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Topology- and symmetry-protected domain wall conduction in quantum Hall nematics
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We consider domain walls in nematic quantum Hall ferromagnets predicted to form in multivalley semicon-
ductors, recently probed by scanning tunneling microscopy experiments on Bi(111) surfaces. We show that the
domain wall properties depend sensitively on the filling factor ν of the underlying (integer) quantum Hall states.
For ν = 1 and in the absence of impurity scattering we argue that the wall hosts a single-channel Luttinger liquid
whose gaplessness is a consequence of valley and charge conservation. For ν = 2, it supports a two-channel
Luttinger liquid, which for sufficiently strong interactions enters a symmetry-preserving thermal metal phase
with a charge gap coexisting with gapless neutral intervalley modes. The domain wall physics in this state is
identical to that of a bosonic topological insulator protected by U (1) × U (1) symmetry, and we provide a formal
mapping between these problems. We discuss other unusual properties and experimental signatures of these
anomalous one-dimensional systems.
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I. INTRODUCTION

Topology and symmetry play central and intertwined roles
in condensed matter physics. In Landau theory, different
ordered phases are associated to distinct broken symmetries,
with magnetism being the canonical example. Topology is
then used to classify defects—such as vortices, disclinations,
or dislocations—whose proliferation destroys order and re-
stores symmetry. On the other hand the modern theory of
topological states of matter distinguishes zero-temperature
phases by global properties of their quantum wave functions,
even in the absence of any symmetries, as most famously
exemplified by two-dimensional electron gases (2DEGs) ex-
hibiting the quantum Hall (QH) effect. When such phases
also spontaneously break symmetry, the interplay of broken
symmetry and topological order can lead to new routes to
stabilizing and manipulating topological phenomena.

Quantum Hall ferromagnets (QHFMs) furnish one such
example, where the formation of a topological QH state
is driven by interaction-induced spontaneous breaking of a
global symmetry, such as that associated with electron spin, or
valley or layer pseudospin [1]. QHFMs thus exhibit manifes-
tations of both topological order, notably, quantized response
and a vanishing energy gap for edge transport, as well as clas-
sic broken-symmetry phenomena, e.g., Goldstone modes and
finite-temperature phase transitions [2]. Topological defects
gain additional structure from the topological order of the
underlying QH state, e.g., in spin QHFMs, skyrmion textures
bind quantized electrical charge and can dominate low-energy
charge properties [1]. Studying these unusual topological
defects can yield insight into an array of phenomena emerging
from the interplay of interactions, symmetry, and topology.

Here, we focus on a particularly rich class of QHFMs,
where the symmetry in question permutes distinct minima

(valleys) of the low-energy electronic dispersion [3–9]. Such
systems [10] are best described [11] as discrete nematics:
QH states with a symmetry-breaking order parameter that
breaks the discrete rotational symmetry of the crystalline
point group, and whose natural topological defects are domain
walls, introduced, e.g., by spatially varying uniaxial strain
[8]. Such a nematic QH liquid was recently observed via
high-field scanning tunneling microscopy (STM) experiments
on the sixfold valley-degenerate (111) surface of bismuth (Bi)
[12]. Orientational symmetry breaking is detected by imaging
local density of states (LDOS) modulations near atomic-scale
impurities, while energy-resolved measurements clarify the
role of interactions. Similar studies have now been performed
at isolated domain walls between distinct nematic regions in
the interior of a sample, far from physical edges [13]. These
reveal gapless domain wall modes when the bulk QH state is
at Landau level filling factor ν = 1 but a tunneling gap when
it is at ν = 2.

Usually, metallic conduction along edges of QH systems
is protected by the fact that chiral edge modes transport
charge unidirectionally; in contrast, at domain walls, one-
dimensional (1D) charge modes counterpropagate. Since po-
sition and momenta are locked in the QH regime, interactions
can strongly couple such counterpropagating modes without
any constraints from momentum conservation, and it is natural
to expect these modes to become gapped and insulating.
New ideas are therefore necessary to explain the dichotomy
between the tunneling spectra at different filling factors.
Accordingly, we develop a theory of electronic degrees of
freedom at these domain walls. We find that like in many
1D systems the relevant theory is that of a (multicomponent)
Luttinger liquid, but one in which interactions are constrained
by momentum conservation in two dimensions (that origin of
the valley symmetry). This structure is peculiar to the QH
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FIG. 1. (a) Four-valley model. (b) Sketch of nematic domain
wall. (c) Symmetry-allowed interactions at ν = 1 map to forward
scattering and cannot open a gap; example of allowed process that
can open a charge gap at ν = 2.

setting: such symmetry constraints cannot emerge in a local
1D quantum system. We develop these ideas quantitatively,
place them within the framework of quantum anomalies, and
use them to both explain STM data and explore their further
implications.

II. MICROSCOPIC MODEL

We study a four-valley model (Fig. 1) of spin-polarized
electrons described in a continuum effective mass approx-
imation (valid when λF , �B � a, where λF is the Fermi
wavelength, a is of the order of the lattice spacing, and
�B = √

h̄/eB is the magnetic length); we discuss later how
to adapt this to Bi(111), which has six valleys. The mass
tensor is generically anisotropic, but respects C4 point-group
symmetry, so that discrete spatial rotations also permute val-
ley indices. We consider integer filling factors νT = 4p + ν,
where p is a nonnegative integer and ν = 1, 2. (ν = 3 maps to
ν = 1 under the particle-hole transformation.) For simplicity,
we will also restrict to the lowest Landau level (LLL; p = 0)
though our results can be generalized to any p (barring com-
peting density-wave instabilities, which may be relevant for
p � 3).

The single-particle Hamiltonian for valley α ∈ {A, B, Ā, B̄}
can be approximated as

Hα = (p‖ − K + eA‖/c)2

2m‖
+ (p⊥ + eA⊥/c)2

2m⊥
, (1)

where v‖ = vx cos θα + vy sin θα , v⊥ = vy cos θα − vx sin θα

for any vector v, and θα are angles shown in Fig. 1. The
valleys are centered at Kα = K (cos θα, sin θα ) and we define
Kαβ = Kα − Kβ .

We assume that deviations from ellipticity [e.g., from
the teardrop shape of Bi(111) valleys] denoted δHα , are
smaller than the mass anisotropy λ2 = m‖/m⊥; we discuss
their role further in Appendix A. Working in Landau gauge
A = (0, Bx), and introducing a guiding center X related to
the momentum via X = �2

B py, yields single-particle wave
functions φα,X (r) in valley α

φα,X (x, y) = eiXy+iKα ·r√
Ly

(
z′
α

π

)1/4

e− zα (x+X )2

2 , (2)

where Ly is the length of the QH sample in the y direction,
λ2 = m‖/m⊥ is the mass anisotropy, zα = λ

λ2 sin2 θα+cos2 θα
+

i sin 2θα (1−λ2 )
2(λ2 sin2 θα+cos2 θα )

, and z′
α = Re[zα].

Each noninteracting LL has an exact fourfold valley degen-
eracy. Therefore the formation of incompressible QH states

for integer ν < 4 requires interactions; projecting these into
the LLL yield the effective Hamiltonian

Hi = 1

2A

∑
qαβγ δXX ′

V (q) : ρ̄αβ (q̄αβ, X )ρ̄γ δ (−q̄δγ , X ′) : . (3)

Here, : . . . : denotes normal ordering, V (q) is the Fourier
transform of the interaction. In terms of creation operators
c†
κ,X , which create an electron in the LLL orbital φκ,X , the

density at wave vector q, projected into the LLL is given by
ρ̄(q) = ∑

αβX Fαβ (q, X )ρ̄αβ (qαβ, X ), where

q̄αβ = q + Kαβ,

ρ̄αβ (q̄αβ, X ) = Fαβ (q̄αβ, X )c†

κ,X− q̄y,αβ

2

c
κ ′,X+ q̄y,αβ

2
, (4)

Fαβ (q, X ) = eiqxX
(4z′

αz′
β )1/4√

z∗
α + zβ

e
− (qx+iz∗αqy )(qx−izβ qy )

2(z∗α+zβ ) .

A. Hierarchy of terms

The form factors Fαβ (q) are exponentially sensitive to the
momentum difference between the valleys α, β. Accordingly,
at leading order we may restrict to

Hi,0 : terms in Hi, for α = β γ = δ. (5)

Going to higher order, we find that valley mixing interac-
tions corresponding to near zero total momentum transfer in
the 2D Brillouin zone are only polynomially suppressed in
a/�B. Such terms fall into two categories:

Hi,1 : terms in Hi, for (γ δ) = (βα),

Hi,2 : terms in Hi, for (γ δ) = (ᾱβ̄ ). (6)

Note that for both of the above terms, q̄δγ = q̄αβ . Then,
a transformation q → q + Kβα transfers all dependence on
K into the argument V (q), leading to an overall factor of
O(a/�B) relative to Hi,0. In both Hi,1, Hi,2 we require β 
= α,
and additionally in Hi,2, β 
= ᾱ.

All other terms describe scattering processes with a large
net 2D momentum transfer. While these are allowed in prin-
ciple because of LLL projection, they are exponentially small
∼e−(K�B )2 ≈ e−(�B/a)2

and can be neglected. Thus, valley sym-
metries emerge as good approximate symmetries (see below).
Strain will generically split the valley degeneracy fully at
single-particle level, but at leading order valleys A, Ā are
approximately degenerate. Note also that a strain field will
generically split the valley degeneracy fully at single-particle
level, but at leading order valleys A, Ā are approximately
degenerate and split only by δHα , as are B, B̄; we term
these anisotropy pairs. For notational convenience, we dub
the degree of freedom between two valleys that share the
same anisotropy for δHα = 0 (i.e., X ↔ X̄ for X = A, B)
pseudospin and that between such anisotropy pairs (A ↔ B),
isospin. Domain walls between QHFMs polarized in different
valleys are pinned by strain, that we model as a slowly varying
valley Zeeman field that couples only to isospin.

B. Symmetries

In the elliptical-valley limit, δHα = 0, Hi,0 is invariant un-
der SU (2) pseudospin rotations. This yields a rich symmetry
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structure [14] but for our discussion we take δHα 
= 0 [as is
likely case in Bi(111)]. However, we will approximate the
form factors by (5). Hi,0, Hi,1 enjoy an emergent [U (1)]4

symmetry, namely independent conservation of the electron
number Nα in each valley. (we assume δHα also respects this).
We can rearrange these into the following four U (1) charges

N = NA + NB + NĀ + NB̄, (7)

P z = 1
2 (NA + NB − NĀ − NB̄), (8)

Iz = 1
2 (NA − NB + NĀ − NB̄), (9)

Qz = 1
2 (NA − NB − NĀ + NB̄). (10)

These correspond to the total charge, N , generators of rota-
tions about the z axes in pseudospin space, P z, and isospin
space Iz, and simultaneously in both, Qz. Hi,2 preserves N ,
P z, and Qz, but breaks isospin U (1) to Z2, by allowing AĀ ↔
BB̄ processes that change Iz in units of two. We will use
these symmetries below to strongly constrain terms allowed
in the low-energy theory of the domain wall. We comment
here that the model has enhanced symmetry in the elliptical
valley limit δHα = 0, where Hi,0 is invariant under SU (2)
pseudospin rotations. The rich symmetry structure [14] in this
case may lead to additional interesting effects; however, here
we assume that δHα 
= 0.

C. QHFM ground states at ν = 1, 2

Ignoring intervalley contributions from Hi,1,2, at ν = 1 a
Hartree-Fock (HF) calculation indicates electrons are polar-
ized entirely in one of the valleys, |�〉 = ∏

X c†
α,X |0〉. Inter-

valley coherent states that mix isospins are suppressed by
the large anisotropy [11] present already in the elliptical ap-
proximation, while pseudospin-mixing states are suppressed
by the smaller anisotropy captured by δHα , in accord with
the microscopic symmetry.1 Bulk excitations far from the
wall are gapped for δHα 
= 0. The relevant topological defects
in this system, and our focus below, are isospin domain
walls where the QHFM order parameter switches between
anisotropy pairs. These can be induced by a spatially varying
uniaxial strain that splits isospin states at the single-particle
level (but couples negligibly to pseudospin); this is captured
by a parameter � in our model, which we take to characterize
the strain gradient near the domain wall center (where the
strain vanishes).

For ν = 2, we focus on pseudospin-singlet states where
both partners in an anisotropy pair are occupied; a strain field
will lower the energy of one anisotropy pair relative to the

1Determining the ground state can be more subtle for δHα = 0,
since here the symmetries force an exact degeneracy between the
ν = 2 with both valleys in an anisotropy pair filled, and one that
corresponds to a ν = 1 state within each anisotropy pair. Selection
between such states depends either on additional quantum fluctua-
tions from δHα , thermal fluctuations of Goldstone modes from the
broken SU (2) symmetry of states within an anisotropy pair (order
by disorder) or by energetics of the flanking Wigner-crystal phases
in clean systems (order by doping) [14]. However, these subtleties
are largely avoided by considering nonzero δHα and also due to the
presence of a symmetry-breaking strain field.

other so that an isospin domain wall again forms where the
strain changes sign.

Absent interactions, our model has four U (1) symmetries,
associated with charge conservation in each of the four valleys
independently. At domain walls, these charges, which are
associated with anomalous (quantum Hall) response in the
bulk, give rise to gapless chiral edge modes by the Callan-
Harvey mechanism [15]. Interactions break some of these
symmetries, and depending on the filling factor ν (defined
modulo 4, which corresponds to the filling of all four valleys
in a given Landau level), the residual symmetries suffice
to protect some or all of the gapless domain wall modes.
In what follows, we construct a Luttinger liquid theory for
these domain walls using only symmetry arguments. A more
microscopic calculation of the parameters is discussed in
Appendix C.

III. DOMAIN WALLS AT ν = 1: SYMMETRY-PROTECTED
METALLIC STATE

A. Luttinger liquid description

At ν = 1, only valleys A, B are occupied and Hi,2 is thus
irrelevant. We therefore only consider the remaining valley-
U (1)-conserving interactions, Hi,0,1 and the smoothly varying
valley Zeeman field �v that energetically stabilizes the do-
mains.

Without loss of generality, we will assume that on the left
of the domain wall, valley A is occupied (states X < 0), and on
the right, valley B is occupied (states X > 0). For �v = 0, the
domain wall has a zero mode corresponding to a rigid transla-
tion of the wall [16,17]. Microscopically, this mode changes a
fixed number of left-moving electrons into right movers. This
corresponds to the transformation ρR → ρR + ε, ρL → ρL −
ε, where we identify ρr (qy) ∼ ∑

X c†
X+qy,α(r)cX,α(r), with r =

L, R labeling left-/right-moving electrons, and corresponding
valley indices α(L) = A, α(R) = B.

Since Hi,0, Hi,1 respect this symmetry corresponding to the
free translation of the domain wall transverse to itself, the
corresponding terms in the effective Hamiltonian must take
the form

H0 ≡ H (� = 0) = πv0
F

∫
dy [ρR(y) + ρL(y)]2, (11)

where v0
F is a renormalized effective velocity and �

parametrizes the gradient in �v (see Appendix C). Note that
the effective Hamiltonian corresponding to the valley Zeeman
field is a single-particle term that corresponds exactly to the
usual Tomonaga-Luttinger electron gas, and thus has the form

Hv = π�

∫
dy

[
ρ2

R(y) + ρ2
L(y)

]
. (12)

Writing the densities in terms of the canonically conjugate
fields φ, π�, with ∇φ = −π [ρL + ρR],� = ρR − ρL [18],
we find the effective Luttinger liquid Hamiltonian for the
ν = 1 domain wall

H ν=1
DW = u

2π

∫
dy

[
1

K
(∇φ)2 + K (π�)2

]
. (13)
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Here K =
√

�/(v0
F + �), u =

√
v0

F �

√
1 + �/v0

F are strain
dependent and vanish for � = 0, reflecting the zero mode in
the limit � → 0.

Note that unlike usual 1D systems such as nanotubes,
here scattering between left- and right-moving states involves
no change in momentum along the wall, since the position-
momentum locking in the LL ensures that states at the same
guiding center X are proximate in momentum py. Naively,
it seems that interactions could then lead to a quantum-
disordered gapped phase as T → 0. However, here the valley
momentum difference KAB ensures that such processes are in
fact suppressed exponentially, hence the domain wall remains
gapless. The chiral modes in each direction carry distinct
valley quantum numbers; this valley-filtered nature provides
an intuitive explanation for the symmetry protection.

B. Symmetry analysis and gapping perturbations

The Luttinger Hamiltonian in Eq. (13) describes a gapless
system, where the Luttinger parameter K grows smaller (and
thus interactions grow stronger) as the valley Zeeman field
grows weak (smaller �). We now discuss potential gapping
perturbations and identify the symmetries that forbid these.

We use the standard bosonization dictionary for spinless

electrons, where ψr (y) = Ur,s√
2πα

e− i√
2

[rφ(y)−θ(y)] where r = ±
for R, L, and we map {L, R} ≡ {A, B}. In this notation, we
have

∇φ = −π [ρR + ρL] = −π [ρB + ρA], (14a)

∇θ = π [ρR − ρL] = π [ρB − ρA]. (14b)

Cosines and sines of linear combinations of these phases φ, θ

then comprise the usual gapping perturbations of the system.
In terms of these, the conserved charges may be obtained by
integrating appropriate linear combinations:

N = NA + NB = − 1

π

∫
dy (∇φ) (15a)

Iz = 1

2
(NA − NB) = − 1

2π

∫
dy (∇θ ), (15b)

where we use the fact that Nα ∼ ∫
dyρα . Further, recall the

commutation relation[
φ(y),

1

π
∇θ (y′)

]
=

[
θ (y),

1

π
∇φ(y′)

]
= iδ(y − y′). (16)

Using the identity that [A, eiB]=i[A, B]eiB for [[A, B], B]=0,
we find

[N , e±iθ (y)] = ∓e±iθ (y), (17a)

[Iz, e±iφ(y)] = ∓e±iφ(y). (17b)

Thus, e±iθ and e±iφ correspond to lowering/raising operators
for the charges N , Iz. Since these operators are conserved
in our system, any operator built from these is forbidden
by symmetry. As a consequence, there are no symmetry-
allowed perturbations to the ν = 1 domain wall, which is thus
always in a gapless phase as long as charge and valley U (1)
symmetries are preserved.

To see how the symmetry protection is linked to the topo-
logical response, imagine applying an electric field parallel

to the domain wall. Owing to the QH response, this induces
an electrical current perpendicular to the wall. Therefore,
electrons in valley A flow towards the wall from the left,
and valley B electrons flow away from it on the right. As
long as the valley quantum number is conserved, there is
then a net current of valley isospin into the wall. If the
wall were insulating, this would lead to an inconsistency: it
must therefore carry gapless isospin excitations. Reversing
this argument, we see that a isospin field parallel to the wall
[i.e., a positive (negative) electric field for valley A (B)] would
drive charge current into the wall. Thus, the domain wall
excitations are also electrically charged. This can be viewed
as the Callan-Harvey anomaly inflow argument [15] adapted
to the QHFM setting.

C. Alternative approach via nonlinear sigma model

For completeness, we present an alternative discussion of
protected conduction at ν = 1 in a field-theoretic framework
that is often used to discuss quantum Hall ferromagnets.
For the nematic case, this takes the form of an easy-axis
nonlinear sigma model for the ferromagnetic order parameter,
�m = (mx, my, mz ) (with �m2 = 1):

S[ �m] = SB[ �m] + Sg[ �m] + SQH[ �m], (18)

where the first term

SB =
∫

d2rdτ iS �A[ �m] · ∂τ �m (19)

is the standard Berry phase kinetic term for a ferromagnet,
with ∇ �m × A[ �m] = �m and S = 1/2, and

Sg[ �m] =
∫

d2rdτ

[
ρs

2
(∇m)2 + α

2
�m2

⊥ + �xmz(�r)

]
(20)

is the usual gradient energy of an easy-axis σ model with stiff-
ness and easy-axis anisotropy α > 0, and we have included
a Zeeman gradient �; for the moment we ignore possible
anisotropic stiffness terms as they only give small corrections.
The gradient term this has [U (1) � Z2]s pseudospin rotation
symmetry, where the U (1) corresponds to rotations about the
mz axis, and the Z2 takes mz → −mz, and the semidirect prod-
uct (�) indicates that these two operations do not commute.

In addition are two special features of this nonlinear σ

model due to the underlying quantum Hall physics, captured
in SQH. First, textures of the order parameter �m with a nonzero
Pontryagin index C = ∫

d2r
4π

εabcε
μνma(∇μmb)(∇νmc) carry

an electric charge Q = νeC [to avoid confusion with the
U (1)s spin rotation, we will refer to the corresponding charge
conservation symmetry as U (1)c]; second, SQH also con-
tains topological Hopf term that does not have a simple
local expression [19] in terms of �m. This is essentially the
transcription of the Chern-Simons term of the underlying
quantum Hall state and at ν = 1 endows the skyrmions with
fermionic statistics. The explicit form of SQH[ �m] is not partic-
ularly important, but its physical manifestations, namely that
skyrmions are fermions with unit U (1)c charge, are crucial in
distinguishing the QHFM from a conventional ferromagnet,
and will be significant when discussing gapping perturbations
to the domain wall.
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However, as a first step, let us ignore SQH; deriving the
effective domain wall theory is then a standard exercise in
soliton dynamics via the method of classical coordinates.
A slowly fluctuating domain-wall solution takes the form
�m = (sin θ cos φ, sin θ sin φ, cos θ ) with

φ(�r, t ) = φ(y, t ), cos θ (�r, t ) = tanh
x − X (y, t )

λ
. (21)

Here, the classical soft coordinates are the phase along the
wall φ(y, t ) (note that this is only meaningful near the wall)
and the location of the center of the wall X (y, t ) [defined
implicitly by requiring mz(X (y, t )) = 0]. Taking φ = X =
const. corresponds to a static saddle-point whose energy is
minimized for λ = √

ρs/α, and (for any � 
= 0) X = 0. Note
that the saddle-point energy is independent of φ and so it
seems that our choice spontaneously breaks the U (1)s sym-
metry; in higher dimensions there would be a Goldstone mode
associated with this, but of course this is precluded in 1+1D
by the Mermin-Wagner theorem, and fluctuations restore sym-
metry. The low-energy effective dynamics at the domain wall
are captured by a 1 + 1D action for φ, X that may be obtained
by performing a gradient expansion in fluctuations of the
slow fields φ, X about the static saddle point. This yields the
domain wall effective action

S =
∫

dydτ

[
i2Sφ̇X + �X 2 + β(∇X )2 + ρ

2
(∂yφ)2 + · · ·

]
,

(22)

where β, ρ > 0 are constants whose precise value is unim-
portant and . . . indicates higher-order terms. Note that in the
absence of a pinning term �, we have a z = 2 theory (this can
be verified by computing the equations of motion for β 
= 0):
exactly as we found for the microscopic model for � → 0.
Since we do have pinning, we may set β = 0 and integrate
out the fluctuations of the domain wall position X . This yields
the phase-only effective action

Sφ =
∫

dydτ

[
S2

�
(∂τφ)2 + ρs

2
(∂yφ)2

]
(23)

yielding a Luttinger liquid where both u, K ∝ �1/2 consistent
with the more microscopic approach.

At this level, it seems that it should be possible to disorder
this 1D theory by breaking the U (1)s symmetry, either fully
by adding, e.g., a term ∝ my, or down to Z2, by adding a
term ∝ m2

y , respectively resulting in δSφ ∝ cos φ, cos 2φ. If
we demand that U (1)s is preserved, we may rule out such
terms. However, in a 1 + 1D quantum theory, we can also gap
the system by a quantum vortex unbinding transition, corre-
sponding to driving the dual field cos θ to strong coupling. For
an ordinary ferromagnet (that is, if we ignore SQH) nothing
seems to obstruct this transition: there is no reason in principle
to forbid a trivial, gapped (quantum-disordered) phase of the
domain wall modes.

This conclusion is altered by including the effects of SQH.
A space-time vortex is an instanton: a quantum process that
inserts a 2π kink in the phase winding at some instant in time.
However, we must remember that the domain wall does not
exist in isolation: it is flanked by two different orientations of
the Z2 part of the pseudospin. So, if we view the 2D system af-
ter the insertion of the 2π kink at the domain wall, there is now

FIG. 2. A space-time vortex in the phase on the domain wall
world sheet (yellow) can be viewed as a 2π kink inserted instan-
taneously at t = tinst. Since spins in the bulk on either side of the
DW are oppositely oriented, for t < tinst when there is no kink at
the DW, the spin configuration in the 2D plane is defined by a great
semicircle on the Bloch sphere that passes through the equator at
φ = 0 (bottom right). For t > tinst, owing to the presence of the kink,
the spin configurations wrap the sphere as we move parallel to the
domain wall (the color of the arrows indicates the azimuthal angle
on the Bloch sphere, top right). The skyrmion number of the 2D spin
configuration thus increases by 1 each time a vortex event (instanton)
occurs.

a skyrmion present in the system. Therefore, we see that the
space-time vortex operator in the 1 + 1D theory is a skyrmion
creation operator (Fig. 2) (Note: this is also consistent with the
view that in space time this defect is a hedgehog, since space-
time hedgehogs change skyrmion number by 1.) Because of
the topological terms discussed above, this carries both a
unit U (1)c charge, and fermion parity. Therefore, we see that
the 1 + 1D QHFM domain wall theory is unconventional: its
instanton defects carry electrical charge and fermion number.
Single-defect proliferation is therefore forbidden, as it would
violate the fermion parity symmetry. Double-defect prolif-
eration is consistent with fermion parity, but would break
U (1)c down to Z2, corresponding to superconducting pairing.
Therefore, we conclude that the gapless Luttinger liquid at
the domain wall is symmetry protected: while the U (1)s

protection is present in any NLSM (even for a conventional
ferromagnet), the U (1)c protection is unique to the QHFM,
and is important in ruling out a trivial gapped phase. In this
fashion, the robust gapless edge mode protection is ultimately
a consequence of underlying QH anomaly, and hence can
be argued to be the same as the Callan-Harvey mechanism.
It is clearly also consistent with the microscopic symmetry
analysis above.

IV. DOMAIN WALLS AT ν = 2: CHARGE-INSULATING
THERMAL METAL

A. Luttinger liquid description

We may proceed analogously for the ν = 2 case and con-
struct an effective Luttinger liquid description using symmetry
arguments. As mentioned above, we assume that a valley
Zeeman field, which does not distinguish between pseudospin
valley pairs (such as A, Ā), varies spatially, and stabilizes the
occupation of states A, Ā on the left of the system (states
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X < 0), and B, B̄ on the right (states X > 0). In this case, there
are a pair of counterpropagating edge modes, one from each
of the two filled Landau levels. Noting the valley index of the
left- and right-movers, we write

{A, Ā, B, B̄} ≡ {(L,↑), (L,↓), (R,↑), (R,↓)}, (24)

tracking the valley polarization on either side of the wall.
Next, using standard arguments [18] we decouple charge

and valley sectors whose densities are given by sum and
difference of opposite pseudospin (↑ / ↓) densities. Since
Hv, Hi,0, Hi,1 preserve the four-valley U (1) symmetries, these
terms do not comprise gapping perturbations. Thus, the ef-
fective Hamiltonian corresponding to these terms is given by
a sum of two Luttinger Hamiltonians, that is, H = Hρ + Hσ

with

Hζ = uζ

2π

∫
dy

[
1

Kζ

(∇φζ )2 + Kζ (π�ζ )2

]
, (25)

where the charge and valley modes are denoted ζ = ρ, σ ,
and have distinct Luttinger parameters in general. Crucially,
by similar arguments as above, we note that these parameters
much depend singularly on �, which parameterizes the valley
Zeeman field. (The lack of a stabilizing valley Zeeman field
must yield a zero mode corresponding to translations, and in
this limit the Luttinger parameter is zero.)

Now, at ν = 2, valley-mixing interactions play a crucial
role: Hi,2 (which describes a scattering process involving elec-
trons in all four valleys) leads to a backscattering interaction
in the charge sector given by

Hi,2 = 2

(2πα)2

∫
dyRe[gei

√
8φρ ]. (26)

(The precise form of this term is guaranteed by the ac-
tion of the operator e±i

√
2φρ , which changes the charge

Iz by units of 2, which is the defining feature of Hi,2.)
Now, combining all the terms, the effective Hamiltonian is
Hν=2

DW = Hρ + Hσ + Hi,2.
The relevance of the backscattering interaction depends on

the value of the charge Luttinger parameter Kρ . For repulsive
interactions and weak strain gradient �, generically we find
Kρ � 1 so that Hi,2 is always relevant [18]. Thus the theory
is driven to strong coupling, pinning φρ to a minimum of
the cosine. This disorders θρ , i.e., the correlation function

〈e i√
2
θρ (x,t )e

i√
2
θρ (0,0)〉 decays exponentially. Since e− i√

2
θρ is re-

lated to charge creation, we see that now charge correlations
decay along the wall, which is thus electrically insulating. In
contrast, the excitations in the σ channel remain gapless. The
domain wall is thus fractionalized in the sense that the charge
is frozen while the valley degrees of freedom propagate freely.
We note further that when Hi,2 is relevant, the ground state of
the cosine potential has minima φρ = φ̄ρ + 2nπ√

8
, for n ∈ Z of

which one is chosen; in Appendix B we show these minima
correspond to the same physical state.

B. Symmetry analysis and gapping perturbations

We now perform a symmetry analysis analogous to the
case ν = 1. Following our conventions and the mapping
{A, Ā, B, B̄} ≡ {(L,↑), (L,↓), (R,↑), (R,↓)} we may write

∇φ↑ = −π [ρR,↑ + ρL,↑] = −π [ρB + ρA], (27a)

∇θ↑ = π [ρR,↑ − ρL,↑] = π [ρB − ρA], (27b)

∇φ↓ = −π [ρR,↓ + ρL,↓] = −π [ρB̄ + ρĀ], (27c)

∇θ↓ = π [ρR,↓ − ρL,↓] = π [ρB̄ − ρĀ]. (27d)

In terms of these, the conserved charges may be obtained by
integrating appropriate linear combinations:

N = − 1

π

∫
dy (∇φ↑ + ∇φ↓) = −

√
2

π

∫
dy ∇φρ (28a)

P z = − 1

2π

∫
dy (∇φ↑ − ∇φ↓) = − 1√

2π

∫
dy ∇φσ

(28b)

Iz = − 1

2π

∫
dy (∇θ↑ + ∇θ↓) = − 1√

2π

∫
dy ∇θρ

(28c)

Qz = − 1

2π

∫
dy (∇θ↑ − ∇θ↓) = − 1√

2π

∫
dy ∇θσ ,

(28d)

where we again use the fact that Nα ∼ ∫
dyρα . The commuta-

tion relation is now[
φη(y),

1

π
∇θη′ (y′)

]
=

[
θη(y),

1

π
∇φη′ (y′)

]
= iδηη′δ(y − y′),

(29)
where η, η′ ∈ {ρ, σ }. Proceeding as for the ν = 1 case, we
find

[N , e± i√
2
θρ (y)] = ∓e± i√

2
θρ (y) (30a)

[P z, e±i
√

2θσ (y)] = ∓e±i
√

2θσ (y) (30b)

[Iz, e±i
√

2φρ (y)] = ∓e±i
√

2φρ (y) (30c)

[Qz, e±i
√

2φσ (y)] = ∓e±i
√

2φσ (y) (30d)

with all other commutators with conserved charges be-

ing zero. Thus we see that e± i√
2
θρ (y), e±i

√
2θσ (y), e±i

√
2φρ (y),

e±i
√

2φσ (y) (note the factors of
√

2) are, respectively,
lowering/raising operators for N ,P z, Iz,Qz. (The operator
e±i

√
2θρ (y) changes N by two units; this is consistent since

such an operator is produced by pairing bilinears of the form
ψ†ψ†, while any single-electron annihilation has the form

ψ ∝ e
i√
2
θρ .)

Since N ,P z,Qz are good quantum numbers, all cosines
of the form cos(n

√
2θρ ), cos(n

√
2θσ ), and cos(n

√
2φσ ) are

forbidden for any n as the corresponding operators break these
symmetries. However, processes that change Iz in units of two
are allowed, by terms in Hi,2, and correspond to the n = 2
operator cos(

√
8φρ ).

The above analysis further implies that the gaplessness of
the valley mode is robust and protected by this triplet of U (1)
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symmetries. A topological argument for the presence of such
a gapless mode may also be made for the ν = 2 case. Let
us first consider the case where Hi,2 is not present, and each
valley is associated with a conserved charge. The QH response
of the bulk pairs up the charges N with Iz, and Pz with
Qz. To see this, note that an application of a fictitious field
parallel to the domain wall, which couples directly to one of
these charges, drives an accumulation of the complementary
charge at the domain wall due to the bulk QH response. The
latter necessitates the presence of a gapless mode along the
domain wall to carry away the excess charge. As noted above,
this is a straightforward generalization of the Callan-Harvey
argument for the presence of gapless edge modes associated
with conserved charges that exhibit topological response in
the bulk; the subtlety here is that a field gradient of one charge
appears to drive the accumulation of a complementary charge
at the boundary. Next, if we allow for Hi,2, there exists a
process to convert a pair of charges from the valleys A, Ā to
charges of valleys B, B̄, and vice-versa. Now, the application
of an electric field along the domain wall, which drives
charges from valleys A, Ā (B, B̄) into (away from) the domain
wall, does not lead to an accumulation of isospin charge at
the domain wall because of the process mentioned above. The
charge mode is thus not protected (and it is gapped).

Such a situation, where all perturbations are forbidden
based solely on symmetry without tuning parameters, is im-
possible in truly 1D systems. This, like the linking of valley
index to chirality, is tied to the fact that QHFM domain walls
are anomalous and can only be realized in conjunction with a
topologically ordered bulk, similarly to helical edge states in
2D quantum spin Hall insulators.

C. Link between ν = 2 domain walls and bosonic
topological insulator

It is useful also to briefly make a link [20] to a superficially
very different problem: that of bosonic symmetry-protected
topological phases protected by U (1) × U (1) symmetry. As
argued in Ref. [21], absent interactions, undoped graphene
bilayers can be driven into an analog of a quantum spin Hall
(QSH) state with two effective helical modes at each edge.
Each of these helical edge modes has up-spins and down-spins
propagating in opposite directions. Since the magnetic field
explicitly breaks time-reversal symmetry, unlike the usual
QSH insulator, this state is actually protected by a pair of
U (1) symmetries: total charge and total spin. Interactions can
gap out the charge modes thereby opening an electron spectral
gap at the boundary. However, this leaves a protected neutral
bosonic mode, whose symmetry protection follows because
the possible cosines are ruled out respectively by the charge
and spin U (1) symmetries. The formal similarity between
this problem and our domain wall system may be made more
concrete by folding the system across the domain wall, i.e.,
by viewing the domain instead as a edge between a quantum
valley Hall state (where the A, Ā valleys see positive magnetic
field and the B, B̄ valley see a negative magnetic field) and
the vacuum. After we write down the single gapping cosine,
the remaining valley mode is protected precisely by a pair of
U (1) symmetries—in our case, valley pseudospin and valley
isospin. We refer the reader to Ref. [21] for a discussion

FIG. 3. Domain walls as line junctions. For ν = 1 the wall
conducts charge (blue) even with interactions (dashed lines); so,
conductance is not quantized. For ν = 2, charge is gapped while
neutral valley modes (red) are gapless, so that electrical (thermal)
conductance is quantized (non-quantized).

of why it is reasonable to use the term bosonic topological
insulator despite the fact that the fundamental particles in the
system are electrons.

V. RELATION TO STM EXPERIMENTS

We may directly validate our analysis against the STM data
on Bi(111), where strain splits the six valleys into a (4,2) de-
generacy pattern. Our model captures the remaining fourfold
degeneracy, with mirror reflections constraining dispersions
rather than C4. In the gapless ν = 1 case, ideal STM experi-
ments will see a soft gap due to Luttinger liquid suppression,
with an energy/temperature dependence set by the Luttinger
parameter K [18]. However, it is likely challenging to resolve
this in realistic experimental settings. For ν = 2 we expect a
hard gap [22,23] owing to charge-valley separation, as can be
seen by expressing the single-electron spectral function using
θη, φη, and using the exponential decay of charge correlations
[18]. Taking λ = 5, and approximating screening crudely via
a large dielectric constant ε ≈ 45, yields a bulk exchange
gap [12] �ex ∼ 535 μeV, and Luttinger liquid parameters
uρ ∼ 0.1�ex�B, Kρ ∼ 0.1 for � ∼ 0.01�ex�B. For ν = 2 we
estimate a charge gap of 120 μeV for small �, a sizable
fraction of �ex; this is is consistent with our discussion above
and the dichotomy between ν = 1, 2 reported in Ref. [13].

VI. CONCLUDING REMARKS

Motivated by our success in explaining STM data, we now
explore other implications of our theory. The key physical
insight is that the ν = 1 domain wall is both electrically and
thermally conducting, whereas the ν = 2 wall is a charge
insulator but a thermal metal. This has immediate conse-
quences for two-terminal measurements in the line junction
limit [24,25] (Fig. 3) with a single domain wall transverse to
the direction of current flow. Namely, we expect no quantized
conductance in the ν = 1 case since the wall transports charge
between the edge modes, whereas for ν = 2 we expect the
quantized charge conductance but no quantized thermal con-
ductance.

This observation generalizes to the phase diagram of the
system in the presence of long-wavelength disorder, that pre-
serves the valley symmetry crucial for the domain wall struc-
ture to survive. Assuming that the random strain produced
by disorder vanishes on average, we expect large samples to
contain many domains of the two possible nematic orienta-
tions, separated by a percolating network of domain walls. For
ν = 1 the gapless charge transport along the domain walls will
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lead to bulk dissipation and hence absence of a quantized Hall
plateau [11,26]. At ν = 2, the charge gap leaves the quantiza-
tion of charge Hall conductivity intact, but the gapless valley
modes transport heat in the bulk. This destroys the quantiza-
tion of the thermal Hall conductivity leading to an unusual
violation of the Weidemann-Franz law, manifested in off-
diagonal components of the conductivities. Remarkably, in
this scenario the interplay of disorder with the QHFM domain
wall physics allows a familiar 1D effect—fractionalization of
transport—to drive a similar phenomenon in two dimensions.
Uniform strain breaks the statistical symmetry between the
domains, leading to a net excess of one domain over the
other. In this regime, the domain wall network is tuned away
from percolation, and no longer shorts the edges; in this
limit, the quantized (thermal) Hall conductivity is restored at
ν = 1 (ν = 2). We also expect various interesting but sample-
dependent mesoscopic effects at intermediate scales. Other
possibilities, e.g., localization of the domain wall network,
could lead to richer phenomenology, exploration of which we
defer to the future.

As our arguments have built primarily on symmetry and
topology, we expect that they will apply generally to a range of
multivalley systems, such as graphene multilayers, transition-
metal dichalcogenides, and semiconductor heterostructures,
particularly AlAs and Si based heterostructures, which host
sixfold symmetric valleys akin to Bi(111). In the former
[27,28], the pseudospin pairs of valleys are identified by
reciprocal lattice vectors. Thus our analysis for ν = 1 is
most relevant as there is effectively no pseudospin degree
of freedom. In the latter, a (4,2) valley degeneracy structure
has been observed experimentally [5] and our analysis should
apply directly at fields where spin splitting is substantial.
There are many avenues for further study; among them we
flag especially the possibility of exploring similar phenomena
in quantum magnetism, that has traditionally shared fruitful
interactions with QH physics [29]. Another exciting possi-
bility is to extend our analysis to the fractional QH regime.
Here, different candidate QH states, e.g., at ν = 2/3, may be
distinguished via their domain wall properties, a traditionally
challenging problem; meanwhile, the ability to introduce var-
ious gapping perturbations may allow domain walls to serve
as a platform for engineering topologically protected qubits.

ACKNOWLEDGMENTS

We thank J. T. Chalker, F. H. L. Essler, L. Glazman,
A. Nahum, S. H. Simon, K. Shtengel, and Y.-Z. You for
insightful and stimulating discussions. K.A. acknowledges
support from the U.K. foundation and DOE DE-SC0002140.
S.A.P. acknowledges support from NSF DMR-1455366 dur-
ing the early stages of this project and from European Re-
search Council (ERC) under the European Union Horizon
2020 Research and Innovation Programme [Grant Agreement
No. 804213-TMCS] as this work was completed. M.T.R.
and A.Y. acknowledge support from the Gordon and Betty
Moore Foundation as part of EPiQS initiative (GBMF4530),
DOE-BES grant DE-FG02-07ER46419, and NSF-MRSEC
programs through the Princeton Center for Complex Materials
DMR-142054, NSF-DMR-1608848.

APPENDIX A: ROLE OF CORRECTIONS TO ELLIPTICITY

In writing the microscopic wave functions, we assumed
that the valleys are perfectly elliptical. In reality, there can
be corrections beyond ellipticity, e.g., valleys in Bi have a
teardrop shape. We assume that deviations from ellipticity
[e.g., from the teardrop shape of Bi(111) valleys] denoted
δHα , are smaller than the mass anisotropy λ2 = m‖/m⊥.
Indeed our discussion we have implicitly assumed a small
but nonzero δHα [as for Bi(111)], although we continue to
approximate the form factors by (5). This has two main con-
sequences. First, on the elliptical-valley limit, δHα = 0, Hi,0

is invariant under SU (2) pseudospin rotations. This yields a
rich symmetry structure that would complicate the discussion,
in particular making the determination of a ground state at
ν = 1, 2 much more subtle [14]. Formally the terms in δHα

lowers this SU(2) symmetry to Z2: therefore, they suppress
pseudospin-coherent ground states at ν = 1, in favor of states
where the pseudospin is maximally polarized into one or other
member of an anisotropy pair. Furthermore, δHα gaps bulk
collective excitations far from the wall, and allows us to focus
our attention on the domain wall.

APPENDIX B: COMPACTIFICATION AT ν = 2

The cosine potential for the φρ field has several minima—
φρ = φ̄ρ + 2nπ√

8
, for n ∈ Z—of which one is chosen. Here we

show that these minima correspond to the same physical state.
As noted, absent interactions there are four U (1) symme-

tries, each associated with the total charge in each valley:
NA, NB, NĀ, NB̄. If these symmetries are not broken, then there
must exist chiral fermionic modes at the edge of the sample,
as guaranteed by the Callan-Harvey mechanism [15]. These
fermionic modes may be expressed in terms of chiral bosonic
fields, that is, ψA ∼ e−iϕA , ψĀ ∼ e−iϕĀ , ψB ∼ eiϕB , ψB̄ ∼ eiϕB̄ ,
where these bosonic fields obey standard commutation re-
lations [18]: [ϕr(κ )(x), ϕr(κ ′ )] = iπr(κ )δκκ ′sgn[x − x′]. Here
r(A) = r(Ā) = −1 and r(B) = r(B̄) = 1. We may then rear-
range these operators to arrive the field operators used in the
main text:

φρ = 1√
2

[
ϕA + ϕB

2
+ ϕĀ + ϕB̄

2

]
,

φσ = 1√
2

[
ϕA + ϕB

2
− ϕĀ + ϕB̄

2

]
,

θρ = 1√
2

[
ϕA − ϕB

2
+ ϕĀ − ϕB̄

2

]
,

θσ = 1√
2

[
ϕA − ϕB

2
− ϕĀ − ϕB̄

2

]
, (B1)

and check that these satisfy the usual commutation relations
noted above. One can further identify φ↑ = −( ϕA+ϕB

2 ), φ↓ =
−( ϕĀ−ϕB̄

2 ), θ↑ = ( −ϕA+ϕB

2 ), θ↓ = ( −ϕĀ+ϕB̄
2 ). Using the usual ex-

pression for the chiral density, ρκ = 1
2π

∇ϕκ , we can arrive at
all the results of the previous section.

We can now identify the compactification radius of φρ .
Since ϕκ are independent U (1) phases with a compactification
radius 2π , that is, ϕκ ≡ ϕκ + 2π , we note that φρ must be
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identified with φρ + 2nπ√
8

for n ∈ Z. Thus, all the minima of
the cosine potential correspond to the same physical state.

APPENDIX C: MICROSCOPIC ESTIMATION
OF LUTTINGER PARAMETERS

In the main text, we provided rigorous, symmetry-based
arguments for our general expectations for domain wall ex-
citations. We now discuss a more microscopic procedure for
constructing the Luttinger theory derived above. This will
allow us to provide estimates of the Luttinger parameters
relevant to experimental observations of such modes.

1. General philosophy

We will focus on single-particle modes near the domain
wall, that is, modes with X, X ′ ≈ 0. For such modes, the
effective interaction may be approximated as

Hi = 1

2A

∑
αβγ δ,X,X ′,q

Gαβγ δ (qy) : c†
α,X− qy

2

cβ,X+ qy
2

c†
γ ,X ′

− qy
2

cδ,X ′+ qy
2

:,

Gαβγ δ (qy) ≡
∫

dqx

2π
VqFαβ (q̄αβ, X = 0)Fγ δ (−q̄δγ , X ′ = 0)

≈ Gαβγ δ (0) ∀ qy. (C1)

We made two assumptions in the above result. First, we
neglected X, X ′ dependence in the effective interaction ampli-
tude Gαβγ δ , confining our attention to the physics near X =
X ′ = 0. Second, note that the interaction amplitude G(qy) ∼
e−q2

y /2. Thus, the effective interaction is Gaussian in momen-
tum exchanged along the domain wall, and consequently it is
also Gaussian in spatial extent along the domain wall. This
suggests that it can be approximated by a contact interaction,
which corresponds to setting G(qy) = G(0)∀qy. Landau level
projection thus naturally leads to a theory of fermionic modes
propagating along the domain wall and interacting via short-
range interactions.

The density of left- and right-moving fermions in
this system may be defined as discussed above: for
ν = 1, ρL(y) = 1

Ly

∑
qy

eiqyy[
∑

X c†
A,X cA,X−qy ], and ρR(y) =

1
Ly

∑
qy

eiqyy[
∑

X c†
B,X cB,X−qy ]. One may similarly define den-

sities for the ν = 2 case.
The above problem of fermions interacting with contact in-

teractions can be treated analogous to Luttinger liquid analysis
developed for spinless and spinful fermions, see Ref. [18].
The various interaction amplitudes determine the effective
Luttinger parameters of our theory.

2. ν = 1

We assume, as above, that valley A is occupied for X < 0,
and valley B is occupied for X > 0. A valley Zeeman field
gradient,

∑
X �X (c†

A,X cA,X − c†
B,X cB,X ), which supports such

a domain wall configuration, then directly translates into the
term

∫
dy π�[ρ2

R(y) + ρ2
L(y)]. Thus, the parameter � in Hv

[in Eq. (12)] may be estimated directly by the gradient of the
valley Zeeman field (which in turn can be estimated by the
gradient of the strain field and the difference of its coupling to

the different valley modes). Note that this follows analogously
to a free Tomonaga-Luttinger gas noting that the guiding
center X is also the momentum of the orbital in the y direction.

For ν = 1, Hi,2 is irrelevant. Hi,0, Hi,1 must respect free
rigid translations of the domain wall, and therefore must be
of the form given in Eq. (11). The parameter v0

F can be read
off by transforming appropriate terms in Eq. (C1) into the
Luttinger liquid variables. This yields

v0
F = 1

2π

∫
qx

2π
V (q)|FAA(q)|2|qy=0

− 1

2π
V (q + KA − KB)|FAB(q)|2|qy=0. (C2)

3. 3ν = 2

The single-particle valley Zeeman term is given now by
two copies of the Tomonaga-Luttinger Hamiltonian

Hv = π�

∫
dy

[(
ρ2

L,↑ + ρ2
R,↑

) + (
ρ2

L,↓ + ρ2
R,↓

)]
. (C3)

As for ν = 1, � is directly given by the valley Zeeman field
gradient. As before, the interaction terms allow for a rigid
translation of the domain wall, and the corresponding terms
in the effective Hamiltonian must reflect this symmetry. We
further note that Hi,0 is symmetric with respect to all valleys,
and thus leads to a term of the form

Hi,0 = πv0
F

∫
dy[ρL + ρR]2,

ρL = ρL,↑ + ρL,↓, ρR = ρR,↑ + ρR,↓. (C4)

where

v0
F = 1

2π

∫
dqx

2π
V (q)|FAA(q)|2|qy=0. (C5)

Hi,1 involves exchange interactions between valley pairs,
with an amplitude that is generically different for pairs sepa-
rated by a momentum shift along and/or against the domain
wall. It transforms into

Hi,1 = −πv1
F (1 + χ )

∫
dy [(ρL,↑ + ρR,↑)2 + (ρL,↓ + ρR,↓)2]

−πv1
F (1− χ )

∫
dy [(ρL,↑+ ρR,↓)2+ (ρL,↓+ ρR,↑)2],

(C6)

where

v1
F (1 + χ ) = 1

2π
V (q + KA − KB)|FAB(q)|2|qy=0,

v1
F (1 − χ ) = 1

2π
V (q + KA + KB)|FAB̄(q)|2|qy=0. (C7)

The above expressions may then be converted into a usual
Luttinger liquid description of charge and spin modes, as
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described above in Eq. (25). The Luttinger parameters read

Kρ =
√

�

4v0
F + � − 4v1

F

, Kσ =
√

� − 2v1
F (1 − χ )

� − 2v1
F (1 + χ )

,

uρ = �

Kρ

, uσ =
√[

� − 2v1
F (1 − χ )

][
� − 2v1

F (1 + χ )
]
.

(C8)

Finally, the form of Hi,2 in the Luttinger description is fixed
by its action of changing Iz in steps of 2, as in Eq. (26). The
parameter g is given by

g =
∫

dqx

2π
[FAB(q)]2

· [V (q + KA − KB) − V (q + KA + KB)]|qy=0. (C9)

This completes our estimation of the parameters of the Lut-
tinger theories.
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