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Electric field manipulation of surface states in topological semimetals
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We investigate the consequences of applying electric fields perpendicularly to thin films of topological
semimetals. In particular, we consider Weyl and Dirac semimetals in a configuration such that their surface
Fermi arcs lie on opposite edges of the films. We develop an analytical approach based on perturbation theory
and a single-surface approximation and we compare our analytical results with numerical calculations. The
effect of the electric field on the dispersion is twofold: It shifts the dispersion relation and renormalizes the
Fermi velocity, which would, in turn, have direct effects on quantum transport measurements. Additionally, it
modifies the spatial decay properties of surface states which will impact the connection of the Fermi arcs in

opposite sides of a narrow thin film.
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I. INTRODUCTION

Topological materials have attracted great interest in the
last decade since they exhibit new fundamental phenomena
and hold great promise for far-reaching technological ap-
plications. A hallmark of topological materials is quantized
response functions and the existence of protected gapless
surface states, which arise due to the nontrivial topology of
the bulk states by virtue of the bulk-boundary correspondence
[1]. Nontrivial topology can be characterized by topological
invariants according to the symmetry class of the system
enabling a complete classification in both gapped and gapless
systems [2]. The gapped case was the first under study, starting
the fruitful field of topological insulators (TIs) [1,3]. On the
other hand, gapless systems assemble the family of topologi-
cal semimetals, where the valence and conduction bands only
touch at a zero-measure set of points in the Brillouin zone
(BZ). In particular, topological Weyl and Dirac semimetals
(WSMs and DSMs) are three-dimensional phases of matter in
which these isolated touching points, dubbed Weyl and Dirac
points, respectively, are protected by topology and symmetry
[4,5].

In WSMs, near the Weyl node, the dispersion relation
appears as a three-dimensional (3D) analogous to graphene
and can be described by an anisotropic version of the Weyl
equation. The low-energy quasiparticles behave, then, as rel-
ativistic Weyl fermions. The conduction and valence bands
are individually nondegenerate and hence either time-reversal
symmetry or inversion symmetry need to be broken. The
Weyl nodes are monopoles of Berry curvature and the charge
associated with them is called chirality [4,5]. Due to the
Nielsen-Ninomiya no-go theorem [6], Weyl nodes always
come in pairs and can annihilate only in pairs. Hence, the
robustness of the Weyl nodes is quantified by the separation of
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the nodes in reciprocal space. For a given momentum between
the Weyl nodes, the three-dimensional WSM can be mapped
onto a two-dimensional TI [1,7]. This correspondence leads to
nontrivial Chern numbers and to protected states localized at
the surface. The protected states, called Fermi arcs, lie in open
contours at the Fermi energy. Several materials have been
predicted and confirmed to be topological WSMs with Fermi
arcs by means of angle-resolved photoemission spectroscopy
(ARPES) experiments. The most representative is the 7X
family where 7" = Ta/Nb and X = As/P, TaAs being a par-
ticular case [8—11]. These materials belong to the so-called
type-I WSMs and are characterized by a discrete pointlike
Fermi surface. However, it is possible to have anisotropies
in the dispersion so that the Fermi surface is not a point but
it becomes an open surface, thereby leading to electron and
hole pockets. Materials within this category are referred to as
type-II Weyl semimetals [12].

The DSMs are obtained when both time-reversal and in-
version symmetry are present. Consequently, the Dirac points
have a fourfold degeneracy and the net Chern number of
the nodes is zero. Each Dirac point can be constructed by
imposing two Weyl nodes with opposite chirality and, in
order to be topologically protected, it must be stabilized
by additional symmetries as the up-down parity symmetry
[13,14] or by space-group symmetries [15—17]. This is the
case of compounds such as A3;Bi where A = Na, K, Rb and
Cd;As;, in which ARPES experiments ratify the existence
of the Fermi arcs [10,18-20]. The manufacturing of high-
quality thin films [20,21] and ultrathin films of Na3;Bi [22]
has made this material one of the most promising candidates
for technological applications of topological properties. For
example, monolayer and bilayer films of Na3;Bi have bulk
band gaps greater than 300 meV, suggesting that topological
properties in these thin films will survive at room temperature
[22,23].

The topological response of WSMs and DSMs comprises
the manifestation of the chiral anomaly in a large nega-
tive magnetoresistance, in the presence of both electric and
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magnetic fields, and in an anomalous Hall effect (in WSMs),
due to the transport of the surface states [1,5]. Therefore,
the renormalization of the Hamiltonian parameters due to
time-dependent external fields has been the subject of intense
research [24,25]. In this case, new surface states with inter-
esting properties may appear [26]. Overall, the understanding
of the effect of external fields on the topological phases
and transport phenomena is a field of great interest both
from a first-principles standpoint and from the perspective
of possible applications. Hence, a special interest resides in
understanding the effect of the external fields in the most
direct manifestation of topology, i.e., the surface states.

The present paper studies the effects of an electric field
applied perpendicularly to the surface and to the direction
joining the line of nodes. In Sec. II, we introduce the theo-
retical framework: A minimal model for a generic WSM and
a low-energy effective model for the DSM NazBi. Section I1I
describes the effect of an external electric field applied per-
pendicularly to the direction along which the two nodes are
aligned. We provide analytic results obtained by means of
perturbation-theory techniques. In order to extend our results
to nonperturbative regimes, we provide numerical calculations
that match the analytic results. Finally, in Secs. IV and V
we finish with some conclusions and a brief analysis of the
experimental feasibility for measuring the predicted behavior
in thin films of the topological semimetal Na3Bi.

II. MODEL HAMILTONIANS
A. Minimal model for a WSM and DSM

The minimal setting for describing a Weyl semimetal con-
sists of two Weyl points that are realized in a time-reversal-
symmetry-breaking scenario while preserving inversion sym-
metry [1,5]. A generic low-energy Hamiltonian that meets
these requirements can be written as [27]

He = (mg — mik>)o, + vk,o, + S vkyoy, )

where ¢ is £1 depending on the chirality, o; withi = x, y, and
z are the Pauli matrices, and k = (ky, &y, k;) are momentum
operators. In addition, m; with i = {0, 1} accounts for mass
parameters and v is the Fermi velocity. From the previous
Hamiltonian, a DSM can be built from two copies with
opposite chirality, which are time-reversal partners. Thus, if
no chirality-mixing term is considered, the Hamiltonian can
be written in the following block diagonal form:

He=r1(k) 0
k)= ("= . 2
7_[D( ) ( 0 7_[{=71 (k)) ( )
In bulk, the dispersion relation of Hamiltonian (1) is given
by

Ey = £/ (mo — mi kP + 02 (k2 + £2). 3)

The valence band and the conduction band touch at the afore-
mentioned Weyl points, located at kw. = (£+/my/my, 0, 0).
The Weyl points are monopoles of Berry curvature and have
a Chern number equivalent to their chirality. The nonzero
Chern number leads, according to the bulk-boundary corre-
spondence, to surface states named Fermi arcs [28].

For the analytic approach, we consider semi-infinite ge-
ometries in the perpendicular direction to the node separa-
tion by introducing a single surface in the Z direction. In
order to explore how the location of the boundary affects
the dispersion, we shall let the boundary sit at z = —nw,
where n = £1 indicates the position of the surface with
respect to the plane z = 0 and w > 0. Bear in mind that we
are considering a single surface but are allowing for both
signs of 1 to see its manifestation in the dispersion. Surface
states are obtained from Hamiltonian (1) by using the ansatz
Yy ~ ek Te M) p where & is a constant spinor, k; =
(ky, ky, 0), and A is a complex number with a nonzero real
part. For simplicity, from now on we make implicit the plane-
wave dependence exp(ik, - r). A solution satisfying Dirichlet
boundary conditions is given by [27]

Vs = %(e—Al(nz-kw) _ e_M(nHw))(nli)’ 4)
where A; is a normalization factor and
M=A++F, J=A-F. 5)
Here we have defined
A=v/Qm), F=k +k —R+A, (6)
with R = /mo/m;. Surface states occur whenever

Re[A; 2] > 0, which implies F < A2, Equivalently, surface
states are restricted to a circle of radius R in momentum space

kK +k <R (7

At a given k, that supports surface states, the dispersion
relation is linear in k, and depends on ¢ and on the position of
the surface

E, = ntvk,. @®)

This dispersion is represented in Fig. 1 together with the
bulk bands. From the dispersion relation we can give another
interpretation to the condition of existence of surface states.
Indeed, the region (7) defines a circle in the plane (i, k)
outside which the surface state bands become tangent to the
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FIG. 1. Dispersion of a system with a boundary at z = —nw.
Bulk bands are depicted in orange, whereas surface bands are shown
in opaque red and light-blue for n¢ = —1 and n¢ =1, respec-
tively. The parameters chosen for the plot are my = 0.35 eV, m; =
1.0 eV nm?, and v = 1.0 eV nm.
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bulk states dispersion. This leads to a hybridization between
surface states and bulk states which prevents us from using the
ansatz and to have Fermi arcs.

It is interesting to point out that there are two types of
surface states, depending on whether A, have or have not
an imaginary part. If they do, the exponential decay will be
accompanied by oscillations. From Eq. (6) we can define a
transition radius as

Foas = R — A% ©)
Then, we can see that oscillatory states live in a circle of radius
T'wans, Whereas purely exponential states are found in a planar
ring of inner radius ry.ns and outer radius R. Hereafter we shall
denote the oscillatory states as type A and purely exponential
states as type B. Since the type-B states are closer to the bulk
states in energy, these have longer decay lengths than type A
[27,29]. Notice that rtzrams can either be positive or negative,
depending on the parameters of the model. If positive, both
type-A and type-B states exist. However, if negative, only type
B arise. In the following, we will loosely dub Weyl semimetals
hosting type-A states as type-A Weyl semimetals, carefully
remembering that these semimetals also host type-B states.

B. Model for the Dirac semimetal Na;Bi

In order to elucidate the generality of our results and to
have a more realistic approach to the problem, we will also
study the case of a low-energy effective Hamiltonian that
describes A3Bi (A = Na, K, Rb) [30] and Cd3As, [31] around
the I point. These compounds have a single band inversion
occurring near the I" point that has been observed by ARPES
measurements [10,18-20]. For concreteness, we restrict our
analysis to the case of NazBi. After a density functional
theory analysis, the Hamiltonian can be cast in the form of a
DSM equivalent to Eq. (2) in which the corresponding WSM
Hamiltonian is replaced by [30]

He = eo(K)1y + M(k)o; + v(Skeox — kyoy), (10)

where €p(k) = ¢ + clkf + o (k2 + kf,) and M(K) = mgy —
mlkz2 — mg(kf + k)z,), ¢; and m; with i = {0, 1, 2} being con-
stant parameters and mass terms, respectively. Notice that,
except for the diagonal contribution, #, is a rotated version of
(1) that allows for anisotropy along the Z direction. Threefold
rotational symmetry implies that chirality-mixing terms are of
order O(k*) and we will neglect them in our analysis, thereby
effectively decoupling the two Dirac nodes [30]. This type of
Dirac semimetal is also referred to as a Z, WSM [13,14].

The surface states of the model have been worked out in
detail in Ref. [29]. By placing a surface termination at y =
—nw and imposing Dirichlet boundary conditions as before,
the surface states take the form

s = AT — TR, - (11a)
n

cbn = [ma—cy |» (11b)
my+cy

TABLE 1. Parameters for the Hamiltonian of Na3;Bi extracted
from Ref. [30].

co = —0.06382 eV?

¢ = 87536 eV A°
¢ = —8.4008 eV A

my = —0.08686 eV>

my = —10.6424 eV A’
my, = —10.3610 eV A

v=124598 eV A

where A; is a normalization factor. Here, A, are defined in
Eq. (5), where A and F are now given by

2

— 2 kz
F =k + anx,o) +—

+ A2 —R?,
(ma/my)

(12a)

v
A b
2_ 2

2,/m5 —c;

(12b)

being ko = c;A/my and R? = mg/my + A*(c,/m»)?. In con-
trast to the previous case, the diagonal term €p(k)1, leads
to a dispersion that is no longer flat along the Z direction
(recall that this model is rotated with respect to the minimal
model presented above). Instead, surface states now have the
following dispersion:

Es = (k) + ntvCsk,, (13)
where
e(k,) = C + Cok2. (14)

In these two equations, C;, C,, and C; are a combination
of the Hamiltonian parameters and are given by C; = ¢y +
comg/my, Cy = ¢y — comy /my,and C3 = vV 1 — c%/m%. Notice
that if we set all ¢; = 0 and m; = my, all expressions reduce
to those obtained in the previous section and we recover a
flat band behavior along the Z direction. The classification
in type-A and type-B states remains the same, that is, type-B
states are purely exponential whereas type A have an oscil-
latory component to the exponential decay. In Nas;Bi only
type-B states arise as can be demonstrated by introducing into
the above definitions the parameters listed in Table I.

III. ELECTRIC FIELD

In this section we study the effect of an external elec-
tric field applied perpendicularly to the surface. The surface
configurations correspond to those studied in the previous
section. Earlier works in Dirac materials have proven that a
renormalization of the Fermi velocity of the surface states
occurs in the presence of a perpendicular electric field [32,33].
Therefore, we expect similar effects in WSMs and DSMs. We
approach the problem in two ways: (i) by way of perturbation
theory (PT) to obtain analytic results and (ii) by performing
numerical calculations based on the Python package KWANT
[34]. In this way, we can compare the validity of the analytic
results and study the nonperturbative regime.

A. Minimal model for a WSM and DSM

We begin by considering the minimal model under the
influence of an electric field applied along the Z direction,
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perpendicular to the surface. Thus, its perturbation reads

= efzla, (15)
where e is the elementary electric charge and f is the external
electric field. The first-order correction in perturbation theory
is given by

OE) = () [H]wy), (16)

where ¥ are the surface states in the absence of an electric
field as defined in Eq. (4). From Eq. (16), the correction to the
energy is given by

8E, = nef[To + i(ke, k)], a7

where we have defined

v ny
Iy = + — —w, (18a)
2mo v
T (ky, ky) = vk +K) (18b)
1Ry Ry ) = 2m0(R2 —k)% _k}%)

Notice that these corrections are independent of chirality
and of the surface state type. Equation (17) reveals that there
is a constant shift in energy, together with a momentum-
dependent term due to the perturbation. The reasoning behind
this is that the decay lengths are momentum dependent as
well. In fact, we can try to provide a simple argument. Let
us set zero potential at z = 0 such that it is —efnw at the
surface termination. Then, one may consider a surface far
from z = 0, so that I'; becomes negligible with respect to I,
so long as we consider low momenta. Moreover, all terms in
[y are negligible except for —w if the surface is sufficiently
far from z = 0. In that case, the correction is simply —efnw.
This means that the potential is locally acting on the surface
states by simply lowering their energy by an amount equal
to the value of the potential at the surface. More generally, in
first-order perturbation theory we are calculating e f (z), which
essentially amounts to calculating the expectation value of the
position in the unperturbed surface state. Hence, both I'; and
the terms in 'y that accompany w represent a correction to
—nw due to the fact that the surface state has some extension
and penetrates slightly into the bulk. Notice that I'; presents a
first-order pole at the momenta located in the circle of radius
R. This is consistent with the fact that upon approaching
the edge of the circle, surface states become less and less
localized, until they merge with the extended states of the bulk
and the uncertainty in position becomes infinite.

Having said that, we can proceed to study the velocity
renormalization, which occurs due to the squared momenta
in I'y. That is, if we consider low momenta, then there is no
velocity renormalization to first order, similarly to what has
been observed in Refs. [32,33]. Let us focus on the dispersion
relation in the k, = O plane, where the dispersion is linear in
the absence of electric field. The first-order PT gives a term
that typically increases the velocity if (7) is fulfilled (being
the only range in which the expression is valid as we will
discuss in the following sections). The bands of the surface
states are displaced, together with the bulk bands, due to
the electric field. We shall denote the new position of the
zero-energy surface states as ki along the k, direction. With
this definition, the dispersion relation within the first-order PT

is now
Ey(k = 0) = nyo + ngvf ks + O(f2. k). (19)

where ky = ky — kenir. In addition yy is a constant factor and
the renormalized velocity reads

a1 (0, ky
ot = v+ef[;—‘3(k -‘)} : (20)
y kshm

Notice that the velocity renormalization, up to first-order PT,
does not depend on ¢ or on 1 because kg depends explicitly
on chirality as kghitt = & |kshife-

Next, we obtain the second-order PT correction in a slab
extended from —w < z < w but infinite in the X and Y
directions. Furthermore, we assume that the width w is large
enough to use the surface states obtained in the semi-infinite
approximation. That is, the width is larger than the decay
length of the surface states into the bulk so that states of oppo-
site surfaces cannot hybridize. In a finite slab, the bulk states
have the dispersion relation (3) with a quantized momentum in
the Z direction due to the finite size of the system. The general
form of the bulk states of the unperturbed Hamiltonian is

1 o
vy = I T Sinlg C + W)y, (21)
o Loy

where g, = nw /(2w) with n € Z and ®; is a constant and
normalized spinor. The second-order PT is given by

0

where the sum index runs over all bulk states. E) and E?
are defined according to Eq. (3) and Eq. (8), respectively. By
implementing (22) the second-order correction obtained is

SE? = —* A ¢ Talky, ky), (23)
with

T (ke k) )P vk, (24)
2Ry, Ry = _ﬁa

v W E) - (E)
where the primed sum runs over positive-energy bulk states
due to the symmetry of the energy spectrum and

w

I:Asf zsin[gq, (z + w)](e W) _ g=halnztw)y g,
—w

only depends on the system parameters and g, but not on 7.

Notice that |E?| < |E?| and therefore the second-order cor-

rection SE? is always negative. Hence, the corrected energy

dispersion up to second order in the plane k, = 0, is given by

Ey(ke = 0) = n¢[vky, — € f2T(0, ky)]
+nef[Co+ 10, k)] + O(f).  (25)

The contribution of the second-order correction does not
introduce new relevant effects except for changing kg and
introducing a reduction of the velocity as shown in the fol-
lowing expression:

ar(o, k ) 2f2 a1—‘2(07 ky)

V2T —
A L e

] . (26)
Kshife
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In summary, we identify two main effects of the electric
field in the surface states: The shifting of the momenta of
the surface states and the renormalization of the velocity.
Since the type of surface state (A or B) depends on these
two parameters, we expect that the electric field may induce a
transition between different types of states. In the following,
we discuss the main features that arise in the system under
these conditions by comparing analytic treatment with the
numerical calculations.

The shifting of the momenta of the surface states is the
most salient result of the application of an external electric
field. We refer to this effect as the shifting of the cone of
the dispersion relation of the surface states. Notice that the
cone we are referring to is not a Dirac cone. Rather, it is
the cone formed by each surface contributing states with
opposite velocities in the field-free case. In a slab system, in
the already mentioned limit of two decoupled surfaces, the
accordance between the simulation results and the analytic
ones is expected to be good as long as PT is valid. In a
gapless system, an energy scale for PT is not so clear as
in a gapped case. Moreover, the analytic expression of the
surface states (4) is valid only for momenta that fulfill Eq. (7).
Hence, we expect PT to fail for electric fields that shift the
momenta to values of k7 + k; =~ R”. In the following we refer
to these momenta as the critical momenta. PT results reflect
intrinsically this range of validity. In fact, I'; and I'; have,
respectively, a first- and a second-order pole at the critical
momenta. From this perspective, it is clear that second-order
PT is going to fail faster than first order and the shift given by
the constant I'y will have a wider convergence radius.

Despite the aforementioned limitations, an expansion pa-
rameter for the PT can be defined. If we restrict the momenta
of the surface states to k, = 0 and k, < R, we can consider
as the PT parameter, the ratio between the electric potential
at the surfaces, —e fnw, and the gap between the surface and
the bulk states at the critical momenta, v+/my/m;. In fact, it
quantifies an effective gap compared with the displacement of
the bands due to the electric potential. Hence, PT will be valid
if lefw/(vR)| « 1. For the parameters in Fig. 8, we found
that f < 12(47)mV nm~! for v = 1(4) eV nm, respectively.
In the previously mentioned figure, we have plotted the first-
order PT up to values of 0.5 of the expansion parameter, while
second-order PT is plotted up to values of 0.1 finding a good
accordance with the simulation results.

As already mentioned, in order to quantify the shifting we
define the shifted momenta kg, as the momenta at which
the branches intersect in the plane of k, = 0. It is obtained
by finding the intersection of the two energy branches of
the surface state dispersion (25) at a fixed chirality. Figure 2
shows a comparison of the PT result with the simulations: The
second order starts to fail for really small electric fields and
does not introduce relevant corrections, whereas the first-order
PT reproduces very well the simulation results. Therefore we
will neglect the second-order corrections in the following.

Another aspect predicted by PT is the velocity renormal-
ization. Since v'FT is obtained as a derivative of I'y, it has
a second-order pole for the critical momenta [see Eq. (20)].
Thus, the first-order PT for the velocity converges within the
same radius as the second-order PT for kgr. In the mini-
mal model, the radius of convergence of second-order pole

0.6
0.5
04
|
203
j 09 v=1[Vnm]: v=4[Vnm]:
— 1PT — 1PT
0.1 2PT — 2PT
Sim —e— Sim
0.0
0 10 20 30 40

f [mVnm 7Y

FIG. 2. kgs as a function of the electric field f for a type A (B)
slab of parameters w = 50 nm, my = 0.35 eV, m; = 1.0 eV nm?,
v=1eVnm (4 eV nm), and { = +1; the dotted line is the critical
momenta defined by k, = R. 1PT denotes the first-order PT, 2PT
the results up to second order, and Sim the simulations. We only
calculate the PT up to relevant values of the small parameter of PT
(see the main text for further details).

functions is utterly restricted to small f (see Fig. 2), where a
significant velocity renormalization is absent. Therefore, the
effect can only be numerically studied in the nonperturbative
regime. Figure 3 shows the evolution of the velocity and the
kenire With the electric field. Even if the PT is not valid for
the regime of electric fields studied, it is worth mentioning
that it captures important features of the effect such as the
independence of the results from the type of surface states.
The renormalization of the velocity and the shifting of
the cone vertex leads to the possibility of a phase transition
between types of surface states. In fact, the change in the
velocity is directly related to the type transition because it
modifies rtzrans [see Egs. (6) and (9)]. Moreover, the shifting
of the momenta of the surface states modifies the possible
momenta that can be spanned in the left-hand side of (7),
typically increasing the terms on that side of the equation.

(a) o=~ b)al x
,,/’ ( )3 - {'U}A ,/,
2.01 ’
/ _ {v}s
/ 721
= II E
=15 / =
IS II £
/ o
J = ]
II
1.01 —=== -
\ 0

0 20 40 0 20 40
f [mVnm 1] f [mVnm 1]

FIG. 3. (a) Evolution of v, and (b) kgwin as a function of
the electric field for different values of the parameter v of the
Hamiltonian (1). The other parameters of the system are w =
50 nm, my = 0.35 eV, m; = 1.0 eVnm?, and ¢ = +1. The values
of the velocities plotted are {v}, = {0.8,1.0} eVnm and {v}g =
{1.2,1.4,1.6,1.8,2.0,2.4} eV nm, meaning that for these values of
v the WSM is type A and B, respectively.
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0=
— f=5mVum}

—90 f=12[mVnm}
C\l_
= 40 250
_%0 = 2501 0

60l £ 0 —250

= 2501 0.5 10
. 0.0 o 0.5 N hy )
—w 0 w

2z [nm]

FIG. 4. Type transition between type A and type B surface states
for a system with parameters w = 50 nm, my = 0.35 eV, m; =
1.0eVnm?, v =1 eVnm, and ¢ = +1. The main panel shows the
wave functions and the insets show the first ten bands of the disper-
sion relation in the plane k, = 0. The left (right) inset corresponds
to f =5 (12) mVnm™', and the colored dots mark the energy and
momentum of the wave functions plotted. Notice that the cone is
shifted but the oscillatory decay is preserved for the small field
whereas for the higher field the decay becomes purely exponential
showing the type transition.

To study the type transition, an accurate comparison of the
evolution of k3, and r2, . as a function of f is needed. From
the results exposed previously, the transition from type A to
type B is expected: The shifting of the momenta is the most
appreciable effect of the electric field, more noticeable than
the velocity renormalization. Figure 4 shows the transition
A — B and the conversion of the oscillatory decay into a
purely exponential one.

The simulations confirm that the transitions B — A do not
take place. To prove it, we simulate a type-B WSM with
V = Vjim, Where vy, = 2,/mom, corresponding to rtzmlns =0.
In this regime, a decrease of the velocity turns the 72, < 0
and allows for a type transition as long as k3. does not
increase beyond r2, .. In Fig. 5 the evolutions of k%, and r2, .
are compared for two widths: The effect increases with w, as
expected from the PT results, but the general behavior does
not change with the thickness.

0.10 = - - 1010
w =75 [nm]: 7 /
w =5 -2
0.08 w =50 [nm]: 78 0.08
& e w=T5[nm: K =
lé 0.061 o w =50 [nm]: k2 0.06 ‘g
2 o =
2004 /,,/ I XU
'/. s "
0.02 . " 0.02
: e "
i =
0.00{_s—a—a—a=t-F 0.00
0 1 2 3 4 5
FIG. 5. r2,,, and k2 as a function of the external field f; it is

clear that the shifting in k, overtakes the condition that makes pos-
sible the transitions A — B. The parameters are w = {50, 75} nm,
my = 0.35eV, m; = 1.0 eVnm?, and v = vy, ~ 1.18 eV nm.

f=0[mVnm 7} f=3[mVnm] f=9[mVnm™]
N
250 W N Y —
=
2 oo —
R
—950 M /KV/X\ % M§
-1 0 1 -1 0 1 -1 0 1
ky [nm™!] ky [nm™!] Ky [nm™Y
———
250
A ‘ (==
S| S
—250 A
’ = %fﬂ\\ // \
—-0.5 0.0 05 —-0.5 00 05 —-0.5 00 05
ky [nm~1] ky [nm~1) ky [nm~1]

FIG. 6. Dispersion relation of a DSM in the plane k, = 0 (upper)
and k, = 0 (bottom) for a slab of w = 50 nm with the same parame-
ters of Fig. 1.

To complete our analysis of the minimal models, we study
the case of the DSM with Hamiltonian (2) comprising two
copies of the minimal Weyl Hamiltonian (1) with different
chiralities in each copy. In the absence of electric field, each
boundary hosts two surface states with linear dispersion and
opposite chirality. The electric field does not mix chiralities,
but it breaks the spatial inversion symmetry leading to a
splitting of the two cones of the opposite surfaces. In fact,
the sign of the momentum shift induced by the electric field
on the dispersion of the Fermi arcs depends on the chirality
and 7 (see Fig. 6). The cited figure shows also the bands as
a function of k; in the plane k, = 0: The effect of the electric
field in the dispersion is the coalescence and distortion of the
bands. This result is expected as the crossing of the cones
is shifted to nonzero k,. It is important to notice that these
cones are not the Dirac cones, rather they correspond to the
intersection of the two surface states of the same chirality and
opposite surfaces near the zero energy, as mentioned earlier
in the text. In fact, the actual Dirac cones actually shift up or
down in energy, depending on the surface they are located at.

Before concluding this section, it is interesting to notice
that, as can be seen in Fig. 6, the surface states linear branches
directly enter into the bulk bands and remain unaltered despite
the presence of the latter. This means that surface states and
bulk states do not hybridize. We have observed this fact also
by looking at the evolution of the surface states as the field
is increased. In this respect, more details can be found in the
Supplemental Material [35]. It is important to stress, however,
that the bulk states are modified by the electric field as well.
States of the conduction (valence) band transition from being
completely extended through the system to localize towards
regions of lower (higher) electric potential. This is in fact the
reason why bulk and surface states do not hybridize, because
the former localize at regions where the latter have negligible
probability density.

B. Model for the Dirac semimetal Na;Bi

Throughout this section, we extend the previous results of
the minimal model to the Hamiltonian for Na3;Bi. Since the
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electric field does not mix the chiralities, we study the 2 x 2
model with nondegenerate Weyl nodes given by Eq. (10). We
follow the same approach as with the minimal model up to
first-order PT applying Eq. (16) to the surface states defined
by (11a). In order to follow the shifting of the cones we set
k, = 0 and to simplify the notation, we define all the quantities
at zero k,. The first-order PT correction now is

SE} = efnlTo + i (ko)1 27

with Ty a constant obtained from the model parameters and
I'y (k) a function of k,:

1 A
Iy =— , 28
TV TR-E, (282)
Ak (k, +2nck
T (k) = (ke + 208 x,O) (28b)

(R2 - kio) [R2 — (ke + n;kx,O)z]'

Before proceeding further, a couple of words must be said
about the convergence of PT in this case. As for the minimal
model, the surface states (11a) exist if F < A2 [29]. The
former condition implies now that

(ke + ko) + mZ <R (29)

These domains represent ellipses in the k,-k, plane and im-
posing k, = 0 they are a constraint for the values of k, that
must fulfill k. < k. < k., where k. is a function of the
model parameters and is obtained from (29). We expect PT
to converge in the range k. < k, < k..

In order to further simplify the problem and have an
intuitive idea of the phenomena, it is interesting to study
the behavior of the energy dispersion for small momenta by
expanding the perturbed energy in k, < 1 as follows:

=C +efn2A™ + 9 — w)
+C(vCs + ef y1 )k,
+nefyki + O(f2. &), (30)

Ey(k. = 0)

(a) (b)

E [meV]

0.0000  0.0025 —0.0025  0.0000  0.0025

ko [AY Ey [A1]

—0.0025

FIG. 7. Reshaping of the cones due to the electric field: f =
0.08mV A~ in (@) and f =1.0mV A in (b). The cones are
centered in energy and momenta using the variables Ec =k, — kqire
and E = E — Egig. PT results and simulations are compared for
small f finding a good accordance. The width of the system is
w =200 A and ¢ = 1; the cones in the absence of electric field are
plotted in black.

0.001 %, (a)
= —0.011
£ _0.02{ R
=
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2

i 0.1361| = Sim

& —0.138y — PT
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FIG. 8. Comparison between PT results and numerical simula-
tion for a Na3Bi slab of w = 200 A. (a) shows kg, (b) the Egig,
and (c) the velocity as a function of the electric field. The dashed line
marks the minimal critical momenta k...

where y; (i =0, 1, 2) are positive constants. Moreover, the
renormalized velocity is defined as previously by way of an
expansion near the shifted cones as follows:

ar
‘] . (31)

IPT

vy =vtef [ or.
From inspection of Eq. (30) we observe some features re-
vealed by the minimal model: The bands are displaced by a
constant term and they are transformed by the terms y; and
y». However, this scenario presents important modifications
with respect to the minimal model. First of all, I'; depends on
the chirality ¢ and 7, therefore the renormalized velocity is
asymmetric. Using the numerical values of Table I and the PT
expression for v }PT (31), we find that the velocity increases for
surface states with n¢ = +1 and decreases for n¢ = —1. This
phenomenon is perfectly observed also in the simulations, as
seen in Fig. 7.

f=0[mV A7

f=0375 [mV A

—0.1 0.0 0.1 —0.1 0.0 0.1
k. [A7Y) ke A1)

FIG. 9. Change of the dispersion relation with the electric field f
in a slab of w = 200 A and setting ¢ = +1. In the upper panels, the
shifting of the cones is utterly visible in the dispersion as a function
of k, (at k, = 0). In the bottom panels, the coalescence of the bands
in the dispersion as a function of k, (at k, = 0) can be seen. To
improve visibility, we have underlined the crossing of the surface
energy branches with a black line.
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Moreover, the bands of the surface states are not flat and
they do not cross at zero energy for k, = 0. Therefore, the
shifting produced by the electric field modifies the crossing
of the two branches in momenta and in energy what defines
anew kgpnire and Egire. The evolution of these two quantities is
plotted in Fig. 8 along with the velocity renormalization. The
previously mentioned figure compares PT with the numerical
simulations finding a good accordance as long as the shifted
momenta fulfill the already discussed restrictions. We find

that the PT converges if f <1072 mV A" for systems
with w ~ 10> A. Remarkably, despite considering weak
electric fields, the effect on the velocity renormalization is not
negligible at all.

Finally, let us focus on the dispersion relation for the
complete Hamiltonian, i.e., the DSM Hamiltonian, as plotted
in Fig. 9. The effect is analogous to that found in the minimal
model, in which the branches in black move away from each
other in momentum as the bulk states approach in energy.

IV. EXPERIMENTAL PROPOSAL

A very recent paper has reported experimental measure-
ments in the presence of an electric field in ultrathin Na;Bi
films [22]. The cited article, based on a theoretical proposal
[36], studies a different regime from the present work: The
system comprises few-layer Na;Bi(001) films grown in the
Z direction, along which the electric field is applied. Its
main result is the closing and opening of a gap such that
topological and trivial phases are induced. The importance of
this experimental realization is relevant from the standpoint
of applications of the present work. In fact, it assures the
possibility of realization of the proposed scenario and gives
a magnitude of the electric fields that can be implemented
experimentally. In the ultrathin-film setup, the electric fields
were implemented using two methods: Doping the surface
with potassium and with scanning tunneling spectroscopy
varying the tip-sample separation. The obtained electric fields
are of the order of a few Vnm™! in a sample of atomic width.
In the system proposed in this work, the thickness of the
sample must be of the order of 10> A in order to have two
decoupled surfaces. In the literature these samples are labeled
as thin films and have been grown by molecular beam epitaxy
for Na3zBi [20,21] and Cd;As, [37]. Due to this estimated
thickness, we expect that lower fields can be achieved. In-
deed, even for electric fields one order of magnitude lower
than those obtained by Collins et al. [22], we find that the
velocity renormalization is a non-negligible effect, as seen
in Fig. 10.

0.0
_ @) 4 ()
=05 2
| ¥ .
ot L 101 - w=175[A]
—1A8 = w = 200 [A]
-~ (b) - w=225[A]
z 0P
£ -5 291 @
S I
1,
0 20 40 0 20 , 40
fmV AT fmv A

FIG. 10. (a) kgirts (b) Egire, and (c),(d) velocity as a function of
the external electric field for three different widths of a Na3Bi slab.

V. CONCLUSIONS

In summary, we have obtained a suitable method to dis-
place the Dirac nodes of the surface states in the BZ with
a tunable external electric field. Not only the position of
the cones is modified but also the Fermi velocity can be
altered. Moreover, both effects depend on the chirality of the
node at a given surface. The renormalization of the Fermi
velocity would have a direct impact on the electronic transport
properties through the surface of the semimetal thin films. In
the case of NazBi we show that these effects would be quite
significant and due to their chiral dependence, we envision the
possibilities for applications to chiral electronic devices [38].

For some range of parameters, the renormalization of the
Fermi velocity induced by the external electric field implies a
transition from type A, with oscillatory decay and very short
decay lengths, to type-B surface states, with longer decay
lengths and pure exponential decay into the bulk. This may
lead to a very large increase in the hybridization of the two
surfaces in a thin film. The coupling of the opposite surfaces
is a necessary ingredient of the recently observed 3D quantum
Hall effect based on Weyl orbits [39,40] and we foresee im-
portant observable consequences of this transition in quantum
Hall transport experiments with topological semimetals.
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