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Dielectric function and plasmons of doped three-dimensional Luttinger semimetals
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Luttinger semimetals are three-dimensional electron systems with a parabolic band touching and an effective
total spin J = 3/2. In this paper, we present an analytical theory of dielectric screening of inversion-symmetric
Luttinger semimetals with an arbitrary carrier density and conduction-valence effective mass asymmetry.
Assuming a spherical approximation for the single-particle Luttinger Hamiltonian, we determine analytically
the dielectric screening function in the random phase approximation for arbitrary values of the wave vector and
frequency, the latter in the complex plane. We use this analytical expression to calculate the dispersion relation
and Landau damping of the collective modes in the charge sector (i.e., plasmons).
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I. INTRODUCTION

Several three-dimensional (3D) solids are known to present
quadratic band touchings at the Fermi energy or in its neigh-
bourhood. Grey tin (α-Sn) and mercury telluride (HgTe) were
the first materials in which a crossing between parabolic
valence and conduction bands was recognized and their rich
phenomenology has attracted extensive theoretical and exper-
imental interest for decades [1–4].

In these solids, the parabolic bands which come into con-
tact are akin to the heavy- and light-hole bands in diamond or
zinc-blende semiconductors [5], with the difference that one
of the two bands has positive concavity due to the presence
of strong relativistic effects [6,7]. A parabolic band touching
occurs at the center of the Brillouin zone, is not protected by
topology, but, rather, by the cubic symmetry of the crystal.
At k = 0, four Bloch wave functions are degenerate and
transform under the symmetry group operations as the four
spin states of a particle with J = 3/2. In materials with a
centrosymmetric crystal structure, such as α-Sn, the con-
duction and valence electron states in the proximity of the
band touching point are described, up to the second order in
degenerate k · p perturbation theory, by the Luttinger Hamil-
tonian [5,7]. For this reason, 3D semimetals with a parabolic
band touching are often referred to as “Luttinger semimetals”
(LSMs). Strictly speaking, in noncentrosymmetric materials
such as HgTe, which presents a zinc-blende crystal structure,
linear terms in k are not ruled out from the k · p Hamiltonian
[2,4,7,8]. However, linear terms are quantitatively small in
HgTe [2,4,9] and deviations from the spectrum of a LSM
occur only in a tiny region near the � point. As a result,
treating HgTe as a LSM is adequate for the description of most
of its physical properties [2,4,9].
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In LSMs with the Fermi level lying close to the quadratic
band touching point, electron-electron interactions play an
essential role. They have been demonstrated theoretically to
drive LSMs either into a strong coupling regime, character-
ized by scale invariant correlation functions with anomalous
exponents for momenta and energies smaller than the effec-
tive Bohr scale [7,9–12], or into broken symmetry phases
[13–17].

Interest in LSMs was revitalized by experimental work on
the pyrochlore iridate Pr2Ir2O7, which was found to host a
parabolic band touching point at the Fermi level [18,19]. In
this material, due to the large effective masses of electrons
and holes at the quadratic band touching point, correlation
effects are important and make it a promising platform for
the observation of experimental signatures of the interaction-
driven strong-coupling regime [19]. Effects of interactions in
this material, which can lead to anomalous scaling and broken
symmetry phases with nontrivial topology, have been the
subject of extensive recent investigations [12–21]. The LSM
model attracted also attention in connection with half-Heusler
compounds, such as YPtBi, which were predicted to be topo-
logical superconductors [22]. In passing, we also mention that
LSMs exhibit an extremely rich phenomenology even when
electron-electron interactions are neglected, as they can be
turned into a plethora of topologically nontrivial states by,
e.g., applying strain and confinement, or by illuminating them
with circularly polarized light [8,18,23,24].

Armed with a low-energy single-particle continuum model
Hamiltonian, one can calculate (often analytically) the nonin-
teracting density-density response function χ (0)

nn (q, ω), which
describes the response of the electron system to a spatially
varying and time-dependent scalar potential. This quantity
was first calculated for a 3D parabolic-band electron system
by Lindhard in 1954 [25]. The case of 2D parabolic-band
electron systems was analyzed by Stern [26], while the den-
sity response function of 2D massless Dirac fermions was
first addressed by Shung [27] and later analyzed more thor-
oughly by the authors of Refs. [28–31]. More recently, similar
calculations have been carried out for three-dimensional Weyl
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semimetals both in the bulk case [32–34] and in the presence
of Fermi-arc surface states [35].

This work focuses on the density-density linear response
function χnn(q, ω) and dynamical screening function ε(q, ω)
of a LSM. In the celebrated random phase approximation
(RPA) [36], these are given by Eqs. (15) and (16) below,
respectively. We therefore clearly see that χ (0)

nn (q, ω) is a
crucial input. Screening and dielectric properties of LSMs
have been the subject of several studies, which explored
the dependence of ε(q, ω) on wave vector q, frequency ω,
temperature T , and magnetic field [37–42]. The static wave
vector-dependent dielectric function ε(q, 0) was calculated
within the RPA in Refs. [37–40,42]. These results were
applied to the description of transport properties in pres-
ence of scattering by charged impurities [43–45]. The RPA
dynamic dielectric function, which is relevant for optical
properties, was calculated in the long-wavelength q → 0 limit
in Refs. [46–48]. In particular, in Ref. [47], the frequency
dependence of the dielectric function was studied at finite T
and in presence of lifetime broadening. These results have
been recently used to interpret experiments on pyrochlore iri-
dates [19]. In Ref. [48], the dielectric function was calculated
for q → 0 in both the homogeneous and quasistatic limits,
including the effects of finite T and band-structure anisotropy,
and extending results to the case of a superconducting
LSM.

In Ref. [42], the RPA dielectric function was calculated at
T = 0 for arbitrary ω and q, and for arbitrary values of the
conduction mc and valence mv effective masses, assuming a
spherical approximation. The results in Ref. [42], however,
present some inconsistencies. Indeed, the real part of the intra-
band dielectric function in Figs. 4 and 5 of Ref. [42] exhibits
a finite difference with respect to the Lindhard function of a
3D non-interacting electron gas with a parabolic band in the
limit q → 0. This contrasts with the results presented in this
paper, where the two functions are shown to coincide up to
leading order in the long-wavelength q → 0 limit. In addition,
its imaginary part—Eq. (23) of Ref. [42]—deviates from the
Lindhard function by terms of order 1/q in the limit q → 0,
ω → 0 with ω ∝ q, while our results imply a finite difference
in this limit.

Several studies were also devoted to the calculation of
the screening and dielectric properties of diamond and zinc-
blende semiconductors [49–52], materials in which light- and
heavy-hole band states in the neighbourhood of the � point are
described by the Luttinger Hamiltonian, at least when terms
linear in k in the k · p electron Hamiltonian can be neglected.

In passing, we note that the dielectric properties of doped
LSMs were very recently addressed in Ref. [53], where the
wave-vector- and frequency-dependent RPA dielectric func-
tion was calculated at T = 0, under the assumption of equal
conduction and valence band masses, i.e., mc = mv. The
resulting dynamically screened effective electron-electron in-
teraction was then used to calculate the electron self energy.

In this paper, we calculate the density-density response
function and the dielectric function of doped LSMs in the nor-
mal Fermi liquid state. Following Ref. [42], we work within
the so-called spherical approximation of the full Luttinger
Hamiltonian (2), see Eq. (3).

A weak-coupling treatment of electron-electron interac-
tions within the RPA [36] is justified in the Fermi liquid
regime when the Fermi energy EF is sufficiently shifted from
the quadratic band touching point, i.e., when the dimension-
less coupling constant rs controlling the relative importance
of electron-electron interactions is [36]

rs ≡
(

9π

32

) 1
3 e2kF/εb

h̄2k2
F

/
(2m)

= (9π/4)
1
3

kFaB
� 1. (1)

In Eq. (1), kF is the Fermi wave number, m = mc (mv) for an n-
doped (p-doped) LSM, aB = εbh̄2/(me2) is the material Bohr
radius, and εb is a background dielectric constant, which arises
from the polarization of the bands which are not included in
the low-energy model.

We calculate the noninteracting density-density response
function χ (0)

nn (q, z) and the resulting RPA response function
χnn(q, z) and dielectric function ε(q, z) analytically at T =
0, for arbitrary values of the wave vector q and complex
frequency z, allowing mc �= mv. In this sense, the results
of this paper for χ (0)

nn (q, z), χnn(q, z), and ε(q, z) are more
general than those reported in Ref. [53]. However, contrary
to Ref. [53], we do not present here any calculation of the
one-body self-energy and spectral function.

The complete dielectric function constitutes an impor-
tant tool to describe the properties of the electron system
[36], because it encodes screening of Coulomb interactions,
which is relevant for resistivity calculations and quasiparticle
properties, and the dispersion relation of plasmons, which
is determined by the zeros of the dielectric function. We
derive expressions in a form in which the analytic properties
of χ (0)

nn (q, ω) in the complex frequency plane are manifest.
These expressions are particularly convenient, for example, in
diagrammatic calculations, because they can be immediately
continued to the Matsubara axis. The knowledge of the dielec-
tric function at arbitrary wave vectors and frequencies allows
the determination of the plasmon dispersion relation. We find
that a doped LSM supports long-lived plasma excitations,
Landau damping setting in, as usual, only at a finite critical
wave vector qc. The dispersion relation for arbitrary values
of q is found numerically, by identifying the maxima of
the loss function L(q, ω) ≡ −Im[1/ε(q, ω)], which can be
measured in electron energy loss spectroscopy [54]. Plasmons
of an undoped LSM (EF = 0, i.e., Fermi energy located at the
quadratic band touching point) at finite T have been recently
calculated in Ref. [55].

This paper is organized as following. In Sec. II, we first
introduce the continuum-model Hamiltonian we have used to
describe LSMs and then introduce the RPA approximation for
the density-density response function and the dynamical di-
electric screening function. This is the most important section
of the paper, as the reader can find in it analytical expressions
for the density-density response function of a noninteracting
LSM at arbitrary wave vectors q and complex frequencies z,
electron doping n, and mass imbalance α = mv/mc between
valence and conduction bands. In Sec. III, we report our
results for plasmons and Landau damping. A brief summary
of our main results is presented in Sec. IV. Finally, useful
technical details on the calculation of the density-density
response function of noninteracting LSMs are reported in
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Appendix A, while in Appendix B, we discuss the case of
hole doping.

II. MODEL HAMILTONIAN, DENSITY-DENSITY
RESPONSE FUNCTION, AND DYNAMICAL

DIELECTRIC SCREENING FUNCTION

LSMs display a fourfold degenerate band crossing at the
center � of the Brillouin zone. In the proximity of the crossing
point, the single-particle states are described by the effective
Luttinger Hamiltonian [5,7]

H(L)(k) = h̄2

2me

[(
γ1 + 5

2
γ2

)
k2 − 2γ3(k · j)2

+ 2(γ3 − γ2)
(
k2

x j2
x + k2

y j2
y + k2

z j2
z

)]
. (2)

Here, k is the crystal momentum, which, in the spirit of a
continuum-model description, will be upgraded to real mo-
mentum below, j denotes the angular momentum operator in
the J = 3/2 representation, me is the bare electron mass in
vacuum, and γ1, γ2, γ3 are the so-called Luttinger parameters.

The effective Luttinger Hamiltonian describes the heavy-
and light-hole valence bands in semiconductors with diamond
lattice structure, such as silicon and germanium [5]. Its form
is dictated by symmetry and it is, therefore, very general. The
occurrence of a fourfold degenerate set of Bloch wave func-
tions at k = 0 is related to the existence of four-dimensional
irreducible representations of cubic point groups [7]. Eq. (2)
is the most general form of perturbative k · p Hamiltonian,
allowed by cubic symmetry, inversion symmetry and time-
reversal invariance [5,7].

The effective Luttinger Hamiltonian H(L)(k) can also be
applied to LSMs such as α-Sn and Pr2Ir2O7 but with pa-
rameters γ1, γ2, and γ3 such that the band structure displays
a parabolic node between a valence and a conduction band.
In noncentrosymmetric materials such as HgTe and the half-
Heusler compound YPtBi, the k · p Hamiltonian presents
additional terms, linear in k, which are not ruled out due to
the absence of inversion symmetry [2,4,7,48]. In this work,
we assume the inversion-symmetric Hamiltonian defined in
Eq. (2).

In the following, we will carry out calculations only in
the spherically symmetric limit, where the last term in the
Luttinger Hamiltonian (2), which violates full rotational in-
variance (but respects cubic symmetry), is neglected. In this
limit, γ2 = γ3 = γ and the Luttinger Hamiltonian reduces to

H(LS)(k) = h̄2

2me

[(
γ1 + 5

2
γ

)
k2 − 2γ (k · j)2

]
. (3)

The single-particle eigenstates of H(LS)(k) are characterized
by definite values of the helicity, i.e., the projection of j
along k.

States with helicity ±3/2 have energy
(γ1 − 2γ )h̄2k2/(2me), while states with helicity ±1/2
have energy (γ1 + 2γ )h̄2k2/(2me). Equation (2) describes the
spectrum of a LSM if |γ1| < 2|γ |. We assume, without loss of
generality, that γ > 0. The conduction states then correspond
to helicity ±1/2 and the valence states to helicity ±3/2.

The second-quantized Hamiltonian of a spherically sym-
metric LSM in the presence of Coulomb interactions is

Ĥ =
∑

k, α, β

H(LS)
αβ

(k)â†
k,α

âk,β + H(ee), (4)

where

Ĥ(ee) = 1

2

∑
q �=0

∑
k,k′,α,β

vqâ†
k+q,α

â†
k′−q,β

âk′,β âk,α. (5)

Here, â†
k,α

(ak,α) creates (annihilates) an electron with momen-
tum h̄k and spin projection α = −3/2,−1/2, 1/2, 3/2 along
a fixed quantization axis, independent of k, and

vq = 4πe2

εbq2
, (6)

is the 3D Fourier transform of the Coulomb potential [36].
The noninteracting density-density response function [36]

at zero temperature is given, for complex values of the fre-
quency z, by:

χ (0)
nn (q, z) = 1

V

∑
k,ν,ν ′

nk,ν − nk+q,ν ′

h̄z + εk,ν − εk+q,ν ′
Fν,ν ′ (k, k + q). (7)

Here, V is the 3D electron system volume, ν, ν ′ =
±1/2,±3/2 are band indices, nk,ν denote the usual Fermi-
step occupation numbers at zero temperature, and εk,ν are
the single-particle energies, i.e., εk,±1/2 = h̄2k2/(2mc) for the
conduction band and εk,±3/2 = −h̄2k2/(2mv) for the valence
band. Here, mv = me/(2γ − γ1) > 0 and mc = me/(2γ +
γ1) > 0, where γ1 and γ have been introduced in Eq. (3).
Finally,

Fν,ν ′ (k, k + q) ≡ |〈k, ν|e−iq·r|k + q, ν ′〉|2

= ∣∣D( 3
2 )

νν ′ (θk,k+q)
∣∣2

, (8)

where |k, ν〉 denote single-particle eigenstates with momen-
tum h̄k and spin projection ν along the direction of propaga-

tion k, and D
( 3

2 )
νν ′ (θk,k+q) denotes the unitary rotation matrix of

angle θk,k+q between the vectors k and k + q, in the J = 3/2,
representation. Explicitly, the matrix elements are

∣∣D( 3
2 )

νν ′ (θ )
∣∣2 =

⎡
⎢⎢⎣

c6 3s2c4 3c2s4 s6

3s2c4 (1− 3s2)2c2 (1− 3c2)2s2 3c2s4

3c2s4 (1− 3c2)2s2 (1− 3s2)2c2 3s2c4

s6 3c2s4 3s2c4 c6

⎤
⎥⎥⎦,

(9)
where c = cos (θ/2) and s = sin (θ/2). Summing over pairs
of states with equal and opposite helicity, we obtain

Aintra (θ ) ≡
∑

ν=± 1
2

∑
ν ′=± 1

2

∣∣D( 3
2 )

νν ′ (θ )
∣∣2

=
∑

ν=± 3
2

∑
ν ′=± 3

2

∣∣D( 3
2 )

νν ′ (θ )
∣∣2

= 3

2
cos2(θ ) + 1

2
, (10)
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for the intraband form factor, and

Ainter (θ ) ≡
∑

ν=± 1
2

∑
ν ′=± 3

2

∣∣D( 3
2 )

νν ′ (θ )
∣∣2 = 3

2
sin2(θ ) (11)

for the interband one. It is useful to notice that, due to the
equality of the terms in the first and second line of Eq. (10), the
form factor Aintra (θ ) does not depend on the helicity doublet
(±3/2 or ±1/2) of the band. As a consequence, results
obtained for positive values of the parameter γ in Eq. (3) can
be generalized in a straightforward manner to the case γ < 0,
in which conduction states have helicity ±3/2 and valence
states have helicity ±1/2. In the following, we will consider
the case of an n-doped LSM, in which the Fermi energy
EF > 0 lies in conduction band. As discussed in Appendix B,
the results apply with minor changes to the case of p-doped
samples with EF < 0.

It is useful to split Eq. (7) into the sum of intra- and
interband contributions:

χ (0)
nn (q, z) = χ

(0)
intra (q, z) + χ

(0)
inter (q, z), (12)

where

χ
(0)
intra (q, z) ≡ 1

V

∑
k

Aintra (θk,k+q)
nk,c − nk+q,c

h̄z + εk,c − εk+q,c

(13)

and

χ
(0)
inter (q, z) ≡ 1

V

∑
k

Ainter (θk−q,k)

× 1 − nk,c

h̄z + εk−q,v − εk,c
+ [z → −z]. (14)

Here, nk,c = θ (kF − k), where θ (x) is the usual
Heaviside step function, nk,v = 1, εk,c = h̄2k2/(2mc), and

εk,v = −h̄2k2/(2mv). Throughout this paper, the symbol
“[z → −z]” denotes the expression obtained by reversing
the sign of the variable z in all terms preceding it. In the
thermodynamic V → ∞ limit, one can replace as usual
V −1 ∑

k → ∫
d3k/(2π )3. Expressions equivalent to Eqs. (13)

and (14) have been used in Refs. [37,40,42].
We immediately notice that, in the long-wavelength q → 0

limit χ
(0)
inter (q, z) vanishes and χ

(0)
intra (q, z) reduces to the well-

known density-density response function of a noninteracting
parabolic-band 3D electron gas [36], i.e., to the so-called
Lindhard function χL(q, z).

In the RPA, the density-density response function χnn(q, z)
of the interacting electron system reads as following [36]:

χnn(q, z) = χ (0)
nn (q, z)

1 − vqχ
(0)
nn (q, z)

. (15)

In the same approximation, the wave-vector- and frequency-
dependent dielectric function is [36]

ε(q, z) = εb
[
1 − vqχ

(0)
nn (q, z)

]
. (16)

The density-density response functions defined in Eqs. (7)
and (15) and the dielectric function in Eq. (16) display branch-
cut singularities for real values of the complex frequency z,
which correspond to electron-hole excitations. The retarded
(i.e., causal) response functions and the dielectric function for
real values of the frequency can be obtained [36] by replacing
z = ω + iη and taking the limit η → 0+.

A. Intraband contribution to the response function

We first consider the intraband contribution (13). It is qual-
itatively similar to the Lindhard function [36] χL(q, z), which
can be obtained by setting Aintra (θk,k+q) = 1 in Eq. (13).

We start by calculating the imaginary part of the retarded
density response function χ

(0)
R,intra (q, ω) ≡ χ

(0)
intra (q, ω + i0+),

for real values of ω. This reads as following:

Im
[
χ

(0)
R,intra (q, ω)

] = −π

∫
d3k

(2π )3

[
2 − 3

2

(k × q)2

k2(k + q)2

]
(nk,c − nk+q,c)δ(h̄ω + εk,c − εk+q,c)

= −π

8
N (EF)

1

q̄
�(1 − ν2

−)

[
2(1 − ν2

−) − 3

2

q̄2ν2
+

(ν2+ − ν2−)
ln

(
1 − ν2

− + ν2
+

ν2+

)
− 3

2

q̄2ν2
−

(ν2+ − ν2−)
ln(ν2

−)

]
.

− [ω → −ω]. (17)

Here,

ν± ≡ mc

h̄kF

ω

q
± q

2kF
, (18)

N (EF) ≡ mckF/(π2h̄2) is the density of states at the Fermi
energy, and q̄ ≡ q/kF. Here, kF = √

3π2n is the Fermi wave
number, written in terms of the electron density n.

Note that Im[χ (0)
R,intra (q, ω)] is nonzero only in the regions

of the (q, ω) plane where −1 < ν− < 1 and −1 < ν+ < 1.
Physically, these regions represent the continuum of intraband
electron-hole excitations.

The complete intraband contribution to the density-density
response function can be calculated from Eq. (17) through the
Kramers-Kronig relation [36]:

χ
(0)
intra (q, z) = 1

π

∫ ∞

−∞
dω′ Im

[
χ

(0)
R,intra (q, ω′)

]
ω′ − z

, (19)

where the integral over ω′ runs over the real frequency axis.
The function χ

(0)
intra (q, z) presents branch cuts on the inter-

vals of the real axis in which Im[χ (0)
R,intra (q, ω)] is nonzero. For

arbitrary complex values of the frequency z, away from the
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branch-cut singularity we get

χ
(0)
intra (q, z) =χL(q, z) + 3N (EF)

32

{
1 − q̄2

q̄
ln

(1 + q̄)2

(1 − q̄)2
− 4 + 2ν2

+
ν+ + ν−

f (0, ν+) − 2ν2
−

ν+ + ν−
f (0,−ν−)

− 2ν2
−

ν+ + ν−
[ f (q̄, ν+) − g(q̄, ν+)] + 2ν2

+
ν+ + ν−

[ f (q̄,−ν−) − g(q̄,−ν−)]

}
,

(20)

where χL(q, z) is the ordinary Lindhard function [36]

χL(q, z) = −N (EF)

{
1

2
+ (1 − ν2

−)

4q̄
ln

[
ν− − 1

ν− + 1

]
− (1 − ν2

+)

4q̄
ln

[
ν+ − 1

ν+ + 1

]}
. (21)

The functions f and g are defined by

f (q̄, t ) ≡
∫ 1

−1

dt ′

t ′ − t
ln[(q̄ − t ′)2] = ln[(1 − q̄)2] ln

(
t − 1

t − q̄

)
− ln[(1 + q̄)2] ln

(
t + 1

t − q̄

)
+ 2Li2

[
1 − q̄

t − q̄

]
− 2Li2

[−(1 + q̄)

t − q̄

]
(22)

and

g(q̄, t ) ≡
∫ 1

−1

dt ′

t ′ − t
ln(1 + q̄2 − 2q̄t ′) = ln(1 + q̄2 − 2q̄t ) ln

(
t − 1

t + 1

)
+ Li2

[ −2q̄(1 + t )

1 + q̄2 − 2q̄t

]
− Li2

[
2q̄(1 − t )

1 + q̄2 − 2q̄t

]
, (23)

where Li2[z] is the dilogarithm function, i.e.,

Li2[z] ≡ −
∫ z

0
du

ln (1 − u)

u
. (24)

In Eqs. (20) and (21), ν± are promoted to complex quantities:

ν± ≡ mc

h̄kF

z

q
± q

2kF
. (25)

The logarithm is defined in a standard way, with a branch cut
on the negative real axis and argument ranging from −π to
+π . Accordingly, the dilogarithm function presents a branch
cut on the interval [1,+∞) of the real axis. The auxiliary
functions f and g are analytic functions of the complex
variable t , with branch cuts on the interval of the real axis
defined by −1 < t < 1. As a result, χ

(0)
intra (q, z) displays the

analytic structure which is expected from the Lehmann (or
exact eigenstate) representation [36]. It is regular in the whole
complex plane z, except for the intervals −1 < ν+ < 1 and
−1 < ν− < 1 on the real axis, which correspond to the range
of energies for which intraband particle-hole pair excitations
of momentum q exist. As the cut is crossed, the real part of
χ

(0)
intra changes continuously but its imaginary part presents a

discontinuous change in sign. The retarded response function
is obtained by calculating limη→0+ χ

(0)
intra (q, ω + iη), in such a

way that singularities are avoided from above in the complex
plane. Taking this limit generates both the real and imaginary
parts of the intraband density response function and it is
therefore unnecessary to keep track of the latter separately
through Eq. (17).

Illustrative results on the real frequency axis are shown
in Fig. 1, where the intraband contribution to the retarded
density-density response function is compared with the ordi-
nary Lindhard function [36] of a 3D system of parabolic-band
electrons with mass mc. Because the dispersion relation is
identical in the two cases, the response functions are qualita-
tively similar. The imaginary part is nonvanishing in precisely
the same regions of the (q, ω) plane. Differences arise only

from the spin 3/2 structure of the low-energy Luttinger states
and these grow with increasing q. On the contrary, in the
q → 0 limit, χ

(0)
intra (q, z = ω + i0+) and χL(q, z = ω + i0+)

coincide up to leading order in an expansion in powers of
q2, both at zero frequency, where they approach the famous
constant −N (EF), and at finite frequency, where they van-
ish as nq2/(mcω

2), n being the electron density. This is at
variance with Figs. 4 and 5 in Ref. [42], where it is seen
that εintra (q, z = ω + i0+) �= εL(q, z = ω + i0+) in the q → 0
limit. In Figs. 1(a)–1(c), we also see that Im[χ (0)

R,intra (q, ω)] is
asymptotically equal to Im[χL(q, ω)] even at finite q when
h̄ω → h̄2(q2 + 2kFq)/(2mc), i.e., the maximum excitation en-
ergy of a particle-hole pair of momentum q. This finding has
a simple physical interpretation. For a fixed momentum q,
pairs with the largest possible energy are formed by exciting
electrons at the Fermi surface with momentum k parallel
to the momentum transfer q. When k and q are parallel,
the nontrivial matrix element due to the spin-3/2 structure
does not play any role, therefore explaining the asymptotic
agreement mentioned above. A similar argument holds for the
lower edge in Fig. 1(c), where Im[χ (0)

R,intra (q, ω)] is seen to be

tangent to Im[χ (0)
L (q, ω)] at the minimum excitation energy

h̄ω → h̄2(q2 − 2kFq)/(2mc).
In the static z → 0 limit, we obtain, in agreement with

Ref. [42]:

χ
(0)
intra (q, 0) = −3

4
N (EF)

{
7

6
+ q̄4 − 1

4q̄
ln

∣∣∣∣1 + q̄

1 − q̄

∣∣∣∣
+ q̄

8
(4 − q̄2)

(
4

3q̄2
+ 1

)
ln

∣∣∣∣2 + q̄

2 − q̄

∣∣∣∣
+ q̄

[
�(−q̄) − �(q̄) + �

(
q̄

2

)
− �

(
− q̄

2

)]}
,

(26)
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FIG. 1. The intraband contribution to the noninteracting density-density response function of a Luttinger semimetal (solid lines) is
compared with the Lindhard response function [36] of a 3D system of parabolic-band electrons with mass mc (dashed lines). Blue (red)
refers to the real (imaginary) part of χ

(0)
R,intra (q, ω). All quantities are normalized to the negative of the density of states at the Fermi energy, i.e.,

−N (EF ). (a), (b), and (c) show the dependence of the dynamical response function on the real frequency ω (in units of EF/h̄) for q = 2kF/5,
4kF/5, and 3kF, respectively. (d) shows the dependence of the static response function on q (in units of kF). Results in this figure have been
obtained by calculating χ

(0)
intra (q, ω + i0+).

where �(x), for real x, is defined as

�(x) ≡ lim
z→x

Re[Li2(z)] = −
∫ x

0
du

ln |1 − u|
u

=
{

Li2(x) for x < 1
π2

3 − 1
2 ln2 (x) − Li2

(
1
x

)
for x > 1

.

(27)

The static function is illustrated in Fig. 1(d). Comparing the
Lindhard function with χ

(0)
intra (q, 0), we clearly see that the

matrix elements (8) associated with the nontrivial structure of
spin-3/2 states lead to a dramatic reduction of the intraband
response of a LSM and strong qualitative modifications in the
region of finite q. We even see a nonmonotonic dependence of
χ

(0)
intra (q, 0) on q in a range of values of q. This strong reduction

in polarizability is a consequence of the spin-3/2 structure of
the Luttinger Hamiltonian.

In the static case, both the Lindhard function and the intra-
band response function of a LSM present a singular derivative
at q = 2kF. This singularity gives rise to Friedel oscillations
[36,56] of period π/kF in the density profile induced by a
static pointlike charge introduced in the 3D electron system.
In addition, χ

(0)
intra (q, 0) presents a weaker logarithmic singu-

larity in the third derivative at q = kF. However, this latter
singularity disappears from the total static density response
function χ (0)

nn (q, 0) = χ
(0)
intra (q, 0) + χ

(0)
inter (q, 0), as it can be

checked from Eq. (26) and (35) (see also Ref. [56]).

B. Interband contribution to the response function

The interband density-density response χ
(0)
inter (q, z) is par-

ticularly interesting because it displays the peculiar behavior
associated with the absence of a gap between the valence and
conduction band [3,19,37,41,43,46,47].

Technical details on the calculation of χ
(0)
inter (q, z) are re-

ported in Appendix A. Here, we report only the final results.
It is convenient to decompose the interband density response
function as

χ
(0)
inter (q, z) = χ (0)

u (q, z) + δχ
(0)
inter (q, z), (28)

where χ (0)
u (q, z) is the density-density response of an undoped

LSM, in which the Fermi energy lies at the parabolic band
touching point, while δχ

(0)
inter (q, z) represents the contribution

arising from the presence of a finite electron concentration in
the conduction band.
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For arbitrary wave vectors and complex frequencies, and arbitrary values of the mass imbalance α = mv/mc, we find

χ (0)
u (q, z) = − 3i

16π

mc + mv

h̄2 r + 3(α + 1)

32π h̄k0z

[(
r2 − k2

0

)2
arctan

(
ik0

r

)
+ α2

(
r2

α2
− k2

0

)2

arctan

(
iαk0

r

)]
+ [z → −z] (29)

and

δχ
(0)
inter (q, z) = 3mckF

32π2h̄2

{
− 1

2k̄0

[
4αk̄0 + 1 − q̄2

α + 1
ln

(1 + q̄)2

(1 − q̄)2

]
+ α + 1

2k̄0

[
((r̄ − k̄0)2 − 1) ln

r̄ − k̄0 + 1

r̄ − k̄0 − 1
− ((r̄ + k̄0)2 − 1)

× ln
r̄ + k̄0 + 1

r̄ + k̄0 − 1

]
− (z̄ − q̄2)2

2q̄z̄

[
f (−q̄, r̄ − k̄0) + f (−q̄,−r̄ − k̄0) − g

(
−q̄,

r̄2 − 1 − k̄2
0

2k̄0

)]

+ (αz̄ − q̄2)2

2q̄z̄
[ f (0, r̄ − k̄0) + f (0,−r̄ − k̄0)]

}
+ [z → −z].

(30)

Here, z̄ = h̄z/EF is the frequency in units of the Fermi energy,

k0 = q
1 + α

(31)

and

r = i

√
α

α + 1

(
q2

α + 1
− 2mcz

h̄

)
(32)

are auxiliary variables, r̄ ≡ r/kF and k̄0 ≡ k0/kF. (For exam-
ple, the parameter α is on the order of 10 for grey tin and
mercury telluride.) In Eq. (32), the square root is defined in
a standard way, with a branch cut on the negative real axis
and a branch choice such that Re[

√
x] � 0 for complex x.

The function arctan(x) in Eq. (29) is defined in the complex
plane as

arctan(x) ≡ i

2
ln

(
i + x

i − x

)
, (33)

with the standard choice of branch cut for the logarithm.
The auxiliary variables r and k0 can be ascribed a physi-
cal meaning. Indeed, it is easy to check that the possible
electron momenta of interband particle-hole pairs span a
spherical region of the momentum space centered in k0 and of
radius r.

Equations (29) and (30) define analytic functions in the
complex frequency plane. They exhibit branch cuts only on
the intervals of the real frequency axis which correspond
to the energy of interband particle-hole pairs (or its negative).
The retarded response function has a finite imaginary part only
in these regions and is purely real in the other intervals of the
real frequency axis.

The quantity χ (0)
u (q, z) is singular for r2 > 0, which cor-

responds to the kinematic threshold for excitation of pairs
of momentum q. The variable r is not well defined, because
Eq. (32) presents a branch cut. The ambiguity in the sign of the
square root is resolved by the iη prescription. In the case of the
retarded response function, r is a positive quantity for ω real
and greater than the threshold set by r2 > 0. In presence of a
finite density n of conduction electrons, low-energy interband
transitions are Pauli blocked. Therefore the interband con-
tribution χ

(0)
inter (q, z) to the density-density response function

presents a finite imaginary part and branch-cut singularities

only when r2 > 0 and (k0 + r) > kF. The interband electron-
hole continuum in the (q, ω) plane is illustrated in Fig. 2 for
the case mc = mv.

FIG. 2. The interband particle-hole continuum of a Luttinger
semimetal in the (q, ω) plane. In region IV, ω < h̄q2/[2(mc + mv )]
(r2 < 0), the existence of interband particle-hole pairs is kinemat-
ically forbidden. In region III, r2 > 0 but interband transitions are
Pauli blocked. This happens for k0 + r < kF, when the spherical
surface of electron momenta lies inside the Fermi sphere. In region II,
k0 + r > kF and (k0 − r)2 < k2

F, implying that the spherical surface
overlaps partially with the Fermi sphere. In this region, a fraction
of interband transitions is blocked by Pauli exclusion principle. In
the high-energy or high-momentum regions Ia and Ib, Pauli blocking
has no effect and k0 − r > kF or k0 − r < −kF. While in the (k0, r)
parametrization one can distinguish different regions of the interband
electron-hole continuum without specifying the mass imbalance α,
in the (q, ω) plane the boundaries depend on α. Results in this figure
refer to α = 1.
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Analytical expressions for Im[χ (0)
u (q, ω)] and

Im[δχ (0)
inter (q, ω)] on the real frequency axis are reported

in Appendix A, see Eqs. (A4) and (A11).
Results for the interband contribution

εinter (q, ω) ≡ −εbvqχ
(0)
inter (q, ω + i0+) (34)

to the RPA dielectric function (16) are shown in Fig. 3 for
undoped and doped LSMs. Note that rescaling q with kF, ω

with EF/h̄, and εinter (q, ω) with εb/(kFaB), the plots shown in
Fig. 3 are universal, in the sense that they are independent
of density, although they depend on the mass asymmetry
parameter α.

In the static z → 0 limit, χ
(0)
inter reduces, in agreement with

Ref. [42], to

χ
(0)
inter (q, 0)

= −3

4
N (EF)q̄

{
α

2q̄
+ q̄4 − 1

4q̄2
ln

∣∣∣∣1 − q̄

1 + q̄

∣∣∣∣
+ (α + 1)2 − q̄4

8q̄2
ln

[
(q̄ − 1)2 + α

(q̄ + 1)2 + α

]
− π

2

√
α

+√
α arctan

(
α + 1 − q̄2

2
√

α q̄

)
+ �(q̄) − �(−q̄)

+ (α − 1)Re

[
Li2

(
q̄

1 − i
√

α

)
− Li2

( −q̄

1 − i
√

α

)]}
.

(35)

III. PLASMON DISPERSION RELATION
AND LANDAU DAMPING

In this section, we use the results on the density-density
response function to look at plasmons of doped LSMs.

The dispersion relation of plasmons is determined by the
poles of the density response function, or equivalently, by the
zeros of the dielectric function

ε(q,�(q)) = 0 (36)

located infinitesimally below the real-frequency axis.
We begin by addressing the evaluation of the plasma

frequency, i.e., the value of �(q) at q = 0, which we denote
by �0. The real and imaginary parts of the RPA dielectric
function in the q → 0 limit (and ω > 0) have the form

Re[ε(0, ω)] = εb

{
1 − ω2

p

ω2
+ 3

4

α

α + 1

h̄2ω2
p

E2
F

× 1

r̄

[
1

4
ln

(1 + r̄)2

(1 − r̄)2
+ arctan(r̄)

]}
(37)

and

Im[ε(0, ω)] = 3π

8
εb

α

1 + α

h̄2ω2
p

E2
F

θ (r̄ − 1)

r̄
, (38)

where ω2
p = 4πne2/(εbmc) is the square of the standard

plasma frequency for a 3D systems of electrons with a single
parabolic band of mass mc [36], r̄ is the variable introduced

(a)

(b)

(c)

FIG. 3. The interband contribution (34) to the dielectric function
(solid lines) of a doped Luttinger semimetal is compared with the
dielectric function of an undoped system (dashed and dotted lines).
(a) Results for q = 0. In the undoped case, ε(q, ω) diverges as
1/

√
ω and its real and imaginary parts coincide [19,46,47]. In the

doped case, Pauli blocking cuts off this singularity at ω∗ = EF(1 +
1/α)/h̄, where Im[εinter (0, ω)] presents a discontinuous jump to zero
[19,46,47]. Correspondingly, Re[εinter (0, ω∗)] displays a logarithmic
divergence [19,46,47]. (b) All divergencies disappear [57] at finite
q. (c) The static ω = 0 case. In the undoped case [37], εinter (q, 0)
diverges as 1/q. Pauli blocking cures this divergence, leaving a
regular, but strongly density-dependent dielectric function [41,43].
Results in this figure refer to α = 10.

previously in Eq. (32), evaluated at zero momentum, i.e.,

r̄ = 1

kF

√
α

α + 1

2mcω

h̄
, (39)
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and θ (x) is the usual step function. These expressions were
first obtained in Ref. [47]. The three terms in the right-hand
side of Eqs. (37) correspond to the background, intraband,
and interband contributions to the q = 0 frequency-dependent
dielectric function, respectively. Only interband transitions
contribute to the imaginary part, Eq. (38). These lead to
singularities in the dielectric function [19,46,47] for r̄ = 1.
The imaginary part presents a finite jump and the real part a
logarithmic divergence [19,46,47]. Such singularities disap-
pear at finite temperature [47]. The frequency dependence of
Re[ε(0, ω)] and Im[ε(q, ω)] is shown in Fig. 3(a).

In the limit rs � 1, the plasmon frequency is given by [57]

�2
0 = ω2

p

1 + εinter (0, 0)/εb
, (40)

where

εinter (0, 0) = 3

2
εb

α

α + 1

h̄2ω2
p

E2
F

. (41)

In the limit rs � 1, indeed, the interband contribution is small,
because h̄2ω2

p/E2
F ≈ rs and r̄ ≈ √

h̄ωp/EF ≈ r1/4
s , and gives

a contribution of order rs. When the electron density is low-
ered, the frequency dependence of the dynamical interband
dielectric function plays a role and the plasma frequency is
significantly modified [57] with respect to Eqs. (40) and (41).
We remind the reader that, however, the RPA is not reliable in
the low-density limit [36] and we will therefore mainly stick
to discussing the weak-coupling rs � 1 regime.

In order to address the plasmon dispersion relation at finite
momenta, transcending the analytical result (40), we seek for
plasmons numerically by plotting the loss function

L(q, ω) = −Im

[
1

ε(q, ω + i0+)

]
, (42)

which portraits the spectral density of particle-hole excitations
and presents sharp peaks in correspondence of plasmons.
Illustrative numerical results for L(q, ω), which can be mea-
sured experimentally by electron-energy loss spectroscopy
(EELS) [54], are reported in Figs. 4(a) and 4(b).

Data in Fig. 4(a) have been obtained by setting mc =
0.024 me, mv = 10 mc, εb = 24, and a conduction electron
density n = 1016 cm−3—corresponding to a value of the
Wigner-Seitz coupling constant rs � 0.55. Here, me is the
bare electron mass in vacuum. These parameters are supposed
to describe α-Sn. Material parameters for the pyrochlore
iridate Pr2Ir2O7 are very different: we take [18,19] mc =
mv = 6.3 me and εb = 10. A finite carrier concentration is
generally expected in a real sample, due to the unavoidable
presence of impurities. Samples of Pr2Ir2O7 prepared in
Ref. [19] were indeed found to present a hole carrier density
in the range 5.1 × 1019–1.7 × 1020 cm−3. In this case, the
value of the coupling constant rs is much larger than the
one for α-Sn: in Pr2Ir2O7, rs is expected to vary between
approximately 10 and 20. In Fig. 4(b), we report the loss
function L(q, ω) corresponding to these material parameters
and for a hole density n = 5.1 × 1019 cm−3 (corresponding
to rs � 20). Due to the large effective masses, interaction
effects are enhanced in Pr2Ir2O7, which makes this material a
specially suitable candidate for the experimental observation
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FIG. 4. Density plots of the loss function for a doped Luttinger
semimetal. (a) L(q, ω) for mc = 0.024 me, mv = 10 mv, εb = 24, and
n = 1016 cm−3 (corresponding approximately to material parameters
for α-Sn). (b) Same as in (a) but for mc = mv = 6.3 me, εb = 10, and
n = 5.1 × 1019 cm−3 (corresponding approximately to material pa-
rameters for Pr2Ir2O7, see Refs. [18,19]). Results have been obtained
by giving a finite imaginary shift to the frequency, which artificially
broadens the plasmon dispersion relation, mimicking the role of
extrinsic disorder. In both figures, the color intensity is saturated
when the loss function exceeds the maximum in the scale.

of non-Fermi liquid behavior predicted by Abrikosov [7,9–
12,18,19] or broken-symmetry phases induced by electron-
electron interactions [13–17,20]. In Ref. [19], it is argued
that dc transport measurements and Terahertz spectroscopy
on samples of Pr2Ir2O7 with a carrier density larger than
5.1 × 1019 cm−3 can be consistently understood assuming a
Fermi-liquid behavior at low energy and low temperatures. At
the same time, experimental evidence of anomalously strong
dielectric response was reported [19]. This was interpreted as
a result of a dielectric anomaly due to interband transitions at
the quadratic band touching, which according to Eqs. (37) and
(41), is a signature of strong coupling and large values of rs.
For coupling constants as large as rs = 10–20, the applicabil-
ity of the RPA is not justified and results obtained in our work
are not expected to be quantitatively accurate. In Ref. [19],
it was estimated, based on the theory of Abrikosov [7,9–11],
that, despite the large value of the coupling, the dielectric
anomaly observed in Pr2Ir2O7 is accurately captured by the
RPA in the range of experimental parameters. In this work,
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FIG. 5. Plasmon dispersion relation (red dots), calculated for
mc = 0.024 me, mv = 10 me, εb = 24, and for different conduction
electron densities: from the bottom to the top, n = 1018, 1017, 1016,
1015, and 1014 cm−3. Grey-shaded regions denote the intra- and
interband particle-hole continua. In these regions, the imaginary part
of the noninteracting density response function is nonvanishing and
plasmons are Landau damped: see Fig. 4(a).

however, we will mainly focus on the weak-coupling regime
rs � 1.

Numerical results for the plasmon dispersion are shown in
Fig. 5, for the following choice of parameters: mc = 0.024 me,
mv = 10 mc, and εb = 24. The dispersion relation � = �(q)
is shown for values of the electron density between 1018 and
1014 cm−3, which correspond to values of rs between �0.12
and �2.5. In the RPA, the plasmon lives in region III of
Fig. 2, where the spectral density of particle-hole pairs is
zero, until a finite critical wave vector, after which it merges
with the particle-hole continuum and ceases to exist as a
sharply defined excitation because Landau damping kicks in.
Now, this occurs [57] for arbitrarily low values of n, for a
finite range of wave vectors q, which shrinks in size as n →
0. Indeed, for arbitrary values of n, the dynamic dielectric
function at q = 0—Eq. (37)—diverges to −∞ for ω → 0
due to the intraband contribution and to +∞ for r̄ → 1 due
to the interband contribution. Therefore the zero of ε(0, ω),
which yields the plasmon pole �(0) at q = 0, must occur for
r̄ < 1, where ε is purely real and Landau damping does not
occur. By continuity, if the plasmon mode lies outside the
phase-space boundaries of single particle-hole excitations at
q = 0, its dispersion must persist in region III of Fig. 2 for a
finite range of wave vectors [57].

Such a simple picture is valid as long as beyond-RPA
effects are neglected. In reality, intrinsic plasmon damping
due to the excitation of double particle-hole pairs with oppo-
site momenta persists down to q = 0 and can be calculated
by diagrammatic perturbation theory applied to the proper
density-density response function [36,58].

IV. SUMMARY AND CONCLUSIONS

In summary, in this paper, we have presented analyti-
cal formulas for the noninteracting density-density response
function χ (0)

nn (q, z) of a doped Luttinger semimetal. Our re-
sults are valid for arbitrary values of the wave vector q,

complex frequency z, and conduction-valence effective mass
asymmetry α.

The intraband contribution can be found in Eq. (20).
The interband contribution can be found in Eqs. (29) and
(30). These results have been employed as ingredients for
the calculation of the interacting density-density response
χnn(q, ω) and dynamical dielectric function ε(q, ω) in the
celebrated random phase approximation [36], Eqs. (15) and
(16), respectively. Plasmons at the level of RPA have been
discussed in Sect. III.

The range of applicability of these results is however
much wider. For example, χ (0)

nn (q, z) is the key ingredient
of any calculation of normal Fermi liquid properties [36],
with particular reference to the spectral function A(k, ω)—see
Ref. [53] for calculations at α = 1—and Landau parameters
F (s,a)

� . Indeed, these calculations usually rely on the dynami-
cally screened electron-electron interaction

W (q, z) ≡ vq

ε(q, z)
. (43)

For example, all calculations of the quasiparticle self-energy
�(k, ω) based on the so-called ‘‘GW ” approximation rely on
Eq. (43). In general, any diagrammatic calculation aimed at
transcending the RPA—by relaxing the brutal approximation
of the proper density-density response function χ̃nn(q, z) with
χ (0)

nn (q, z)—requires the analytical formulas reported in this
paper.
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APPENDIX A: CALCULATION OF THE
INTERBAND CONTRIBUTION

The calculation of the interband contribution to the density-
density response function starts from the usual Kubo formula,
Eq. (14). As in the case of the intraband term, we first calculate
the imaginary part of the retarded density-density response
function χ

(0)
R,inter (q, ω) = χ

(0)
inter (q, ω + i0+). We then retrieve

the complete analytic expression for χ
(0)
inter (q, z) as an analytic

function in the complex frequency plane from the Kramers-
Kronig relation [36].

For the sake of simplicity, in this Appendix, we set h̄ =
2mc = kF = 1. Final results are presented in ordinary units in
the main text. We remind the reader of the definition of the
effective mass imbalance α = mv/mc.

The undoped response function is obtained by setting
nk,c = 0 in Eq. (14):

Im
[
χ

(0)
R,u(q, ω)

] ≡ Im
[
χ (0)

u (q, ω + i0+)
]

= −π

∫
d3k

(2π )3

3

2

(q × k)2

k2(k − q)2

× δ(ω − εk,c + εk−q,v) − [ω → −ω].

(A1)
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Im[χ (0)
R,u(q, ω)] is nonzero only in the region of the (q, ω)

plane where interband particle-hole excitations are possi-
ble according to the conservation of energy and momen-
tum. This region corresponds to ω > q2/(1 + α). (We can
restrict our attention to the case of positive ω, because
of the antisymmetry of the imaginary part of the response
function.)

When this condition is fulfilled, the integral in Eq. (A1),
restricted by the energy conserving δ function, must be carried
out over the locus of all final momenta k available to electrons
being promoted from the valence to the conduction band with

an energy transfer ω and a momentum transfer q. This is a
sphere, whose center is located at

k0 = q
α + 1

(A2)

and whose radius is

ρ =
√

α

α + 1

(
ω − q2

α + 1

)
. (A3)

The integral in Eq. (A1) can be calculated analytically and
conveniently expressed in terms of the variables ρ and k0:

Im
[
χ

(0)
R,u(q, ω)

]=− 3

64π
�(ρ2)

[
2(α + 1)ρ+ 1

2αk0

(
ρ2 − α2k2

0

)2

ρ2 + αk2
0

ln
(ρ − αk0)2

(ρ + αk0)2 − α

2k0

(
ρ2 − k2

0

)2

ρ2 + αk2
0

ln
(ρ + k0)2

(ρ − k0)2

]
−[ω → −ω].

(A4)

In the following, we will make use of the variable

r = i

√
α

α + 1

(
q2

α + 1
− z

)
, (A5)

which is very similar to ρ, but for the presence of a branch cut in the expected region, i.e., for real frequencies z such that
z > q2/(1 + α). In Eq. (A5), as in the main text, the square root is intended to have a branch cut for negative values of its
argument and a positive real part. In the following calculations, advantages in using r arise from the fact that, for every complex
value of z (apart from values which lie on the branch cut on the real axis, which are never reached thanks to the +iη prescription),
the imaginary part of r is strictly positive.

We now calculate the density response function χ (0)
u (q, z) from the Kramers-Kronig relation. Changing variables from ω′ to

ρ ′ and making use of the antisymmetry of the expression in the first line of Eq. (A4) under the exchange ρ → −ρ yields

χ (0)
u (q, z) = 1

π

∫ ∞

−∞
dω′ Im[χ (0)

R,u(q, ω′)]
ω′ − z

= − 3

64π2

∫ ∞

−∞

dρ ′

ρ ′ − r

[
2(α + 1)ρ ′+ 1

2αk0

(
ρ ′2 − α2k2

0

)2

ρ ′2 + αk2
0

ln

(
ρ ′−αk0

)2

(ρ ′ + αk0)2 − α

2k0

(
ρ ′2 − k2

0

)2

ρ ′2 + αk2
0

ln
(ρ ′ + k0)2

(ρ ′ − k0)2

]
+[z → −z].

The integral in Eq. (A6) can be calculated with the aid of the relation∫ +∞

−∞

dx

x − z
ln

(x + 1)2

(x − 1)2 = 2π isgn[Im(z)] ln

(
z + 1

z − 1

)
= 4πsgn[Im(z)] arctan

(
i

z

)
. (A6)

The final result is

χ (0)
u (q, z) = − 3i

32π
(α + 1)r + 3

32πk0

α

r2 + αk2
0

[
−π

2
k4

0 (α + 1)2 + (
r2 − k2

0

)2
arctan

(
ik0

r

)

+ α2

(
r2

α2
− k2

0

)2

arctan

(
iαk0

r

)]
+ [z → −z]. (A7)

Symmetrizing with respect to z ∝ r2 + αk2
0 , we find

χ (0)
u (q, z) = − 3i

32π
(α + 1)r + 3

32πk0

α

r2 + αk2
0

[(
r2 − k2

0

)2
arctan

(
ik0

r

)
+ α2

(
r2

α2
− k2

0

)2

arctan

(
iαk0

r

)]
+ [z → −z],

(A8)

which, after using Eqs. (32) and (31), yields Eq. (29) in the main text.
The analytic expression in Eq. (A8) presents a single branch cut in the expected region (r2 > 0) in which interband electron-

hole excitations exist. The arctan functions produce branch cut singularities only in the same region, r2 > 0. Note that the density
response function does not present a pole at z ∝ r2 + αk2

0 = 0 because it is symmetric under exchange z → −z. The imaginary
part of χ

(0)
R,u(q, ω)—Eq. (A4)—can be obtained from Eq. (A8) by taking the limit limη→0+ χ (0)

u (q, ω + iη) and therefore does not
need to be considered separately.
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We now turn to the contribution δχ
(0)
inter (q, z), which arises from the presence of a finite density of conduction-band electrons.

According to Eq. (14), it is given by

δχ
(0)
inter (q, z) = 1

V

∑
k

3

2
sin2(θk−q,k)

−nk,c

h̄z + εk−q,v − εk,c
+ [z → −z]. (A9)

The imaginary part on the real frequency axis is therefore given by

Im
[
δχ

(0)
R,inter (q, ω)

] ≡ Im
[
δχ

(0)
inter (q, ω + i0+)

] = −π

∫
d3k

(2π )3

3

2

(q × k)2

k2(k − q)2 (−nk,c)δ(ω − εk,c + εk−q,v) − [ω → −ω]. (A10)

We can again limit our attention to ω > 0, because of the antisymmetry of the previous response function. As in the calculation of
the density-density response function in the undoped case, the integral over k (constrained by the energy conserving δ function)
spans a sphere with center k0 and radius ρ. The quantity Im[δχ (0)

R,inter (q, ω)] acts to subtract from Im[χ (0)
R,u(q, ω)]—Eq. (A4)—

those transitions whose final momentum k would lie inside the occupied Fermi sphere. Depending on q and ω (and therefore on
k0 and ρ) the Pauli principle can block all of the transitions, a part, or none of them. The integral in Eq. (A10) can be calculated in
cylindrical coordinates, with the axis oriented along q. Contracting the δ function with the integration over the radial cylindrical
coordinate k⊥ yields

Im
[
δχ

(0)
R,inter (q, ω)

] = 3

16π

α

α + 1
θ (ρ2)θ (1 − (k0 − ρ)2)

∫ min
(

k0+ρ,
1−ρ2+k2

0
2k0

)
k0−ρ

dk‖
q2k2

⊥
(k2

‖ + k2
⊥)[k2

⊥ + (k‖ − q)2]
− [ω → −ω],

(A11)

where k2
⊥ = ρ2 − (k‖ − k0)2. The final result is

Im
[
δχ

(0)
R,inter (q, ω)

] = 3

64π
θ
(
ρ2

){
θ (1 − (ρ − k0)2)

[
(α + 1)

1 − (ρ − k0)2

2k0
+ α

2k0

(
ρ2 − k2

0

)2

ρ2 + αk2
0

ln (ρ − k0)2

− 1

2αk0

(
ρ2 − α2k2

0

)2

ρ2 + αk2
0

ln (ρ + αk0)2

]
− θ (1 − (ρ + k0)2)[. . . ]ρ→−ρ

+ [θ (1 − (ρ − k0)2) − θ (1 − (ρ + k0)2)]
1

2αk0

(
ρ2 − α2k2

0

)2

ρ2 + αk2
0

ln
[
(α + 1)

(
ρ2 + αk2

0

) − α
]} − [ω → −ω].

(A12)

Here, the symbol “[...]ρ→−ρ” denotes the expression obtained by changing the sign of ρ in the terms in the squared bracket in
the first and second lines of Eq. (A12). As in the rest of the paper, [ω → −ω] denotes the function obtained by changing the sign
of ω in all terms in the first three lines. The same notation will be used in Eq. (A13). The boundaries set by the Heaviside step
functions in Eq. (A12) have a transparent physical interpretation. The electron momenta of interband electron-hole excitations of
energy ω and momentum q lie on a spherical surface. If −1 < k0 − ρ < 1, this surface intersects the Fermi sphere and therefore
some of the transitions will be denied by the Pauli principle. If furthermore k0 + ρ < 1, the surface lies entirely inside the Fermi
sphere and all of the transitions are Pauli blocked. In this case, Im[δχ (0)

R,inter (q, ω)] becomes equal and opposite to Im[χ (0)
R,u(q, ω)],

as can be seen by comparing Eqs. (A12) and (A4).
It remains to use the Kramers-Kronig relation to calculate δχ

(0)
inter (q, z) from the knowledge of its imaginary part on the real

frequency axis. As in the case of χu(q, z), the calculation is simplified by the antisymmetry of the expressions defined by the
first three lines of Eq. (A12) under the exchange ρ → −ρ. We have

δχ
(0)
inter (q, z) = 1

π

∫ ∞

−∞
dω′ Imδχ

(0)
R,inter (q, ω′)
ω′ − z

=
{

3

64π2

∫ 1+k0

−1+k0

dρ ′

ρ ′ − r

[
(α + 1)

1 − (ρ ′ − k0)2

2k0
+ α

2k0

(
ρ ′2 − k2

0

)2

ρ ′2 + αk2
0

ln(ρ ′ − k0)2

− 1

2αk0

(
ρ ′2 − α2k2

0

)2

ρ ′2 + αk2
0

ln(ρ ′ + αk0)2

]}
+ {. . . }r→−r

+ 3

64π2

∫ (1+k0 )2

(1−k0 )2

d (ρ ′2)

ρ ′2 − r2

1

2αk0

(
ρ ′2 − α2k2

0

)2

ρ ′2 + αk2
0

ln
[
(α + 1)

(
ρ ′2 + αk2

0

) − α
] + [z → −z]. (A13)
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The final result is

δχ
(0)
inter (q, z) = 3

64π2

{
− 1

2k0

[
4αk0 + 1 − (α + 1)2k2

0

α + 1
ln

(1 + (α + 1)k0)2

(1 − (α + 1)k0)2

]
+ α + 1

2k0

[
((r − k0)2 − 1) ln

r − k0 + 1

r − k0 − 1

− ((r + k0)2 − 1) ln
r + k0 + 1

r + k0 − 1

]
− 1

2αk0

(
r2 − α2k2

0

)2

r2 + αk2
0

[
f (−(α + 1)k0, r − k0) + f (−(α + 1)k0,−r − k0)

− g

(
−(α + 1)k0,

r2 − 1 − k2
0

2k0

)]
+ α

2k0

(
r2 − k2

0

)2

r2 + αk2
0

[ f (0, r − k0) + f (0,−r − k0)]

}
+ [z → −z], (A14)

where the functions f (q̄, t ) and g(q̄, t ) have been defined in
Eqs. (22) and (23). Combining Eq. (A14) with the definitions
of r and k0, Eqs. (32) and (31), we finally obtain Eq. (30) in
the main text.

APPENDIX B: DENSITY-DENSITY RESPONSE
IN THE CASE OF p-DOPING

Till now, all the results have been specified to the case of
n doping, when the Fermi energy EF > 0 lies in conduction
band. The response functions for the p-doped case (EF < 0),
however, can be obtained by slightly modifying the results
which have been presented so far.

In this Appendix, we show that the density response func-
tion of a p-doped LSM with Fermi wave vector kF is equal
to the response function of an n-doped LSM with the same
Fermi wave number, provided, however, that one exchanges
mc with mv. This sounds natural, but it is not evident because
of the different helicities of the valence- and conduction-band
single-particle states. However, Eq. (10), Eq. (11) and the

fact that the matrix |D( 3
2 )

νν ′ (θ )|2 is symmetric, imply that the
form factors Aintra (θ ) and Ainter (θ ) which enter Eqs. (13) and
(14), would be the same if the helicity doublets (±1/2 or
±3/2) corresponding to conduction and valence bands were
exchanged. This property can be expressed more synthetically
by introducing the notation:

Aσ,σ ′ (θ ) ≡
∑
ν∈σ

∑
ν ′∈σ ′

∣∣D( 3
2 )

νν ′ (θ )
∣∣2

, (B1)

where σ and σ ′ label bands (+1 corresponds to the conduction
band and −1 to the valence band) and the sums run over
helicity states ν and ν ′ belonging to the bands σ and σ ′. We
have:

Aσ,σ ′ (θ ) = 1
2 {2 + σσ ′[3 cos2(θ ) − 1]} = A−σ,−σ ′ (θ ).

(B2)

An equivalent expression was obtained, with a different
derivation, in Ref. [53]. The complete expression for the
density-density response function of a noninteracting LSM,
valid both in the n-doped and p-doped cases, reads as

following:

χ (0)
nn (q, z) = 1

V

∑
k,σ,σ ′

nk,σ − nk+q,σ ′

h̄z + εk,σ − εk+q,σ ′
Aσ,σ ′ (θk,k+q), (B3)

where nk,σ denotes the Fermi occupation number at T = 0
associated with a single-particle state with wave vector k and
band index σ , and εk,σ is the single-particle energy

εk,σ =
{

h̄2k2/2mc for σ = +1

−h̄2k2/2mv for σ = −1
. (B4)

Let us now consider a p-doped LSM with Fermi wave number
kF, single-particle energies εk,σ , and occupation numbers

nk,σ =
{

0 for σ = +1

1 − θ (kF − k) for σ = −1
, (B5)

whose density response function is given by Eq. (B3). Let us
now look at an n-doped noninteracting LSM with the same
Fermi wave number and exchanged valence and conduction
effective masses. It would have single-particle energies ε̃k,σ

and occupation numbers ñk,σ , related to εk,σ and nk,σ by

ε̃k,σ = −εk,−σ ,

ñk,σ = 1 − nk,−σ . (B6)

Its density-density response function would be:

χ̃ (0)
nn (q, z) = 1

V

∑
k,σ,σ ′

ñk,σ − ñk+q,σ ′

h̄z + ε̃k,σ − ε̃k+q,σ ′
Aσ,σ ′ (θk,k+q). (B7)

Using Eq. (B6) and relabeling dummy variables, we can
rewrite Eq. (B7) as

χ̃ (0)
nn (q, z)= 1

V

∑
k,σ,σ ′

[
nk,σ − nk+q,σ ′

h̄z + εk,σ − εk+q,σ ′
A−σ ′,−σ (θ−k−q,−k)

]
.

(B8)

We finally observe that the form factors obey the
following relations: A−σ ′,−σ (θ−k−q,−k) = Aσ ′,σ (θ−k−q,−k) =
Aσ,σ ′ (θk,k+q). Replacing this result in Eq. (B9) yields

χ (0)
nn (q, z) = χ̃ (0)

nn (q, z) (B9)

and completes the proof.
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