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Corner modes and ground-state degeneracy in models with gaugelike subsystem symmetries
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Subsystem symmetries are intermediate between global and gauge symmetries. One can treat these symmetries
either like global symmetries that act on subregions of a system, or gauge symmetries that act on the regions
transverse to the regions acted upon by the symmetry. We show that this latter interpretation can lead to an
understanding of global, topology-dependent features in systems with subsystem symmetries. We demonstrate
this with an exactly solvable lattice model constructed from a two-dimensional system of bosons coupled to
a vector field with a one-dimensional subsystem symmetry. The model is shown to host a robust ground-state
degeneracy that depends on the spatial topology of the underlying manifold, and localized zero-energy modes
on corners of the system. A continuum field theory description of these phenomena is derived in terms of an
anisotropic, modified version of the Abelian K-matrix Chern-Simons field theory. We show that this continuum
description can lead to geometric-type effects such as corner states and edge states whose character depends on
the orientation of the edge.
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I. INTRODUCTION

It is widely known that discrete gauge symmetries can give
rise to topological order in two + one dimensions [(2 + 1)D]
[1–6]. This began with work on (2 + 1)D lattice gauge theory
descriptions of quantum dimer models and resonating valence
bond states [7–13]. Since then, there has been intense theoreti-
cal effort studying the properties of topological ordered lattice
gauge theories [14–19]. Key features of these systems include
a robust ground-state degeneracy which depends on the topol-
ogy of the underlying spatial manifold/lattice [12,20,21],
fractionalized quasiparticles with unusual statistics [22–27],
and long-range entangled ground states [28–30].

A quintessential example of emergent topological order
is Kitaev’s toric code model, which realizes the deconfined
phase of a Z2 lattice gauge theory [31–35]. The model con-
sists of a square lattice with spin- 1

2 degrees of freedom defined
on the links of lattice. The Z2 gauge transformation consists of
flipping all spins around a single elementary plaquette. When
defined on a manifold of genus g, the toric code system has
a ground-state degeneracy of 4g, which corresponds to the
number of ways Z2 gauge fluxes can be threaded through
noncontractible loops in the system.

Recently, there has also been significant work in under-
standing the role of subsystem symmetries in topological
phases of matter. For a D-dimensional system, subsystem
symmetries (also referred to as gaugelike symmetries) are sets
of symmetries that act independently on d-dimensional subre-
gions, with 0 < d < D. Subsystem symmetries can be viewed
as intermediate between gauge symmetries (zero-dimensional
subregions) and global symmetries (D-dimensional subre-
gions).

In connection to topology, it has been shown that sub-
system symmetries can lead to unique topological phases of
matter known as subsystem symmetry-protected topological

(SSPT) phases [36]. SSPT phases have edge degrees of free-
dom that transform projectively under the subsystem symme-
try. For open boundaries, SSPT’s have a subextensive ground-
state degeneracy protected by the subsystem symmetries. In
this way, SSPT’s are a subsystem generalization of (global)
symmetry-protected topological phases [37].

Subsystem symmetries have also been studied in connec-
tion to fractonic phases of matter [38–40]. Fracton systems
are (3 + 1)D phases of matter, characterized by immobile ex-
citations, or excitations which are confined to subdimensional
regions. It has been found that gauging a subsystem symmetry
can lead to a fractonic phase [41–45]. Since fracton systems
are believed to be described by rank-2 symmetric gauge
theories, this field has also gained attention due to possible
connections to elasticity and gravity theories [46–48].

Currently, the study of subsystem symmetries has been
largely based on viewing a d-dimensional subsystem sym-
metry as a global symmetry acting on d-dimensional sub-
regions. However, there is also a complementary view of
a d-dimensional subsystem symmetry as a gauge symmetry
acting on a D − d-dimensional subregion. For example, con-
sider a 2d plane with coordinates (x, y), where a subsystem
symmetry acts along 1d y = yo(const) lines. Restricted to
y = yo lines, the subsystem symmetry is a global symmetry.
However, for x = xo(const) lines the subsystem symmetry
is a local/gauge symmetry since it only acts at the point
(xo, yo).

Since subsystem symmetries behave like gauge symme-
tries in certain subregions, we believe that salient features
of lattice gauge theories may occur in systems where the
low-energy physics is invariant under a subsystem symmetry.
In particular, we ask if subsystem symmetries can lead to
interesting global phenomena in the same way that gauge
symmetries do in topologically ordered phases. We answer
this question in the affirmative by using a D = 2 model of
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bosons with a d = 1 U(1) subsystem symmetry. Using two
complementary descriptions, we show that this model has
multiple ground states on a torus, which cannot be locally
distinguished. Furthermore, we show that for a rectangular
system with open boundaries, there are gapless degrees of
freedom that are localized to the system’s corners.

This paper is organized as follows. In Sec. II, we construct
the subsystem symmetry-invariant model by using a coupled-
wire construction. In Sec. III we construct an effective projec-
tor Hamiltonian and use it to study the system. In Sec. IV
we construct and analyze a continuum description of the
subsystem symmetry-invariant model. In Sec. V we generalize
the continuum description and discuss its features. Finally, we
discuss and conclude these results in Sec. VI.

II. SUBSYSTEM SYMMETRY-INVARIANT MODEL

To construct our subsystem symmetry-invariant model, we
consider an array of complex bosonic wires on a square lattice
with unit directions x̂ and ŷ. The Hamiltonian for the wire
array with wires aligned parallel to the y direction is given by

H = −t
∑

r

b†
r+ŷbr − μb†

rbr + H.c., (1)

where b is a complex-valued boson, and μ is a chemical
potential. The bosons satisfy the commutation relationship
[br, b†

r′ ] = δr,r′ . For a Lx × Ly lattice, this model has Lx U(1)
symmetries which correspond to rotating the phase of a given
wire. Formally, this symmetry operation is given by br →
brein�r , where n is the U(1) charge of the bosons, and �r is
a real function that is constant along the ŷ direction (�r =
�r+ŷ). In analogy with the usual global electromagnetic U(1)
symmetry, we will consider the case where the subsystem
U(1) charge n is quantized in appropriate appropriate units,
i.e., n ∈ Z. As we shall show, the most interesting phenomena
occurs for n > 1.

We now want to couple these wires in such a way that the
Lx U(1) subsystem symmetries are preserved. To do this, we
will introduce a new set of fields A defined on the links that
connect sites r and r + x̂ that take values in [0, 2π ). These
fields transform as Ar,r+x̂ → Ar,r+x̂ + (�r − �r+x̂ ) under the
U(1) subsystem symmetries. Introducing these fields, the
Hamiltonian becomes

H = −t
∑

r

b†
r+ŷbr − t ′ ∑

r

b†
r+x̂bre−inAr,r+x̂

− K

2

∑
r

ei(Ar+ŷ,r+ŷ+x̂−Ar,r+x̂ ) − μb†
rbr + H.c. (2)

This model now has subsystem symmetries given by br →
brein�r and Ar,r+x̂ → Ar,r+x̂ − (�r − �r+x̂ ), where � is a real
function that is constant along the ŷ direction. The t ′ coupling
in Eq. (2) can be viewed as a subsystem generalization of a
gauge connection, i.e., a way of coupling the bosons such that
the subsystem symmetry is preserved. Equation (2) also obeys
a one-dimensional integrated form of Gauss’s law of the form

∑
r∈l (x0 )

[nb†
rbr − (Er+x̂ − Er−x̂ )] = 0, (3)

where l (x0) = {r = (x, y)|x = x0} and Er+x̂ is conjugate to
Ar+x̂. The exponential of Eq. (3) generates the subsystem
symmetry transformations of Eq. (2). In general, any sys-
tem for which Gauss’s law holds when integrated over
a d-dimensional subregion will have a corresponding d-
dimensional subsystem symmetry.

This coupling has also introduced vortex configurations
where the value of A jumps by 2π/n. The term proportional
to K adds an energy cost to creating these vortices. Since
the K terms only couple fields that are neighbors in the ŷ
direction, these vortex excitations can only propagate along
the ŷ direction.

To gain more insight into this Hamiltonian, let us restrict
our attention to a line along the x̂ direction defined as l (yo) =
{r = (x, y)|y = yo} where yo is a constant. Let us extract
the section of the Hamiltonian that acts only on l (yo). The
resulting 1d Hamiltonian for this subregion is

H1d =
∑

x

(−t ′b†
x+1bxe−inAx,x+1 − μb†

xbx + H.c.), (4)

where x ≡ (yo, x). This is exactly the Hamiltonian for 1d
charge n bosons coupled to a gauge field A. The gauge trans-
formations are given by bx → bxein�′

x and Ax,x+1 → Ax,x+1 +
(�′

x − �′
x+1). This is exactly the subsystem transformation

of the full system restricted to the l (yo) line. So, along the
l (yo) subregion, the subsystem symmetry corresponds to a 1d
gauge symmetry.

Motivated by this, we can consider the expectation value
of the Wilson loops of the dimensionally reduced 1d system
W1d = exp(i

∑
x Ax,x+1). For periodic boundary conditions,

the expectation value of W1d can be changed by a factor of
ei2π/n by threading a unit of flux through the 1d system.
In terms of the A fields, the flux threading sends Ax,x+1 →
Ax,x+1 + 2π/(nLx ), for each x. In the full 2d system, W1d

becomes the operator Wl (yo) = exp(i
∑

r∈l (yo) Ar,r+x̂ ). This op-
erator is invariant under the U(1) subsystem symmetries of
Eq. (1). For periodic boundaries in the x̂ direction, we can
also define a “flux insertion” operation that sends Ar,r+x̂ →
Ar,r+x̂ + 2π/(nLx ) for each r. This will change the expecta-
tion value of Wl (yo) by a factor of ei2π/n.

It is clear that Wl (yo) is similar to the Wilson loops of
a 2d lattice gauge theory. To illustrate the similarities and
differences between lattice gauge theories and Eq. (2), let
us consider these systems on a torus. For a 2d lattice gauge
theory there are two distinct no-contactable Wilson loops:
one oriented in the x̂ direction, and one oriented in the ŷ
direction. The expectation value of these loops can be changed
by threading flux through the ŷ or x̂ directions, respectively.
However, for Eq. (2), the Wilson looplike operator Wl (yo)

is fixed to be oriented in the x̂ direction. As a result, the
system only responds to threading flux through the ŷ direction.
Motivated by this, it will prove useful to think of Eq. (2) as
a gauge theory where the Wilson loops are restricted to be
oriented in the ŷ direction, or equivalently where flux can only
be inserted in the x̂ direction.

Now, let us tune μ such that there is a large boson occu-
pancy per site. b can then be replaced with the rotor variable
eiθ , where θ corresponds to the phase of the complex boson b
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[49]. The Hamiltonian then becomes

H = − t
∑

r

ei(θr−θr+ŷ ) − t ′ ∑
r

ei(θr−θr+x̂−nAr,r+x̂ )

− K

2

∑
r

ei(Ar+ŷ,r+ŷ+x̂−Ar,r+x̂ ) + H.c. (5)

The subsystem symmetry is now given by Ar,r+x̂ → Ar,r+x̂ +
(�r − �r+x̂ ), and θr → θr + n�r where �r is constant along
the ŷ direction. This model is the main result of this section.

It is worth noting that due to the generalized Elitzur’s
theorem [50], the continuous 1d subsystem symmetry of
Eq. (5) cannot be spontaneously broken. So, the ground
state of Eq. (5) must be invariant under under all subsystem
symmetry transformations, as must all local observables. This
is similar to gauge theories, where the ground state and
local observables must also be invariant under all local gauge
transformations.

III. EFFECTIVE PROJECTOR HAMILTONIAN

To better study Eq. (5), it will be useful to construct an
effective description in terms of an exactly solvable model of
commuting projectors. The resulting model will be nonlocal,
however, it will be useful to determine key features of Eq. (5)
such as ground-state degeneracy, and edge physics. In Sec. IV,
we will rederive these results using a local continuum descrip-
tion of Eq. (5).

We will consider the case where t, t ′ → ∞ while K
remains finite. The low-energy excitations will thereby be
violations of the term proportional to K (vortices of A) in
Eq. (5). To be explicit, let us consider an effective description
for n = 2. The results for other values of n are analogous. The
vortices of A will therefore be π vortices, where exp(iA) →
− exp(iA). In the large-t ′ limit we can rewrite A as

Ar,r+x̂ = 1
2 (θr − θr+x̂ ) + αr,r+x̂, (6)

where αr,r+x̂ is a π -valued variable (α only takes on values of
0 or π ) that corresponds to the vortices of the A field. Let us
now examine how these fields transform under a subsystem
symmetry transformation given by � satisfying �r = �r+ŷ.
It will be useful to decompose � ≡ �s + �π , where �s takes
on values in [0, π ) and �π is a π -valued function. Under such
a transformation

Ar,r+x̂ → Ar,r+x̂ + (
�s

r − �s
r+x̂

) + (
�π

r − �π
r+x̂

)
,

θr → θr + 2�s
r + 2�π

r = θr + 2�s
r, (7)

where we have used the fact that θ is 2π periodic. Comparing
Eqs. (6) and (7), we see that the transformation law for α is
αr,r+x̂ → αr,r+x̂ + (�π

r − �π
r+x̂ ). So, α is only acted on by

transformation generated by �π . Since 2�π = 0 mod (2π ),
the transformations generated by �π form a Z2 subgroup of
the full U(1) group of subsystem symmetry transformations.

Because α is π valued, we can identify exp(iα) = σ z,
where σ z is a Pauli matrix. Using Eq. (6), the Hamiltonian
(5) becomes

H = −K

2

∑
r

σ z
r+ŷ,r+ŷ+x̂σ

z
r,r+x̂e

1
2 (θr−θr+x̂−θr+ŷ+θr+ŷ+x̂ )

− t
∑

r

ei(θr−θr+ŷ ) + H.c. (8)

FIG. 1. A column of sites l (xo) (red).

The aforementioned Z2 subsystem symmetry generated by
�π flips the spins σ z

r,r+x̂ → −σ z
r,r+x̂ on an even number of

columns. In terms of the spin variables, this symmetry trans-
formation is generated by G[l (xo)] = ∏

r∈l (xo) σ
x
r,r+x̂σ

x
r+x̂,r+2x̂,

where l (xo) = {r = (x, y)|x = xo} (see Fig. 1).
The full Hilbert space of Eq. (8) is spanned by⊗
r |σ̄ z

r,r+x̂〉|θ̄r〉. These are eigenstates with eigenvalues
σ z

r,r+x̂|σ̄ z
r,r+x̂〉 = σ̄ z

r,r+x̂|σ̄ z
r,r+x̂〉 (σ̄ z ∈ ±1) and θr|θ̄r〉 = θ̄r|θ̄r〉

(θ̄ ∈ [0, 2π )). In the t → ∞ limit, we will only consider states
that satisfy θ̄r = θ̄r+ŷ. Using this the Hamiltonian becomes

H = −K
∑

r

σ z
r+ŷ,r+ŷ+x̂σ

z
r,r+x̂. (9)

In this limit, the phase fluctuations are frozen out energetically
and the effective model acts on the restricted Hilbert space
spanned only by the spin operators σ z. Formally, this is a
mapping that takes a state

⊗
r |σ̄ z

r,r+x̂〉|θ̄r〉 → ⊗
r |σ̄ z

r,r+x̂〉.
Additionally, due to the generalized Elitzur’s theorem,

all observables must be invariant under the U(1) subsystem
symmetries. Because of this, we should focus on just the
“physical subspace” of this reduced Hilbert space, which
consists of states that are invariant under the U(1) subsys-
tem symmetries generated by �. Under the aforementioned
mapping, the physical subspace of the full Hilbert space maps
to a subspace of the restricted Hilbert space that is invariant
under the Z2 subsystem symmetry subgroup that acts on
exp(iα) = σ z. To project the restricted Hilbert space onto the
corresponding physical subspace, we note that a subsystem
symmetry-invariant state |ψ〉 will satisfy G[l (xo)]|ψ〉 = |ψ〉
for all columns l (xo). This condition can be enforced in the
low-energy subspace by adding the term −JG[l (xo)] (with
J > 0) to the Hamiltonian (9). The resulting effective projec-
tor Hamiltonian is

Heff = −K
∑

r

σ z
r+ŷ,r+ŷ+x̂σ

z
r,r+x̂

− J
∑

xo

∏
r∈l (xo)

σ x
r,r+x̂σ

x
r+x̂,r+2x̂. (10)

165108-3



JULIAN MAY-MANN AND TAYLOR L. HUGHES PHYSICAL REVIEW B 100, 165108 (2019)

FIG. 2. The original lattice (gray), where the A fields are defined
on x̂ oriented links, and the new lattice (black) where the A fields are
defined on sites.

The low-energy sector will now be invariant under the subsys-
tem symmetry. The second term in this Hamiltonian is notably
nonlocal. This is an artifact of projecting to the physical
Hilbert space. Nevertheless, this effective model provides a
simple and useful description that we can use to study the
low-energy features of the full system (5).

It will now be useful to simplify the lattice on which we
have defined this effective spin model. Let us define a new
lattice such that the sites of the new lattice are the links
connecting the sites r and r + x̂ of the original lattice. This
means that the A fields now live on sites instead of links. The
new lattice is shown Fig. 2. After switching to the new lattice
the Hamiltonian simplifies to

H = −K
∑

r

σ z
r σ z

r+ŷ − J
∑

xo

∏
r∈l (xo)

σ x
r σ x

r+x̂, (11)

where r are the sites on the new lattice, and x̂ and ŷ are now
the unit directions of the new lattice. l (xo) = {r = (x, y)|x =
xo} is now the set of spins along a given straight line in the ŷ
direction.

This spin model is the main result of this section. All
terms in the Hamiltonian commute, and so the spin model is
exactly solvable. While we have taken the limit t, t ′ → ∞ in
constructing this spin model, the topological features of this
model should remain unchanged away from the t, t ′ → ∞
limit as long as the gap remains open and no phase transitions
occur.

The subsystem symmetry of the projector Hamiltonian is
generated by

G[l (xo)] =
∏

r∈l (xo)

σ x
r σ x

r+x̂. (12)

This operation is shown in Fig. 3. As we can see, the nonlocal
second term in Eq. (11) guarantees that the ground state of the
system is invariant under this transformation. Equation (11)
also has a second subsystem symmetry generated by

G[l (yo)] =
∏

r∈l (yo)

σ z
r σ z

r+ŷ, (13)

FIG. 3. The action of the Z2 subsystem symmetry G[l (xo)],
which flips all spins on a pair of neighboring columns.

where l (yo) = {r = (x, y)|y = yo} is a line of spins in the x̂
direction. Due to the first term in Eq. (11), the ground state
will be invariant under this second subsystem symmetry as
well.

Equation (11) is similar to the quantum compass model
[51], a precursor to the Kitaev honeycomb model [33], which
is given by the Hamiltonian

Hcompass = −Jz

∑
r

σ z
r σ z

r+ŷ − Jx

∑
r

σ x
r σ x

r+x̂. (14)

Indeed, the quantum compass model and the spin model
(11) share the same subsystem symmetries, and Eq. (11) can
also arise as the effective description of the Jz > Jx phase of
Eq. (14) in finite-sized systems. In this case, the effective
K will be proportional to (Jx/Jz )Ly . However, despite the
apparent similarities, these models have different ground-state
properties in the thermodynamic limit. It is known that the
quantum compass model has two phases corresponding to
Jx > Jz and Jz > Jx [52]. In both phases, the number of ground
states scales as 2L for an L × L system. The Jx = Jz point
marks a first-order phase transition that connects these two
phases [53]. In contrast, the spin model (11) has a gapped
phase with a finite number of ground states, even in the
thermodynamic limit. This will be shown in the following
sections.

A. Ground states and excitations

The ground state of the effective spin model (11) can
be found by minimizing each of the commuting terms. We
can intuitively understand the nature of the ground state in
the following way. The terms proportional to K in Eq. (11)
describe an array of decoupled Ising chains. Thus, for J = 0,
the spin model is simply an array of Ising chains in the
ferromagnetic phase. In the low-energy subspace, each chain
can then be characterized by a single magnetization variable
σ̄ z

xo
= 〈σ z

r 〉r∈l (xo).
The terms proportional to J in Eq. (11) flip all spins on

a pair of the neighboring Ising chains (see Fig. 3), i.e., each
term flips a pair of magnetizations, e.g., σ̄ z

xo
and σ̄ z

xo+x̂. Let us
define the operator σ̄ x

xo
= ∏

r∈l (xo) σ
x. Since σ̄ z

xo
= 〈σ z

r 〉r∈l (xo),
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σ̄ x
xo
σ̄ z

xo
= −σ̄ x

xo
σ̄ z

xo
. In terms of σ̄ , the Hamiltonian (11)

becomes

H = −J
∑

xo

σ̄ x
xo
σ̄ x

xo+x̂. (15)

This Hamiltonian is just another ferromagnetic Ising chain,
with the ferromagnetism oriented in the x direction. So, the
effect of the term proportional to J in Eq. (11) is to orient
the magnetization of the original Ising chains. In particular, if
we start with a ground state for J = 0, we can determine the
ground state for J > 0 by acting on the J = 0 ground state
with the operator

Ds =
∏
l (xo)

1

2

⎛
⎝1 +

∏
r∈l (xo)

σ x
r σ x

r+x

⎞
⎠. (16)

To see this, consider a state |ψ〉 that minimizes Eq. (11)
with J = 0. Then, σ z

r σ z
r+y|ψ〉 = |ψ〉 for all r. Since

σ z
r σ z

r+yDs|ψ〉 = Dsσ
z
r σ z

r+y|ψ〉 = Ds|ψ〉, Ds|ψ〉 minimizes all
K terms in Eq. (11). It is also true that (

∏
r∈l (xo) σ

x
r σ x

r+x̂ )Ds =
Ds, for all xo, and by extension, (

∏
r∈l (xo) σ

x
r σ x

r+x̂ )Ds|ψ〉 =
Ds|ψ〉. So, Ds|ψ〉 also minimizes all J terms in
Eq. (11). Ds|ψ〉 thereby minimizes the entire Hamiltonian
with J > 0, and is the ground state.

We note here that Ds is in fact exactly the projection
operator that projects the restricted Hilbert space of Eq. (9)
to the subsystem symmetry-invariant physical subspace of
the restricted Hilbert space. As we shall demonstrate below,
the number of ground states will depend on the topology of
the lattice. The excited states of the spin model are character-
ized by having either σ z

r σ z
r+ŷ = −1 or

∏
r∈l (xo) σ

x
r σ x

r+x̂ = −1,
which have an excitation energy of 2K and 2J , respectively.

B. Ground-state degeneracy

A key feature of the subsystem symmetry-invariant model
(5) is the existence of multiple ground states that cannot be
locally distinguished. We will demonstrate this by considering
the effective spin model (11) on a torus. To find the number
of ground states, we will identify operators that commute
with the Hamiltonian, and use them to label the degenerate
ground states. The nontrivial operators that commute with the
Hamiltonian (11) are

Wl (yo) =
∏

r∈l (yo)

σ z
r , Wl (xo) =

∏
r∈l (xo)

σ x
r , (17)

where l (yo) = {r = (x, y)|y = yo} is a closed loop in the x̂
direction, and l (xo) = {r = (x, y)|x = xo} is a closed loop in
the ŷ direction. On a torus, the l (yo) and l (xo) loops will be
the two cycles that define the torus. These loops are shown
in Fig. 4. For an Lx × Ly torus, the total number of Wl (yo)

operators is Ly and the number of Wl (xo) operators is Lx. Since
W 2

l (xo) = W 2
l (yo) = 1, both loop operators are Z2 operators. We

can identify the symmetry operator G[l (xo)] as the product
of the neighboring loop operators Wl (xo) and Wl (xo+x̂), and
similarly identify G[l (yo)] as the product of Wl (yo) and Wl (yo+ŷ).

All loops l (xo) and l (yo) on the torus intersect once, and so
all Wl (yo) operators anticommute with all Wl (xo) operators. The
minimum dimension needed to represent this anticommuting
algebra is 2, leading to two distinct ground states. If we were

FIG. 4. Loop operators which commute with the Hamiltonian
(11) on a torus. Red lines are σ z strings and blue lines are σ x strings.

to diagonalize the ground-state subspace to label them by
their Wl (yo) eigenvalue, then the two ground states would be
related by the acting on a given ground state with an operator
Wl (xo). Since the bulk is gapped and the operator that connects
different ground states is nonlocal, no local finite-strength per-
turbation can remove this degeneracy in the thermodynamic
limit. In particular, the ground states will remain degenerate,
up to exponentially small corrections for finite t and t ′ as long
as the gap remains open and no phase transitions occur.

The degeneracy can also be found by counting the num-
ber of constraints for Lx × Ly spins on a torus. Let us first
consider the terms proportional to K in Eq. (11). These terms
describe a system of Lx Ising chains with periodic boundaries.
Each chain contributes Ly − 1 unique constraints, leading to
Lx(Ly − 1) unique constraints from the K terms in Eq. (11).
The terms proportional to J in Eq. (11) then give Lx − 1
unique constraints. Since all terms in Eq. (11) commute,
all these constraints can be simultaneously satisfied, lead-
ing to Lx(Ly − 1) + Lx − 1 = Lx × Ly − 1 constraints in total.
There is thereby one net free spin degree of freedom which
corresponds to the two ground states that were previously
identified.

It is useful to compare these results to the case of a Z2

lattice gauge theory on a torus. In Z2 lattice gauge theory
models, there are two additional ground states on a torus
(for a total of four ground states) [25]. These two additional
ground states occur since noncontractible loops of σ x oper-
ators oriented in the x̂ direction,and noncontractible loops of
σ z oriented in the ŷ direction also commute with the Z2 lattice
gauge theory Hamiltonian, and anticommute with each other.
These operators do not commute with the spin model (11),
and so the number of ground states is reduced to 2.

On a sphere all string operators Wl (yo) and Wl (xo) commute,
and so the ground state of Eq. (11) on a sphere is unique.
We also show this explicitly in Appendix A by counting con-
straints. This topology-dependent degeneracy is reminiscent
of the topological ground-state degeneracy found in topolog-
ical ordered systems, though it is important to note that our
spin model has a nonlocal constraint. The nonlocality will be
removed when we discuss the continuum limit.

C. Open boundaries and corner modes

We shall now consider the system with open boundaries.
For simplicity, we shall take the lattice to be an Lx × Ly

rectangle with open boundaries. For this geometry, the terms
proportional to K in Eq. (11) give Lx(Ly − 1) constraints, and
the terms proportional to J give Lx − 1 constraints, leading
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FIG. 5. The ground state of the Majorana representation of the
spin model (18). Black lines indicate a dimerized pair of Majorana
fermions. Zero-energy Majorana corner modes are circled in red.

to Lx × Ly − 1 constraints which can be simultaneously sat-
isfied. There is then a single free spin- 1

2 degree of freedom,
leading to two ground states.

In the string picture, this can be seen by the anticommuta-
tion between the zero-energy operators Wl (yo) and Wl (xo) from
Eq. (17) where l (yo) [respectively l (xo)] is now a string in the
x̂ (respectively ŷ) direction stretching from one boundary to
the other. Since the system has open boundaries, the string
operators do not have to form closed loops to commute with
the Hamiltonian and be invariant under the subsystem symme-
tries of the model. Since all Wl (yo) operators anticommute with
all Wl (xo) operators there are degenerate two ground states.

Furthermore, these two ground states correspond to anti-
commuting corner degrees of freedom. To show this, we will
switch to a Majorana representation of the spin- 1

2 degrees
of freedom [33]. This is done by introducing four Majorana
degrees of freedom at each site γ 1, γ 2, γ 3, and γ 4. The spin
degrees of freedom then become σ x = iγ 1γ 2, σ y = iγ 1γ 3,
and σ z = iγ 1γ 4, with the local constraint that γ 1γ 2γ 3γ 4 = 1.
In terms of the Majorana fermions the spin model becomes

H = − K
∑

r

γ 2
r γ 3

r γ 1
r+ŷγ

4
r+ŷ

− J
∏

r∈l (xo)

γ 3
r γ 4

r γ 1
r+x̂γ

2
r+x̂. (18)

The ground state of this Hamiltonian is given by the dimer-
ization pattern shown in Fig. 5. This is result is derived in
Appendix B. The ground state of the spin model can then
be found by projecting the ground state of this Majorana
Hamiltonian onto the physical states using the projector P =∑

r
1
2 (1 + γ 1

r γ 2
r γ 3

r γ 4
r ), and then using the above identification

between the spin operators and Majorana fermions.
For the rectangular geometry, there are four free Majorana

degrees of freedom located at the corners of the lattice (see
Fig. 5). This leads to four ground states, but only two are
physical after projecting onto the physical states. The reduc-
tion in ground states can be viewed as a consequence of the
full model being bosonic, i.e., fermion parity even. For the
rectangular geometry, the degrees of freedom for the spin

model are thereby zero-energy corner operators leading to a
robust ground-state degeneracy.

The corner modes of the system will remain at zero energy,
even in the presence of local interactions. This is because any
interaction term involving only a single corner mode operator
will either not commute with the projector P or the Majorana
Hamiltonian (18). Only terms that consist of pairs of corner
modes operators can commute with both P and Eq. (18).
However, such term will necessarily be nonlocal.

We note that this particular dimerization pattern and corner
mode configuration is similar to an insulator model presented
in Ref. [54] that has corner charge, but vanishing quadrupole
moment. Indeed, the corner modes considered here are sim-
ilar to what is found in higher-order topological insulators
[55–58]. However, for the spin model (11), the corner opera-
tors are nonlocal. This is because individual Majorana corner
operators do not commute with the projector operator P. Only
pairs of Majorana corner operators commute with P and are
physical.

IV. CONTINUUM THEORY

We now seek a complementary continuum description of
Eq. (5). First, we note that Eq. (5) is the low-energy descrip-
tion of

H = − t
∑
〈rr′〉

cos(θr − θr′ − nArr′ ) − K
∑

p

cos(Fp)

− m̄2
∑

r

cos(Ar,r+ŷ ), (19)

where A fields are now defined along both x̂ and ŷ ori-
ented links, and 〈rr′〉 are neighboring sites. The sum over
p is over plaquettes with corners i, j, k, l, and Fp = Ai, j −
Ak,l + Ai,k − Aj,l . In the low-energy (m̄2 → ∞) limit, Ar,r+ŷ

is pinned to be 0 by the cosine term. Upon substituting this
into Eq. (19), the Hamiltonian reduces to Eq. (5) with t ′ = t .
This model has the subsystem symmetry given by Ar,r′ →
Ar,r′ + (�r − �r′ ), and θr → θr + n�r where �r = �r+ŷ.
This is the same symmetry as in Eq. (5). We note that Ar,r+ŷ

is invariant under these transformations. Equation (19) is the
Hamiltonian for bosons minimally coupled to a vector field A
with an additional mass term for the fields A oriented along
the y direction. It is worth explicitly stating that this model is
not a gauge theory due to the additional mass term for Ar,r+ŷ.

The continuum description of Eq. (19) in Euclidean space
is

LE = 1
4 FμνFμν + ρ(∂tθ − nAt )

2 + ρ(∂xθ − nAx )2

+ ρ(∂yθ − nAy)2 + m̄2A2
y − Aμ jμ, (20)

where ρ is a constant, and we have included a current jμ

that couples to the fluctuations of the A field. To study the
dynamics of the phase θ , we will introduce the variable
aμ = − 1

n∂μθ , and shift Aμ → Aμ − aμ. After this, Eq. (20)
becomes

LE = 1
4 FμνFμν + ρn2(At )

2 + ρn2(Ax )2 + M2a2
y

− 2m̄2Ayay + m̄2A2
y − Aμ jμ − aμ jμ, (21)
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where we have introduced M2 ≡ m̄2 + ρn2. Since the A field
is now massive, it can be integrated out, leaving a theory just
in terms of a. The a field is now also coupled to j, causing
the excitations of the a field to have a corresponding current
j. As desired, this model has a subsystem symmetry where
aμ → aμ + ∂μ�a(x, t ) and �a is function of x and t only.

From the equations of motion for ay, we have that ay ∝
1

M2 . As a result, in the low-energy limit where M2 → ∞,
ay vanishes. In this limit, jy (the current in the y direction)
is removed from the theory, and the only current is in the
x direction ( jx). This means that the excitations of the a
field will only move in the x direction. This is a form of
subdimensional dynamics, where the excitations are only able
to move in certain lower-dimensional subregions.

We will also need to consider the vortex dynamics of the
a field. This is done by introducing a vortex current j̃μ, and
setting j̃μ = in

2π
εμνλ∂νaλ. To enforce this constraint, we will

introduce the field bμ as a Lagrange multiplier for Eq. (20):

LE → LE + bμ j̃μ − in

2π
bμεμνλ∂νaλ. (22)

In this construction, there are vortex currents in both the x and
y directions ( j̃x and j̃y). However, in the original lattice model
(5), the vortices were only able to move in the y direction.
To remedy this, we will add the term M2b2

x. The equation of
motion for bx then gives that bx ∝ 1

M2 , and in the low-energy
limit (M2 → ∞) bx → 0. In this limit, the j̃x vortex current is
removed from the theory, and there is only a vortex current in
the y direction ( j̃y). As a result, the vortices of the a field are
confined to move in the y direction as in the lattice model.

After adding the b field, integrating out the massive A
field, and keeping only the long-wavelength contributions, the
Lagrangian density becomes

LE = in

2π
bμεμνλ∂νaλ + M2a2

y + M2b2
x − bμ j̃μ − aμ jμ. (23)

This model is the main result of this section. It is worth
noting that this theory has the form of a mutual Chern-Simons
theory with additional mass terms for ay and bx [59–61]. This
observation will be allow us to generalize this model in Sec. V.

In Eq. (23), it is also apparent that there is a second
subsystem symmetry where bμ → bμ + ∂μ�b(y, t ) and �b is
only a function of y and t . This is the same as the subsystem
symmetry generated by G[l (yo)] [Eq. (13)] in the effective
projector Hamiltonian.

A. Ground-state degeneracy

We will now calculate the ground-state degeneracy of the
continuum model on a torus. To do this, we will first rotate
back to Minkowski space, and set the currents j = j̃ = 0,

L = n

2π
bμεμνλ∂νaλ + M2a2

y + M2b2
x. (24)

From the equations of motion for ay and bx, we have that ay ∝
bx ∝ 1

M2 . At low energies, ay → 0 and bx → 0, and the action
becomes

S = n

2π

∫
d3x(by∂t ax − at∂xby − bt∂yax ). (25)

If we minimize the action with respect to bt and at we find the
equations of motion ∂yax = 0 and ∂xby = 0. On a torus, these
equations of motion are solved by

ax = ∂xφ(x, t ) + āx(t )/Lx,

by = ∂yθ (y, t ) + b̄y(t )/Ly. (26)

Here, φ is a function of x and t only and is periodic on the
torus, θ is a function of y and t and is periodic on the torus, and
āx and b̄y are functions of t only. Lx,y are the length dimensions
of the torus.

After substituting these terms into Eq. (25) and integrating
over the x and y coordinates, the action reduces to

S = n

2π

∫
dt (b̄y∂t āx ). (27)

Using canonical commutation relations, we have that
[b̄y, āx] = i2π/n. Since b̄y and āx are 2π -periodic variables,
the observables are exp(ib̄y) and exp(iāx ), which obey the
commutation relationship

eib̄y eiāx = ei 2π
n eiāx eib̄y . (28)

In order to satisfy this operator algebra, there must be n
ground states. This is consistent with what was found using
the effective projector model with n = 2. We note that for
a conventional mutual Chern-Simons theory the ground-state
degeneracy would be n2.

B. Corner modes

To find the edge degrees of freedom for a system with
open boundaries, we will use the low-energy description with
no external currents in Minkowski space [Eq. (25)]. For a
rectangular system with open boundaries, the equations of
motion for ax and by are solved by

ax = ∂xφ(x, t ),

by = ∂yθ (y, t ). (29)

Using this, the action becomes

S =
∫

d3x
n

2π
∂yθ (y, t )∂t∂xφ(x, t )

=
∫

d3x
n

2π
∂y∂x[θ (y, t )∂tφ(x, t )], (30)

which is a total derivative for both x and y. If the system
is defined on the rectangle x0 � x � x1 and y0 � y � y1, the
action becomes

S = n

2π

∫
dt[θ (y1, t ) − θ (y0, t )]∂t [φ(x1, t ) − φ(x0, t )].

(31)

This action describes localized operators η j,k ≡
exp[iφ(x j, t ) − iθ (yk, t )], which are defined at the corners of
the system (x j, yk ). Since the Hamiltonian corresponding to
the action (31) vanishes, the ηi, j are zero-energy operators. It
should be noted that there is a redundancy in the corner mode
description since η0,0η1,1η

†
1,0η

†
0,1 = 1.
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Using the canonical commutation relationships from
Eq. (31), the η j,k operators satisfy the algebra

η j,kη j′,k′ = η j′,k′η j,k exp

(
2π i[ j′ · k − j · k′]

n

)
. (32)

Naively, this would lead to n2 ground states. However, if the
constraint η0,0η1,1η

†
1,0η

†
0,1 = 1 is taken in account there are

actually only n ground states. This agrees with what was
found in using the effective model for n = 2. As opposed
to (2 + 1)D Abelian Chern-Simons field theories, where the
edge theory is a (1 + 1)D CFT [62–66], the edge theory of
the subsystem symmetry-invariant model is given by (0 + 1)D
corner modes.

V. GENERALIZED CONTINUUM THEORY

To generalize the continuum description to include more
vector fields, we note that Eq. (23) has the form of a Chern-
Simons field theory with K matrix 2σ x, and mass terms for
ay and bx. Using this observation, we can generalize the
continuum description of the subsystem symmetry-invariant
system by using the Lagrangian

L = 1

4π
KIJεμνλaI

μ∂νaJ
λ + aI

xMIJ
x aJ

x + aI
yMIJ

y aJ
y , (33)

where K is a D × D symmetric integer-valued matrix. We
will take Mx,y to be diagonal with all entries either m or 0.
As we shall see, in order for the canonical quantization to be
consistent, we shall require the number of zero eigenvalues of
Mx and My to be equal, i.e., dim(ker(Mx )) = dim(ker(Mx )) =
k � D.

Minimizing the action with respect to aI
x and aI

y gives the
equations of motion

MIJ
x aJ

x = − 1

4π
KIJF J

ty, (34)

MIJ
y aJ

y = − 1

4π
KIJF J

xt , (35)

where F J
μν = εμν∂μaJ

ν . Let us write MIJ
x,y = m × M̄IJ

x,y, where
M̄IJ

x,y is a diagonal matrix of 1’s and 0’s. Using M̄, the equa-
tions of motion are

M̄IJ
x aJ

x = − 1

4πm
KIJF J

ty, (36)

M̄IJ
y aJ

y = − 1

4πm
KIJF J

xt . (37)

At low energies m → ∞, and

M̄IJ
x aJ

x = M̄IJ
y aJ

y = 0. (38)

So, all vector fields aJ
x,y not in the respective kernels of Mx,y

are set to 0 as m → ∞. Setting m → ∞ is thereby equivalent
to projecting aJ

x,y on to the respective k dimensional kernels
of Mx,y. Since Mx,y is a diagonal matrix, the kernel is spanned
by a set of unit vectors. This means we can project onto the
kernels of Mx,y with k × D matrices Vx,y, the rows of which
are the unit vectors that span the kernels of Mx,y.

The theory with m → ∞ can then be expressed as follows.
Define the reduced K matrices as

Ki j
tx = K ji

xt ≡ KikV k j
x ,

Ki j
ty = K ji

yt ≡ KikV k j
y , (39)

Ki j
yx = K ji

xy ≡ V il
y KlkV k j

x ,

and the vectors

ãi
x ≡ V i j

x a j
x,

ãi
y ≡ V i j

y a j
y,

ãi
t ≡ ai

t . (40)

The effective Lagrangian in the m → ∞ limit is then

Leff =
∑
i, j

∑
μ,ν,λ

1

4π
εμνλKi j

μν ãi
μ∂ν ã j

λ, (41)

where we have explicitly included the sum for clarity.

A. Quantization

In order to consistently, canonically quantize Eq. (41), we
need the following equations to be consistent:∑

j

Ki j
xy

[
ãk

x, ã j
y

] = i2πδi,k,

∑
j

Ki j
yx

[
ãk

y, ã j
x

] = −i2πδi,k . (42)

To simplify this, we will define the matrix Ak j = [ãk
x, ã j

y].
Equation (42) then becomes (using Ki j

yx = K ji
xy)∑

j

Ki j
xyAk j = i2πδi,k,

∑
j

(
KT

xy

)i j
(AT )k j = i2πδi,k . (43)

Let us consider the case where dim(ker(Mx )) = k and
dim(ker(My)) = k′. Then, Kxy = KT

yx is a k × k′ matrix, and
Ak j is a k′ × k matrix. Summing over the i and k indices in
Eq. (43) gives

Tr(KxyA) = i2πk,

Tr
(
KT

xyAT
) = Tr(AKxy) = i2πk′. (44)

Since Tr(KxyA) = Tr(AKxy), k = k′ in order for the quanti-
zation conditions to be consistent. This confirms our earlier
assertion that we must have dim(ker(Mx )) = dim(ker(My)).

If det(Kxy) 
= 0, Eq. (42) is solved by [ãi
x, ã j

y] =
2π i(K−1

xy )i j . If det(Kxy) = 0, the inverse of Kxy will not be well
defined, and the commutation relations will be ambiguous.
Because of this, we shall assume that det(Kxy) 
= 0 from here
on. It is worth noting that Kxy must be square, but Kty and Ktx

do not need to be square.

B. Ground-state degeneracy

We will now show that the ground-state degeneracy on a
torus is |det(Kxy)| (which is valid because Kxy is a square
matrix). Let us minimize the action by setting the functional
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derivative of Eq. (41) with respect to ãi
t equal to 0. The

resulting equations of motion are

Ki j
ty ∂xã j

y − Ki j
tx ∂yã j

x = 0. (45)

Since we are only concerned with global features of the
system, we will use the solutions ãi

x,y = āi
x,y/Lx,y where āi

x,y is
only a function of t , and Lx,y are the lengths of the torus. Other
solutions represent local fluctuations and do not contribute to
global features.

Plugging these solutions into Eq. (41) and integrating over
the x and y coordinates, we arrive at the action

S =
∫

dt
1

2π
Ki j

yxāi
y∂t ā

j
x . (46)

From this we can calculate the algebra satisfied by the ob-
servables exp(iāi

x,y). Using that [āi
x,y, ā j

x,y] = 2π i(K−1
xy )i j , the

minimum dimension needed to satisfy the algebra of the
exp(iāi

x,y) operators is | det(Kxy)|. This leads to a ground-state
degeneracy of | det(Kxy)| on a torus.

C. Edge and corner states and example

We will illustrate some of the ground-state degeneracy
and edge state possibilities using an example case. Consider
a 4 × 4 K matrix, and mass matrices Mx, My having kernel
dimension equal to 2. For the first example we will choose the
K matrix and mass matrices

K =

⎡
⎢⎣

0 2 0 1
2 0 0 0
0 0 4 0
1 0 0 −4

⎤
⎥⎦,

Mx =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 m 0
0 0 0 m

⎤
⎥⎦,

My =

⎡
⎢⎣

0 0 0 0
0 m 0 0
0 0 m 0
0 0 0 0

⎤
⎥⎦. (47)

The corresponding fields will be labeled as ai
μ with i =

1, 2, 3, 4 and μ = (t, x, y). The 2 × 4 Vx,y matrices for the
theory are

Vx =
[

1 0 0 0
0 1 0 0

]
,

Vy =
[

1 0 0 0
0 0 0 1

]
. (48)

The reduced K matrices are given by

Ktx =

⎡
⎢⎣

0 2
2 0
0 0
1 0

⎤
⎥⎦, (49)

Kty =

⎡
⎢⎣

0 1
2 0
0 0
1 −4

⎤
⎥⎦,

Kyx =
[

0 2
1 0

]
.

In the low-energy limit, the Lagrangian density is given by

L = 1

2π

[
2a1

y∂t a
2
x + a4

y∂t a
1
x − 2a1

t ∂ya2
x − 2a2

t ∂ya1
x

− a4
t ∂ya1

x + a1
t ∂xa4

y + 2a2
t ∂xa1

y + a4
t ∂xa1

y

− 4a4
t ∂xa4

y

]
. (50)

The canonical quantization commutation relations are
[a1

y, a2
x] = iπ and [a4

y, a1
x] = i2π . Minimizing the action with

respect to ai
t , we determine the equations of motion

∂ya1
x − ∂xa1

y = 0,

∂ya2
x = 0,

∂xa4
y = 0. (51)

Let us consider the case where the system is put on a torus
with side lengths Lx and Ly. If we ignore local fluctuations
of the fields, the equations of motion can be solved by a1

x =
ā1

x (t )/Lx, a1
y = ā1

y (t )/Ly, a2
x = ā2

x (t )/Lx, and a4
y = ā4

y (t )/Ly.
Since āi

μ is a 2π -periodic variable, we will consider the

operators eiāi
μ . Using the canonical commutation relations, eiāy

x

and eiā2
x anticommute, while all other terms commute. This

means that there will be two ground states. This agrees with
|det(Kxy)| = 2.

Let us now consider the edge and corner modes of this
system. The equations of motion (51) are solved by a1

x,y =
∂x,yφ

1(x, y, t ), a2
x = ∂xφ

2(x, t ), and a4
y = ∂yφ

4(y, t ). Plugging
these solutions into Eq. (50), the action becomes

S =
∫

d3x
1

2π
[∂x(∂yφ

4(y, t )∂tφ
1(x, y, t ))

− 2∂y(∂tφ
1(x, y, t )∂xφ

2(x, t ))]. (52)

To illustrate the edge modes of this system, it will be useful
to consider a half-plane x � 0. If we assume that the fields
vanish at spatial infinity, we can rewrite the action as

S =
∫

dt dy
1

2π
∂tφ

4(y, t )∂yφ
1(0, y, t ). (53)

This describes a nonchiral boson propagating along the x = 0
edge. If we instead consider the y � 0 half-plane, the action is

S = −
∫

dt dx
1

π
∂tφ

1(x, 0, t )∂xφ
2(x, t ). (54)

This describes a different nonchiral boson that propagates
along the y = 0 edge. To see that this is in fact a different
nonchiral boson, we note that Eqs. (53) and (54) describe
a U(1)1 and U(1)2 nonchiral boson conformal field theory
(CFT), respectively.

It will also be useful to consider a quarter plane geometry
x � 0 and y � 0. In this geometry, the action becomes

S =
∫

dt dy
1

2π
∂tφ

4(y, t )∂yφ
1(0, y, t )

−
∫

dt dx
1

π
∂tφ

1(x, 0, t )∂xφ
2(x, t ). (55)

As expected, the first line of Eq. (55) describes a nonchiral
boson propagating along the x = 0, y � 0 boundary, while
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the second line describes a different type of nonchiral bo-
son propagating along the x � 0, y = 0 boundary. Since
φ1(0, y, t ) and φ1(x, 0, t ) coincide at the point (x, y) = (0, 0),
the two nonchiral bosons are coupled at this point. This means
that there will be a partial transmission between the two
edges.

Let us now consider a different example using the same K
matrix as in Eq. (47), but with the mass matrices

Mx =

⎡
⎢⎣

m 0 0 0
0 0 0 0
0 0 0 0
0 0 0 m

⎤
⎥⎦,

My =

⎡
⎢⎣

0 0 0 0
0 m 0 0
0 0 0 0
0 0 0 m

⎤
⎥⎦. (56)

Following the same analysis as before,

Kyx =
[

2 0
0 4

]
. (57)

This gives a ground-state degeneracy of |det(Kyx )| = 8.
The equations of motion for these mass matrices are

∂xa1
y = 0,

∂ya2
x = 0,

∂xa3
y − ∂ya3

x = 0. (58)

The equations of motion are solved by a1
y = ∂yφ

1(y, t ), a2
x =

∂xφ
2(x, t ), and a3

x,y = ∂x,yφ
3(x, y, t ).

For a half-plane with x � 0, the edge action becomes

S =
∫

dt dy
2

π
∂tφ

3(0, y, t )∂yφ
3(0, y, t ).

This edge describes a U(1)4 chiral boson. For a half-plane
with y � 0, the edge action is similarly

S =
∫

dt dx
2

π
∂tφ

3(x, 0, t )∂xφ
3(x, 0, t ),

which describes the same U(1)4 chiral boson. Finally, for the
quarter plane x � 0, y � 0, the action is

S =
∫

dt dy
2

π
∂tφ

3(0, y, t )∂yφ
3(0, y, t )

+
∫

dt dx
2

π
∂tφ

3(x, 0, t )∂xφ
3(x, 0, t )

+
∫

dt
1

π
φ1(0, t )∂tφ

2(0, t ). (59)

The first two parts of the edge action (59) describe the
previously shown chiral edge modes. The final term describes
a zero-energy excitation exp(i[φ1(0, t ) − φ2(0, t )]) which is
bound to the (x, y) = (0, 0) corner of the system. The bound-
ary of this system thereby has coexisting propagating chiral
edge modes, and localized corner modes.

For a general theory given by Eq. (33), there will be corner
modes if there exists i and j (i 
= j) such that Ki j 
= 0, Mii

x =
m, M j j

y = m, M j j
x = 0, and Mii

y = 0. Setting ai
y = ∂yφ

i(y, t ),

and a j
x = ∂xφ

j (x, t ), the localized mode for a corner at (xo, yo)
is given by exp(i[φi(yo, t ) − φ j (xo, t )]).

These examples highlight the unusual edge/boundary
physics that can occur in models of the form (33). In general,
the edge theory for a given K matrix and pair of mass matrices
will consist of both propagating edge modes, and localized
corner modes. Furthermore, for a given system, the edge
theory may depend on the orientation of the edge since the
theory can naturally support anisotropy.

VI. DISCUSSION AND CONCLUSION: GAUGING
SUBSYSTEM SYMMETRY AND OPEN PROBLEMS

In this work we have shown that invariance under a sub-
system symmetry can lead to a topology-dependent ground-
state degeneracy, and corner modes. We established this using
both an exactly solvable, but nonlocal, spin model, and a
continuum field theory description. From this, we have shown
that global, topology-dependent features can exist beyond the
established paradigm of gauge symmetries.

In recent literature, it has been shown that gauging subsys-
tem symmetries of certain models can lead to fractonic phases
of matter [41–45]. For the model considered here, gauging
the subsystem symmetry in our nonlocal spin model leads to
a (local) Z2 quantum double model, i.e., the toric code. In
Appendix C, we explicitly gauge the subsystem symmetry
of the effective projector Hamiltonian (11), and show that
this exactly leads to the toric code Hamiltonian. We can also
see this in the continuum by setting M2 = 0 in Eq. (23).
Because of this, the subsystem symmetry-invariant model we
constructed can be thought of as a Z2 quantum double model,
where we have “ungauged” the Z2 gauge symmetry along a
certain direction, and reduced it to a Z2 subsystem symmetry.

It still remains to be seen how this construction generalizes
to higher dimensions and different subsystem symmetries.
In particular, if there are general topological features of a
D-dimensional system with a (d < D)-dimensional subsys-
tem symmetry. The Mermin-Wagner theorem would seem to
constrain d < 2 for local theories, but exact details still need
to be determined.

Additionally, it is unknown what kind of classifications
exist for these systems. It is known that topologically ordered
systems can be classified based on their modular S and T
matrices [29,67,68]. Since the systems discussed here are not
invariant under modular transformations, we cannot define
these S and T matrices in an analogous way. Currently, to our
knowledge, there is no structure which performs the same role
for the subsystem-invariant systems, and so classification of
these systems remains an open question.
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FIG. 6. The process of sewing together two copies of a rectangu-
lar lattice at the edges to give it the topology of a sphere.

APPENDIX A: GROUND STATE OF EFFECTIVE
PROJECTOR MODEL OF A SPHERE

On a manifold with the topology of a sphere (genus 0),
the effective projector Hamiltonian (11) has a unique ground
state. We can show this explicitly by giving the lattice the
topology of a sphere. To do this, we will take two commuting
copies of the system stacked on top of each other. The two
copies are made into a sphere by “sewing” the copies together
at the edges as shown in Fig. 6. After this, the Hamiltonian
becomes

Hs = −K
∑
r,±

σ z
r,±σ z

r+y,± − K
∑
r‖y−

σ z
r,+σ z

r,−

− K
∑
r‖y+

σ z
r,+σ z

r,− − J
∑

xo

∏
r∈l (xo)

σ x
r,+σ x

r+x,+σ z
r,−σ x

r+x,−

− J
∏
r‖x−

σ x
r,+σ x

r,− − J
∏
r‖x+

σ x
r,+σ x

r,−, (A1)

where the ± indexes the two stacked copies of the system,
y− (+) are the sites on the bottom (top) edge, and x− (+)
are sites on the right (left) edge. As before, all terms present
in the Hamiltonian commute. The ground state is thereby
determined by minimizing each term individually.

Let us now count the constraints for this system. Consider
a sphere created from sewing together two L × L lattices,
leading to 2L2 spins. The first sum in Eq. (A1) gives 2L2 − 2L
independent constraints. The second sum gives L-independent
constraints. The third sum gives no independent constraints
since all terms in the third sum can be written as a product
of terms in the first and second sums. The fourth sum gives
(L − 1)-independent constraints. The fifth term gives a single
independent constraint. The final term gives no independent
constraints since it is a product of the terms in the fourth
sum and the fifth term. So, in total we have (2L2)-independent
constraints. The ground state is thereby unique.

APPENDIX B: MAJORANA HAMILTONIAN

Here, will derive and solve the Majorana representation of
the spin model (11) on a square L × L lattice. This will be
done by decomposing each spin into four Majorana fermions:
γ 1, γ 2, γ 3, and γ 4. These Majorana fermions obey the normal
Majorana algebra {γ i, γ j} = 0 and γ iγ i = 1. In terms of
the Majorana fermions, the spin degrees of freedom can be
rewritten as σ x = iγ 1γ 2, σ y = iγ 1γ 3, σ z = iγ 1γ 4, with the
local constraint that γ 1γ 2γ 3γ 4 = 1. It is straightforward to
verify that the spin operators defined this way anticommute.

Let us now consider the terms in Eq. (11). First, there are
the terms proportional to K , involving σ z

r σ z
r+ŷ. Due to the

aforementioned constraint, σ z = iγ 1γ 4 = −iγ 2γ 3. We can
thereby write the K terms of Eq. (11) as

−Kσ z
r σ z

r+ŷ = −Kγ 2
r γ 3

r γ 1
r+ŷγ

4
r+ŷ. (B1)

Second, there are the terms proportional to J
∏

r∈l (xo) σ
x
r σ x

r+x̂.
In terms of the Majorana fermions σ x = iγ 1γ 2 = −iγ 3γ 4.
We can thereby write the J terms of Eq. (11) as

−J
∏

r∈l (xo)

σ x
r σ x

r+x̂ = −J
∏

r∈l (xo)

γ 3
r γ 4

r γ 1
r+x̂γ

2
r+x̂, (B2)

where the product is over l (xo) = {r = (x, y)|x = xo, and 1 �
y � L}. The full Hamiltonian for the Majorana fermions then
becomes

H = −K
∑

r

γ 2
r γ 3

r γ 1
r+ŷγ

4
r+ŷ

− − J
∏

r∈l (xo)

γ 3
r γ 4

r γ 1
r+x̂γ

2
r+x̂. (B3)

We now note that the Majorana bilinears �3,4
r,r+ŷ ≡ γ 3

r γ 4
r+ŷ

and �1,2
r,r+ŷ = γ 1

r γ 2
r+ŷ commute with all terms in the Hamilto-

nian. Motivated by this, we will redefine the K terms as

−Kγ 2
r γ 3

r γ 1
r+ŷγ

4
r+ŷ → −K

[
�1,2

r,r+ŷ�
3,4
r,r+ŷ

]
.

More care must be taken with the J terms due to the boundary
conditions. If will be useful to rewrite the J terms as

−J
∏

r∈l (xo)

σ x
r σ x

r+x̂ = −J
∏

r∈l (xo)

γ 3
r γ 4

r γ 1
r+x̂γ

2
r+x̂

= −J

⎡
⎣ ∏

r∈l ′(xo)

γ 3
r γ 4

r+ŷγ
2
r+x̂γ

1
r+x̂+ŷ

⎤
⎦

× γ 4
xo,1γ

1
xo+x̂,1γ

3
xo,Lγ 2

xo+x̂,L, (B4)

where the product is over l ′(xo) = {r = (x, y)|x = xo and 1 �
y < L}. In addition to the bilinears �3,4

r,r+ŷ and �1,2
r,r+ŷ, the bi-

linears �4,1
x0,x0+x̂ ≡ γ 4

xo,1γ
1
xo+x̂,1 and �3,2

x0,x0+x̂ ≡ γ 3
xo,Lγ 2

xo+x̂,L also
commute with the Hamiltonian. Because of this, we will
rewrite the J terms as

−J
∏

r∈l (xo)

σ x
r σ x

r+x̂

→ −J

⎡
⎣ ∏

r∈l ′(xo)

�3,4
r,r+ŷ�

1,2
r+x̂,r+x̂+ŷ

⎤
⎦�4,1

x0,x0+x̂�
3,2
x0,x0+x̂.

The full Hamiltonian can then be expressed entirely in terms
of the bilinears �

i j
r,r′ :

H = − K
[
�1,2

r,r+ŷ�
3,4
r,r+ŷ

]

− J

⎡
⎣ ∏

r∈l ′(xo)

�3,4
r,r+ŷ�

1,2
r+x̂,r+x̂+ŷ

⎤
⎦�4,1

x0,x0+x̂�
3,2
x0,x0+x̂.

(B5)
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FIG. 7. (a) The additional spin- 1
2 degrees of freedom τ added to gauge the subsystem symmetry. (b) The new terms in the Hamiltonian

after the addition of τ . The labels correspond to Eq. (C1). (c) The transformed lattice (red) on this lattice (C1) is a Z2 lattice gauge theory.

Since each of the bilinears �
i j
r,r′ appearing in Eq. (B5) com-

mutes with itself and all other bilinears, each bilinear will ac-
quire an expectation value in the ground state that minimizes
the ground-state energy. It is clear that this occurs when all
bilinears in Eq. (B5) have an expectation value 〈�i j

r,r′ 〉 = 1
or −1.

We now note that each �
i j
r,r′ appearing in Eq. (B5) corre-

sponds to a unique pair of Majorana fermions. As a result,
when �

i j
r,r′ gains an expectation value, the Majoranas γ i

r and

γ
j

r′ will dimerize. So, the ground state of Eq. (B3) will consist
of dimerized Majorana fermions. The dimerization patter of
the Majoranas is shown in Fig. 5.

APPENDIX C: GAUGING THE SUBSYSTEM SYMMETRY

Here, we will consider gauging the subsystem symmetry
generated by G[l (xo)] in Eq. (12). The paradigm of gauging a
symmetry is to make the symmetry local. The local version of
the symmetry generated by G[l (xo)] is generated by σ x

r σ x
r+x.

This term does not commute with the Hamiltonian (11). In
order to make this local transformation a symmetry of the
model, we will proceed in the standard fashion of adding in
additional degrees of freedom, i.e., adding gauge fields.

We will add additional spin- 1
2 degrees of freedom τ at the

center of each plaquette of the lattice as in Fig. 7(a). After this
we will change the first term of the Hamiltonian to

−K
∑

r

σ z
r σ z

r+yτ
z
r+x+yτ

z
r−x−y, (C1)

where r ± x ± y are the τ spins indicated in Fig. 7(b). We
can then flip σ z

r and σ z
r+x provided we also flip the two τ

spins τ z
r+x+y and τ z

r+x−y. So, in Eq. (C1) we have gauged
the subsystem symmetry as desired. As the symmetry is
now local, there is no need to include the nonlocal terms
proportional to J . We can now include a term to energetically
enforce invariance under the new local symmetry. This is done
via the term

−J
∑

r

σ x
r σ x

r+xτ
x
r+x+yτ

x
r+x−y. (C2)

Let us now redefine the lattice as in Fig. 7(c), and relabel
τ → σ (which should not cause confusion since the τ and
σ operators are defined on different lattice sites). After this
relabeling we find that this Hamiltonian is

H = −K
∑

p

∏
l‖p

σ x
l − J

∑
v

∏
l‖v

σ z
l , (C3)

where the sum is over the elementary plaquettes p and vertices
v. This is exactly the Hamiltonian for the deconfined Z2

lattice gauge theory, i.e., the toric code. Our spin model can
thereby be identified as a Z2 lattice gauge theory where we
have “ungauged” the Z2 gauge symmetry into a subsystem
symmetry.
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