it was shown that the locations of the Weiss
oscillation minima obtained from Dirac and HLR composite
fermion mean-field theories coincide to 0.002%. This result
provides evidence that the two composite fermion theories
may belong to the same universality class. However, the
(possible) equivalence of the two theories only occurs at long
distances and so the finite-temperature behavior of the two
theories will generally differ.

In HLR mean-field theory, the temperature dependence of
the Weiss oscillations enters in the factor [31],

�ρxx ∝ T/TNR

sinh(T/TNR)
, (5.3)

where the characteristic temperature scale,

T −1
NR = 4π2l2

b

d

m∗
√

4πne
. (5.4)

Assuming the effective mass m∗ ∝ √
B, the characteristic

temperatures TD and TNR generally have very different be-
haviors as functions of B and ne. It would be interesting to
study the effects of fluctuations in HLR theory, along the lines
of the study presented here, and compare with our result in
Eq. (4.17).

VI. CONCLUSION

In this paper, we studied theoretically commensurabil-
ity oscillations about ν = 1/2 that are produced by a
one-dimensional scalar potential using the Dirac composite
fermion theory. Through an approximate large N analysis of
the Schwinger-Dyson equations, we considered how correc-
tions to Dirac composite fermion mean-field theory affect the
behavior of the predicted oscillations. We focused on correc-
tions arising from the exchange of an emergent gauge field
whose low-energy kinematics satisfy | �q | � |q0|. In addition,
we only considered screened electron-electron interactions.
Remarkably within this restricted parameter regime, we found
a self-consistent solution to the Schwinger-Dyson equations
in which a Chern-Simons term for the gauge field and mass
for the Dirac composite fermion are dynamically generated.
The Dirac mass resulted in a correction to the locations
of the commensurability oscillation minima which improved
comparison with experiment.

There are a variety of directions for future exploration. It
would be interesting to consider the effects of the exchange of
emergent gauge fields with |q0| < | �q |. In this regime, Landau
damping of the “magnetic” component of the gauge-field
propagator is expected to result in IR dominant Dirac com-
posite fermion self-energy corrections [67–69]. In particular,
it would be interesting to understand this regime when a
dynamically generated Chern-Simons term for the gauge field
is present. These studies are expected to be highly sensitive
to the nature of the electron-electron interactions. At ν = 1/2
when the effective magnetic field vanishes, single-particle
properties depend upon whether this interaction is short or
long ranged [70]. It is important to understand the interplay
of this physics with a nonzero effective magnetic field that
is generated away from ν = 1/2 and its potential observable
effects.

The corrections to the predicted commensurability oscil-
lations relied on a solution to the Schwinger-Dyson equa-
tions, obtained in a large N flavor approximation, that was
extrapolated to N = 1. The study of higher-order in 1/N
effects may provide additional insight into the validity of this
extrapolation. Alternatively, study of the ’t Hooft large N
limit of the Dirac composite fermion theory dual conjectured
in [71] may complement our analysis.
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Recent works [16–18] have shown that PH symmetry
at ν = 1/2 and reflection symmetry about ν = 1/2 rely on
precisely correlated electric and magnetic perturbations. (This
correlation is implemented by the Chern-Simons gauge field
in the HLR theory). Specifically, a periodic scalar potential
V (x) generates a periodic magnetic flux b(x) via

b(x) = −2m∗V (x). (6.1)

How might fluctuations about HLR mean-field theory affect
Eq. (6.1) and potentially modify its predicted commensurabil-
ity oscillations and other observables?
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APPENDIX: INTEGRALS

In this Appendix, we give details for the calculations of the
gauge and fermion self-energy integrals quoted in the main
text.

1. Gauge-field self-energy

We begin with the gauge-field self-energy given in
Sec. III C. We are interested in computing the PH odd com-
ponent of the gauge-field self-energy �odd:

�αβ (q) = �αβ
even(q) + iεαβτ qτ�odd(q). (A1)

To leading order in b, we substitute G(p) = G(0)(p) from
Eq. (3.9) with �α = 0 for α ∈ {0, 1, 2} into Eq. (3.22):

iεαβτ qτ�odd(q) = N

{∫
d3 p

(2π )3
tr[γ αG(0)(p)γ βG(0)(p + q)]

}
odd

= −N

{∫
d3 p

(2π )3
tr

[
γ α i[γ σ (pσ + μ0δσ,0) + �m]

(p0 + μ0)2 − p2
i − �2

m

γ β × i[γ τ (pτ + qτ + μ0δτ,0) + �m]

(p0 + q0 + μ0)2 − (pi + qi )2 − �2
m

]}
odd

. (A2)

We have suppressed the iεp0 factor in Eq. (3.9) that defines the Feynman contour for the Minkowski-signature p0 integration
because we will evaluate the above integral in Euclidean signature. In subsequent sections of this Appendix, we will likewise
suppress the iεp0 factor for the same reason without further comment. Recall that the factor of N arises from the fermion loop
over N flavors of Dirac composite fermions and that μ0 > 0.

To leading order in the derivative expansion, i.e., �odd(q = 0), the expression for �odd(0) simplifies to

�odd(0) = −2iN�m

∫
d3 p

(2π )3

1[
(p0 + μ0)2 − p2

i − �2
m

]2 . (A3)

Here, we have used the trace identities,

tr[γ αγ β] = 2ηαβ, tr[γ αγ βγ τ ] = −2iεαβτ . (A4)

To compute this integral, we first Wick rotate, p0 �→ i(pE )3 and d3 p �→ id3 pE , and then sequentially integrate over (pE )3 and
the spatial momenta (pE )i (i = 1, 2) to find

�odd(0) = 2N�m

∫
d3 pE

(2π )3

1

[i(pE )3 + μ0]2 − [(pE )2
i − �2

m

]2
= 2N�m

∫
d3 pE

(2π )3

1

[(pE )3 − ω+]2[(pE )3 − ω−]2

= N�m

2

∫
d2 pE

(2π )2

�(|�m| − μ0) + �(μ0 − |�m|)�[|(pE )i| −
√

μ2
0 − �2

m

]
[|(pE )i|2 + �2

m

]3/2

= N

4π

[
�(|�m| − μ0)

�m

|�m| + �(μ0 − |�m|)�m

μ0

]
, (A5)

where the step function �[|(pE )i| −
√

μ2
0 − �2

m ] in the third line ensures the double poles ω± = i[μ0 ±
√

(pE )2
i + �2

m ] occur
on opposite sides of the real (pE )3 axis. Equation (A5) implies that, for μ0 > |�m| > 0, the gauge field obtains a correction to
its propagator that corresponds to an effective Chern-Simons term with level,

k = N

2

�m

μ0
. (A6)
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2. Fermion self-energy

Next, we calculate the fermion self-energies �m and �0 quoted in Sec. III D.
We begin with �m. Taking the trace of both sides of Eq. (3.21) and setting δqα = 0, we find

i�m(qFS) = iM(0)(qFS) + iM(1)(qFS), (A7)

where

iM(0)(qFS) = 1

2

∫
d3 p

(2π )3
tr

[
γ αG(0)(p + qFS)γ β

(
2π

k

εαβσ pσ

p2

)]
, (A8)

iM(1)(qFS) = 1

2

∫
d3 p

(2π )3
tr

[
γ αG(1)(p + qFS)γ β

(
2π

k

εαβσ pσ

p2

)]
, (A9)

G(0(p) and G(1)(p) are given in Eqs. (3.9) and (3.10), k is given in Eq. (A6), and qFS = (0, μ0n̂) for the unit vector n̂ [e.g.,
n̂ = ( cos(ϕ), sin(ϕ)) where ϕ parametrizes a point on the Fermi surface] normal to the (assumed) spherical Fermi surface. As
before, we set �α = 0 for α ∈ {0, 1, 2} and only retain �m when using G(0)(p) and G(1)(p) to evaluate M(0) and M(1), as well
as �0 below. It is convenient to define Q = (μ0, μ0n̂) so that

iM(0)(qFS) = 1

2

∫
d3 p

(2π )3
tr

[
γ α

(
i[γ σ (p + Q)σ + �m]

(p + Q)2 − �2
m

)
γ β

(
2π

k

εαβτ pτ

p2

)]
, (A10)

iM(1)(qFS) = 1

2

∫
d3 p

(2π )3
tr

[
γ α

(
ib[I(p + Q)0 + γ 0�m][

(p + Q)2 − �2
m

]2
)

γ β

(
2π

k

εαβτ pτ

p2

)]
. (A11)

We first consider M(0) = M(0)(qFS). Using the trace identities in Eq. (A4), we find

iM(0) = π i

k

∫
d3 p

(2π )3
tr

[
γ α

(
(γ σ (p + Q)σ + �m)

(p + Q)2 − �2
m

)
γ β

(
εαβτ pτ

p2

)]
= −4π

k

∫
d3 p

(2π )3

(p + Q)σ pσ[
(p + Q)2 − �2

m

]
p2

. (A12)

Next, we combine denominators using the Feynman parameter x and then shift the integration by defining �α = pα + Qαx:

iM(0) = −4π

k

∫
d3 p

(2π )3

∫ 1

0
dx

(p + Q)σ pσ(
p2 + 2pQx + Q2x − �2

mx
)2

= −4π

k

∫
d3�

(2π )3

∫ 1

0
dx

�2 + �Q(1 − 2x) − x(1 − x)Q2[
�2 + Q2x(1 − x) − �2

mx
]2

= −4π

k

∫
d3�

(2π )3

∫ 1

0
dx

�2(
�2 − �2

mx
)2 , (A13)

where we evaluated Q2 = 0 and dropped the linear in � term in the third line since it vanishes upon integration over �. Next, we
Wick rotate by taking �0 �→ i(�E )3, �2 �→ −�2

E , and d3� �→ id3�E , integrate over �E via dimensional regularization, and finally
integrate over x:

iM(0) = 4π i

k

∫
d3�E

(2π )3

∫ 1

0
dx

�2
E(

�2
E + �2

mx
)2

= −12π3/2i|�m|
k(4π )3/2

∫ 1

0
dx x1/2

= −i
|�m|

k

= −i
2μ0sgn(�m)

N
, (A14)

where we substituted in the Chern-Simons level given in Eq. (A6) in the final line.
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Next, consider M(1) = M(1)(qFS). Using the trace identities in Eq. (A4), we find

iM(1) = −4πb�m

k

∫
d3 p

(2π )3

p0[
(p + Q)2 − �2

m

]2
p2

= −4πb�m

k
I (�2

m, Q). (A15)

With the help of the formal identity,

I
(
�2

m, Q
) = −∂�2

m
J
(
�2

m, Q
) = −∂�2

m

∫
d3 p

(2π )3

p0[
(p + Q)2 − �2

m

]
p2

, (A16)

we rewrite

iM(1) = 4πb�m

k
∂�2

m

∫
d3 p

(2π )3

p0[
(p + Q)2 − �2

m

]
p2

. (A17)

This integral has the same basic form as the one we encountered in calculating M(0) and so we will follow the same steps as
before: combine denominators with the Feynman parameter x, shift the integration �α = pα + Qαx, and substitute in Q0 = μ0

and Q2 = 0:

iM(1) = −4πb�mμ0

k
∂�2

m

∫
d3�

(2π )3

∫ 1

0
dx

x(
�2 − �2

mx
)2 . (A18)

Next, we Wick rotate by taking �0 �→ i(�E )3, integrate over �E via dimensional regularization, integrate over x, take the derivative
with respect to �2

m, and then evaluate k = N
2

�m
μ0

:

iM(1) = −i
4πb�mμ0

k
∂�2

m

∫
d3�E

(2π )3

∫ 1

0
dx

x(
�2

E + �2
mx
)2

= −i
b�mμ0

k
∂�2

m

1(
�2

m

)1/2

∫ 1

0
dx x1/2

= i
2

3

bμ2
0

N |�m|3 . (A19)

Finally, we calculate �0(qFS) and �′
0(qFS), which we obtain from evaluating the derivative with respect to q0 of �0(P) at the

Fermi surface:

i�0(P) = 1

2

∫
d3 p

(2π )3
tr

[
γ 0γ αG(0)(p + P)γ β

(
2π

k

εαβσ pσ

p2

)]
, (A20)

where P = (q0 + μ0, μ0n̂). First, we note that

tr[γ 0γ αγ σ γ β](p + P)σ pτ εαβτ = 2(η0αησβ − η0σ ηαβ + η0βηασ )(p + P)σ pτ εαβτ

= (p + P)β pτ ε0βτ + (p + P)α pτ εα0τ

= 0. (A21)

Therefore, only the term proportional to �m in the numerator of G(0) contributes. Using the trace identities in Eq. (A4), we find

i�0(P) = 4π�m

k

∫
d3 p

(2π )3

p0[
(p + P)2 − �2

m

]
p2

. (A22)

As above, we combine denominators, shift the integration variable �α = pα + Pαx, and drop any linear in � terms in the
numerator:

i�0(P) = −4π�m(q0 + μ0)

k

∫
d3�

(2π )3

∫ 1

0
dx

x[
�2 + x(1 − x)P2 − �2

mx
]2 . (A23)
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We assume �2
m > |P2| ≈ |2μq0|. Wick rotating �0 �→ i(�E )3 and sequentially performing the �E and x integrals, we find

i�0(P) = −i
4π�m(q0 + μ0)

k

∫
d3�E

(2π )3

∫ 1

0
dx

x[
�2

E − x(1 − x)(2μ0q0) + �2
mx
]2

= −i
�m(q0 + μ0)

2k

∫ 1

0
dx

x[
�2

mx − 2μ0q0x(1 − x)
]1/2

= −i
�m(q0 + μ0)

3k|�m|
(

1 + 2μ0q0

5|�m|2 + O
(
q2

0

))
= −i

2μ0

3N |�m| (q0 + μ0)

(
1 + 2μ0q0

5|�m|2 + O
(
q2

0

))
. (A24)

Taking the derivative of �0(P) with respect to q0, evaluating at q = (0, μ0n̂), and retaining only the first term (μ0q0  |�m|2),
we obtain

i�′
0(qFS) = −i

2μ0

3N |�m| . (A25)
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