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The Haldane phase represents one of the most important symmetry-protected states in modern physics.
This state can be realized using spin-1 and spin- 1

2 Heisenberg models and bosonic particles. Here we explore
the emergent Haldane phase in an alternating bond Z3 parafermion chain, which is different from the
previous proposals from fundamental statistics and symmetries. We show that this emergent phase can also be
characterized by a modified long-range string order, as well as fourfold degeneracy in the ground-state energies
and entanglement spectra. This phase is protected by both the charge conjugate and parity symmetry, and the
edge modes are shown to satisfy parafermionic statistics in which braiding of the two edge modes yields a 2π

3
phase. This model also supports rich phases, including a topological ferromagnetic parafermion (FP) phase,
trivial paramagnetic parafermion phase, classical dimer phase, and gapless phase. The boundaries of the FP
phase are shown to be gapless and critical with central charge c = 4/5. Even in the topological FP phase, it is
also characterized by long-range string order; thus we observe a drop of string order across the phase boundary
between the FP phase and the Haldane phase. This work opens a new way for finding of exotic topological
phases with parafermions.
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Topological phases and associated phase transitions be-
yond the Landau paradigm of phase transition have been
a major topic in modern physics [1–3]. Examples include
topological insulators [4] and the Haldane phase [5,6]. In the
noninteracting models in topological insulators and topologi-
cal superconductors, these phases are characterized by integer
numbers associated with time-reversal symmetry, particle-
hole symmetry, and chiral symmetry [7,8]. However, in the
strong interacting models such as Haldane phases, they are
characterized by long-range string order and ground-state
degeneracy. These phases can be used to realize exotic ex-
citations with Abelian or non-Abelian statistics, which are
building blocks for topological quantum computation. Along
this line, the self-Hermitian Majorana zero modes [9] have
been realized in experiments by several groups [10–15].
Moreover, the symmetry-protected Haldane phase has been
proposed to be realized in spin-1 and spin- 1

2 Heisenberg mod-
els [5,6,16,17], strong interacting bosonic models [18–23],
and even fermionic models [24–27].

Here we are interested in the realization of the Haldane
phase using Z3 parafermions [28–35], which are totally
different from the above-mentioned models with regard to
their fundamental statistics and symmetries. We consider
an alternating-bond Z3 parafermion model, which can be
realized in superconductor and ν = 2

3 fractional quantum
Hall (FQH) hybrid structures [33,36]. This Haldane phase is
characterized by nonlocal string order and fourfold degener-
acy in both ground-state energies and entanglement spectra.
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We map out the whole phase diagram and find some other
exotic phases, including the ferromagnetic parafermion (FP)
phase, paramagnetic parafermion (PP) phase, dimer phase,
and critical gapless phase. The boundaries for the FP phase
are critical with central charge c = 4

5 . The edge modes in the
Haldane phase exhibit fractional Abelian braiding protected
by charge conjugate symmetry and parity symmetry. This kind
of emergent phenomena are rather general in parafermion
models, and thus this work opens a new avenue in search of
exotic symmetry-protected topological phases in parafermion
models.

I. MODEL

We consider the following alternating-bond Z3

parafermion chain (ω3 = 1):

H = −ω2

⎛
⎝ L∑

j=1

Jj (δ) α
†
2 jα2 j+1 + h α

†
2 j−1α2 j

⎞
⎠ + H.c., (1)

where Jj (δ) = 1 + (−1) j δ, and α j are parafermions satisfy-
ing α3

j = 1, α
†
j = α2

j , and αiα j = α jαiω
sgn( j−i). This model

can be realized using the setup in Fig. 1(a) in the supercon-
ductor and FQH hybrid structure [39], in which the alternating
bonds are controlled by the distance between the supercon-
ducting islands. This model is related to the following Z3

clock model via the Jordan-Wigner transformation: α2 j−1 =∏
k� j−1 τkσ j and α2 j = ωσ j

∏
k� j τk , which yields [33,36]

H = −
L∑

i=1

[1 + (−1) jδ]σ †
i σi+1 − h

∑
i

τi + H.c. (2)
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FIG. 1. (a) Realization of Eq. (1) using superconductor and ν =
2
3 FQH hybrid structure. The distance between the superconducting
islands controls the coupling strengths between the parafermions lo-
calized at the holes, giving rise to the alternating-bond model. Other
ideas for realizing of this model can be found in Refs. [31,33,37,38].
(b) Projection of the alternating-bond Z3 model to the spin- 1

2 spin
model in strong Zeeman field limit with h � −J .

We see that the second term plays the similar role as the
magnetic field in Z2 spin models; thus h, for convenience,
is termed as a Zeeman field. In the above, the operators
satisfy σ 3

i = τ 3
i = 1, σiτi = ωτiσi, σ

†
i = σ 2

i , and τ
†
i = τ 2

i ; all
operators commute between different sites [28].

The Z2 symmetry is absent in the parafermion model.
However, it can be restored by a projection from the Z3 to
Z2 model [see Fig. 1(b)] when the highest state in each site is
unoccupied. In the h � −1 limit, we obtain an equivalent Z2

spin model to the leading term as

H = −
∑

i

[1 + (−1) jδ]s†
i si+1 + O(1/h2), (3)

where si = sx
i − isy

i , with sα
i being Pauli matrices. This stag-

gered XX model has similar features as the staggered Heisen-
berg model discussed in literature [16,40,41] (see details in
Ref. [42]), which support the Haldane phase when δ > 0 and
the trivial dimer phase when δ < 0. We will show that this
topological phase can be realized with even a modest Zeeman
field h. This limiting case enables us to understand how the
Haldane phase and related symmetries can emerge from the
Z3 or even Zk parafermions.

II. PHASE DIAGRAM

We employ the density-matrix renormalization group
(DMRG) method implemented by the ITENSOR project [43]
and the exact diagonalization (ED) method to understand
the phase diagram in Fig. 2. First, we look at δ = 0, which
supports several different critical points. The point at h = J is
self-dual [28,44] via μ j = ∏

k� j τk and ν j = σ
†
j σ j+1, which

separates the threefold degenerate FP phase from the PP
phase. This boundary was studied in literature [28,37]. When

Haldane 
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Dimer PP

Gapless

Gapless

-6 -5 -4 -3 -2 -1 1 2
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0
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FIG. 2. Phase diagram of the alternating-bond parafermion
model. FP and PP represent ferromagnetic and paramagnetic
parafermion phase. The gapless phase with |δ| > 1, h �= 0 is critical
with central charge c = 1.

h < 0, we find another critical point at hc = −4.6. When
h < hc, the model is equivalent to the free fermion model or
XX spin model, which is critical with central charge c = 1
[39,45–48]. This point was unveiled in Ref. [42]. On the other
hand, when h = 0, this model is reduced to the classical Potts
model, in which the σ operators can be replaced by complex
numbers eip2π/3 (p = 0, 1, 2) with critical points at δ = ±1.
At these two points, the chain is divided into short segments
with length L = 4, giving rise to an infinite-fold degenerate
model. Similar infinite-fold degeneracy can be found when
|δ| > 1 for eigenvectors |m1m1m2m2m3m3 · · · 〉, with mi �=
mi+1, where mi ∈ {↑,↘,↙} and {| ↑〉, | ↘〉, | ↙〉} are the
eigenvectors of operator σ . This picture is similar to that in
the extended parafermion model [42].

The line with δ = ±1 can be solved exactly. We first focus
on δ = +1. In this case the model is decoupled into the
following segments:

[α1α2][α3α4α5α6][α7α8α9α10] · · · [α2L−1α2L],

where the two parafermions block [α1α2] represent
hω2α

†
1α2 + H.c. and four parafermions block [αiα jαkαl ]

represent −hω2α
†
i α j − hω2α

†
k αl − 2Jω2α

†
j αk + H.c. We can

prove each block commutes with each other. The two edge
modes are fully decoupled from all the other sites. When
h > 0, the ground state of hω2α

†
1α2 + H.c. = −h(τ + τ †)

is unique, corresponding to the PP phase. In contrast, when
h < 0, the ground states are twofold degenerate. For this
reason, it corresponds to the Haldane phase with fourfold
degeneracy, taking into account both ends. This picture is
modified for the case with δ = −1, which is decoupled into
segments

[α1α2α3α4][α5α6α7α8] · · · [α2L−3α2L−2α2L−1α2L].

We need only determine the properties of H4 = −hω2α
†
1α2 −

hω2α
†
3α4 − 2Jω2α

†
2α3 + H.c. When h � J the ground state

is |0〉⊗L. For h � −|J|, it is
∏

i[|(2i)2(2i + 1)1〉 + |(2i)1(2i +
1)2〉 + c|(2i)0(2i + 1)0〉], where |0〉, |1〉, |2〉 are eigenvectors
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FIG. 3. (a) Level spacing δEn1 = En − E1 with open boundary
condition in the emergent Haldane phase. (b) Ferromagnetic order
	 = |〈σ 〉| at δ = 0.5 to characterize the boundaries of the FP phase.
(c) Energy gap δE21 in the infinite volume with close boundary
condition at δ = 0.5. Inset gives the scaling of δEn1 at the critical
point. (d) Overlap between edge modes and γ2L with different chain
lengths for h = −8.

of τ with τ |i〉 = ωi|i〉 and c = 1
2 [

√
36h2 − 12h + 9 + 6h −

1] 
 1/(3|h|) � 1. Thus the ground state is always unique.
This regime is termed as dimer phase [16,40,41] and is
topologically trivial.

III. EMERGENT HALDANE PHASE AND
TOPOLOGICAL TRANSITION

Here we mainly focus on the properties of the emergent
Haldane phase. From the simple picture at δ = 1, h < 0,
we see that the ground states are fourfold degenerate. We
consider a more general case in Fig. 3(a) for a finite system
with open boundary conditions based on the ED method.
The splitting between the fourth level and the ground state,
δE41 = E4 − E1, decreases exponentially to zero with increas-
ing length L, indicating the exact fourfold degeneracy in infi-
nite volume. This phase is protected by a finite energy gap be-
tween the fifth and ground-state levels, i.e., limL→∞ δE51(L)
is finite. With close boundary conditions [49–51], the edge
modes are paired, leading to a unique ground state. In this case
we perform the same analysis in Fig. 3(b) and show that the
gap δE21 = E2 − E1 vanishes only at the phase boundaries.
We show in the inset that at the phase boundary, δEn1 ∝ 1/L
for all n > 1 due to criticality.

We determine the phase boundaries of the FP phase using
the ferromagnetic order 	 = |〈σ 〉|, which is realized in nu-
merical simulation without Z3 symmetry restriction by writ-
ing the Hamiltonian in the eigenvectors of σ [42]. This method
enables us to precisely determine the phase boundaries due to
the sharp transitions from finite value in the FP phase to zero
in all other phases, including the Haldane and dimer phases,
see Fig. 3(c). Notice that the case for δ and −δ give the same

value for 	, since these two cases can be made to the same
upon one lattice translation.

We now discuss the particular properties of the edge
modes, which show some distinct features as compared with
those from the Z2 spin models. Let us again consider δ = +1
and h < 0. In this case the two left parafermions, α1, α2,
and two right parafermions, α2L−1, α2L, are decoupled from
the bulk H (α3, α4, . . . , α2L−3, α2L−2). Taking the two left
parafermions as an example, we may represent α1 = σ and
α2 = ωστ , and then the Hamiltonian can be written as H =
−h(τ + τ †) = −h diag(2,−1,−1). We can define the left
projector Pl = |1〉〈1| + |2〉〈2| = diag(0, 1, 1), which projects
the wave function to the two lowest eigenvectors of H , and
then we can approximate the two edge modes as αi → γi =
PlαiPl . We find that γ1 = γ2, which are zero modes of the
original Hamiltonian, i.e., [γ1, H] = 0. Similar results can be
found for the right zero modes for γ2L = Prα2LPr . These two
modes satisfy the fermionic relation at the same site, γ 2

1 =
γ 2

2L = 0, and the parafermionic commute relation between
the two ends, γ1γ2L = ωγ2Lγ1, which mark the important
difference between our model and the previous fermionic
edge modes [52]. If we denote this state as |11〉, then the
other three zero modes are |12〉 = ωγ

†
2L|11〉, |21〉 = γ

†
1 |11〉,

|22〉 = ω2γ
†
2L|21〉.

The zero modes are exact only in the limiting case of δ = 1,
h < 0. However, we expect these localized edge modes to be
extended to a distance of the order of one correlation length
near the open ends [51]. In this case, the exact edge operators
at the two ends have a finite overlap with γ1 and γ2L. To
this end we diagonalize the Hamiltonian with open boundary
conditions at h = −8, and calculate the matrix element of
γ2L between |22〉 and |21〉. This overlap depends only on the
correlation length when L is large enough. For the result in
Fig. 3(d), the correlation length ξ ∼ 1 when δ → 1; thus the
overlap is saturated even in a short chain.

IV. LONG-RANGE STRING ORDER

We define the string order as

Os = lim
|i− j|→∞

〈σ2iU2i+1U2i+2 · · ·U2 j−2σ
†
2 j−1〉, (4)

which is generalized from the string order in previous
Haldane phases [53–57]. The operator Ui in Eq. (4) is
the generator of the charge conjugate symmetry satisfy-
ing UiτiU

†
i = τ

†
i and UiσiU

†
i = σ

†
i . This string order is not

unique; nevertheless, the one in Eq. (4) is enough to dis-
tinguish the topological states from the trivial phases. One
should notice that when transformed to the parafermion
picture, the above string order can be written as Os =
lim|i− j|→∞〈ψ2i(U2i+1τ2i+1) · · · (U2 j−2τ2 j−2)χ†

2 j−1〉 (χk , ψk are

parafermions α2k−1, α2k and τk transforms as χ
†
k ψk), which

is also a nonlocal string. Thus even in the parafermion rep-
resentation, it possesses all the necessary properties of the
symmetry-protected Haldane phase. In Fig. 4, we compute
the string order using the infinite-chain DMRG method [58],
sweeping along both horizontal and vertical directions on the
phase diagram. We find that this string order in the topological
phases is nonzero and drops to zero in all trivial phases.
From Figs. 4(a) and 4(b), we see that when sweeping from
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FIG. 4. Long-range string order as a function of δ (a), (b) and
h (c), (d). Results are obtained using infinite-chain DMRG method
with bond dimension m = 200. The horizontal dashed lines mark the
limit of the Z2 spin model with Os = Oxx

s = 1
4 .

the Haldane phase to the FP and PP phases, the string order
undergoes a sudden drop at the phase boundary between the
FP and Haldane phases, which was originally determined by
ferromagnetic order 	. In the PP phase, it drops to zero. This
is different from the case with δ < 0, in which the string order
is zero in both the dimer and PP phases. In Figs. 4(c) and 4(d),
we plot the string order as a function of δ, which also exhibits
similar features. When h � −4.6, the string order is reduced
to Oxx

s = − lim|i− j|→∞〈s2isx
2i+1 · · · sx

2 j−2s†
2 j−1〉 = 1/4 [17].

V. CENTRAL CHARGE AND ENTANGLEMENT SPECTRA

We further characterize the boundaries using entanglement
entropy (EE), which in a finite chain with periodic boundary
conditions can be written as [44,46,47,59,60]

S(x) ∼ c

3
ln

(
L

π
sin

πx

L

)
, (5)

where x is the position of the site and c is the central charge.
For the phase boundaries of the FP phase, we find that c = 4

5 .
At the phase boundary between the Haldane phase and dimer
phase, c = 1. One should notice that due to the alternating-
bond strengths in our model, the EE also exhibits oscillating
behaviors; thus S(x) should be fitted for the odd and even sites,
respectively [see Figs. 5(a) and 5(b)].

We provide more insight into the physics in these topo-
logical phases from the entanglement spectra ξi = −ln(ρi )
[51,61–67]. Here, ρi = ρ̂A = TrB|ψ〉〈ψ |, where |ψ〉 is the
ground-state wave function, and A, B are two partitions of the
parafermion chain. As was unveiled in Ref. [51], the spectra
ξi is threefold degenerate in the FP phase. However, in the
Haldane phase, it is characterized by fourfold degeneracy
[65]. Our results are presented in Fig. 5(c), in which we used
a closed parafermion chain [50,51] with chain length L = 80
cut from the center for two partitions. We find that for the
lowest eight eigenvalues, they are strictly fourfold degenerate
in the Haldane phase. Nevertheless, for the higher spectra,

-6 -4 -2 0 2
0

2

4

6

8
0 50 100

0.5

1

1.5

2

E
E

0.4 0.6 0.8 1
1

2

3

odd
even

0 50 100
1

1.5

2

2.5

E
E

0 0.5 1 1.5

2

2.5

3

odd
even

(c)

(a) (b)

FIG. 5. Von Neumann EE in the phase boundary of FP phase
with h = −1.89, δ = 0.5 (a) and C phase with h = −0.22, δ = 1.1
(b). Results are obtained using periodic boundary condition with
bond dimension m = 2000. Inset shows the corresponding fitted
central charge for the even sites and odd sites, respectively. In the
horizontal axis, we set z = 1

3 ln[ L
π

sin(π x
L )]. (c) The lowest eight

levels of entanglement spectra in the Haldane phase, FP phase, and
PP phase. Results are obtained for L = 80, δ = 0.5, bond dimen-
sion m = 2000 with periodic boundary condition. The ground-state
degeneracy for the spectra is marked by ×4, ×3, and ×1 for these
three different phases.

their values are vanishingly small but no longer fourfold
degenerate. The whole spectra are exactly fourfold degenerate
in the limit when the Zeeman field is negative enough. In
the FP phase, all the spectra are threefold degenerate, in
agreement with the previous observation [51]. In the trivial
PP phase, all spectra are not degenerate anymore.

Topological protection. We find that the Haldane phase is
protected by both charge conjugate symmetry C = ∏

i UiK
(K is the complex conjugate operator) with C2 = +1, and
Z3 parity P = ∏

i τi with P3 = 1. The fourfold degeneracy
breaks down only for terms violating these two symmetries.
Let us define two left(right) edge states, where P|1〉 = ω|1〉
and P|2〉 = ω2|2〉. By projecting to these two edge modes, we
find the projective representation:

PL = Pl PPl =
(

ω 0
0 ω2

)
, CL = PlCPl =

(
0 1
1 0

)
K,

(6)

which satisfy [H,PLCL] = 0 in the ground-state subspace. We
find that for any eigenvector |ψ〉 in the subspace, PLCL|ψ〉 is
impossible to be identical to |ψ〉, since (PLCL )2 = P∗

L �= 1.
For this reason in each open end the ground states should
be twofold degenerate, giving rise to the four edge modes
|i j〉, with parity ωi+ j . This idea also applies well to other
parafermion models.

To conclude, we investigate the emergent Haldane phase
in the Z3 alternating-bond parafermion chain, which exhibits
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fourfold degeneracy in both ground states and entanglement
spectra, and is characterized by nonzero long-range string
order, generalized from the Z2 spin models. We find that the
FP phase is also characterized by nonzero string order and
threefold degeneracy in both ground states and entanglement
spectra. The boundaries of the FP phase are critical with
c = 4

5 . With our construction, the Haldane phase can also be
realized with other Zk parafermions. We expect these results
to open a new avenue in the search for these exotic topological
phases with parafermions.
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