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Hidden Chern number in one-dimensional non-Hermitian chiral-symmetric systems
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We consider a class of one-dimensional non-Hermitian models with a special type of a chiral symmetry which
is related to pseudo-Hermiticity. We show that the topology of a Hamiltonian belonging to this symmetry class
is determined by a hidden Chern number described by an effective two-dimensional Hermitian Hamiltonian
H eff (k, η), where η is the imaginary part of the energy. This Chern number manifests itself as topologically
protected in-gap end states at zero real part of the energy. We show that the bulk-boundary correspondence
coming from the hidden Chern number is robust and immune to the non-Hermitian skin effect. We introduce
a minimal model Hamiltonian supporting topologically nontrivial phases in this symmetry class, derive its
topological phase diagram, and calculate the end states originating from the hidden Chern number.

DOI: 10.1103/PhysRevB.100.161105

Open quantum systems with loss (dissipation) and gain
(coherent amplification) are described by non-Hermitian (NH)
Hamiltonians [1,2] and have unexpected properties which
often depend on the symmetries of the system [1–11]. Adding
a non-Hermitian component to a Hamiltonian does not only
broaden the resonances and allow the eigenstates to decay,
but the eigenmodes can merge with each other at excep-
tional points, which are topological defects where not only
are the eigenvalues degenerate but also the eigenvectors are
parallel to each other [1,12–15]. The flexibility to engineer
gain and loss in a controllable manner, for example, in
optics, (opto)mechanics, plasmonics, superconducting quan-
tum circuits, dissipative Bose-Einstein condensates, exciton-
polariton condensates, and cold atom systems [1,2,12,16–32]
has naturally raised the interest to study the symmetry and
topology in non-Hermitian physics systematically [33–37]
with potential applications, for example, in the design of
topologically protected laser modes [38–43].

Because in NH systems the energies are complex, the
Altland-Zirnbauer symmetry classes support new types of
winding number and Z2 invariants determined by the com-
plex spectra [33], leading to NH topological phases with
no Hermitian counterparts [33,35,36]. The classification is
further enriched because for a NH Hamiltonian the transpose
and complex conjugation are not equivalent so that the ten
Altland-Zirnbauer symmetry classes need to be extended [34]
to 38 non-Hermitian (nonspatial) symmetry classes [35,36].
Furthermore, Hermitian Hamiltonians are gapped if the en-
ergy bands do not cross the Fermi energy, but non-Hermitian
systems feature two different types of complex-energy gaps,
so-called point (line) gaps where bands do not cross a point
(line) in the complex-energy plane, giving rise to further
ramifications of the topological classification [36]. Various
models and realizations of the different NH topological phases
have been proposed [44–58]. For Hermitian Hamiltonians the
bulk-boundary correspondence guarantees that the topological
invariants for periodic boundary conditions predict the pres-
ence of boundary states for open boundary conditions, but
this is typically not the case for NH systems [59,60], where

the experimental consequences of topological invariants are
less clear because the bulk-boundary correspondence can be
typically established either on the level of singular value
spectra [61] or on the level of biorthogonal density [62,63].
One of the reasons for the breakdown of the bulk-boundary
correspondence in NH systems is that the bulk states are often
localized in the vicinity of the boundary (NH skin effect) so
that the boundary effects are not described by the bulk Bloch
Hamiltonian [64–70]. Nevertheless, for particular NH symme-
try classes, such as the pseudo-Hermitian Hamiltonians, the
bulk-boundary correspondence can be established [36].

From the viewpoint of experiments, particularly relevant
one-dimensional (1D) NH Hamiltonians can be constructed
by considering Hermitian hopping Hamiltonians with on-site
gain and loss terms. Assuming a chiral-symmetric hopping
Hamiltonian this type of NH Hamiltonians Hk satisfy a spe-
cial kind of NH chiral symmetry,

SHkS = −H†
k , (1)

where S is a Hermitian unitary operator. Furthermore, in the
following we assume that S is traceless so that the unit cell
contains an even number of lattice sites. In the topological
classification discussed in Ref. [36], the NH chiral-symmetric
Hamiltonians are discussed and the topological invariant and
bulk-boundary correspondence has been established [36,71].
They can also be considered in the framework of pseudo-
Hermitian Hamiltonians because iHk is a pseudo-Hermitian
matrix. In this Rapid Communication we establish another
perspective on the topological invariants and bulk-boundary
correspondence for these Hamiltonians. Namely, we show
that the topology of a 1D NH chiral-symmetric Hamiltonian
satisfying Eq. (1) is described by an effective 2D Hermitian
Hamiltonian H eff (k, η), where η is the imaginary part of
the energy. Moreover, we show that H eff (k, η) supports the
Chern number as a topological invariant which determines
the existence of boundary states also for the non-Hermitian
Hamiltonian Hobc with open boundary conditions via the
bulk-boundary correspondence of Hermitian Hamiltonians
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FIG. 1. Schematic representation of the hidden Chern number
and bulk-boundary correspondence for the 1D non-Hermitian chiral-
symmetric Hamiltonians Hk satisfying relation (1). The bulk topol-
ogy of Hk is described by an effective 2D Hermitian Hamiltonian
H eff (k, η), where η is the imaginary part of the energy. The 2D
Hermitian Hamiltonian H eff (k, η) supports the Chern number as a
topological invariant which determines the existence of boundary
modes for the corresponding Hermitian Hamiltonian H eff

obc(η) with
open boundary conditions. The H eff

obc(η) determines the existence of
boundary states for the non-Hermitian Hamiltonian Hobc with open
boundary conditions.

(see Fig. 1). Finally, we introduce a minimal model Hamilto-
nian supporting topologically nontrivial phases in this symme-
try class, derive its topological phase diagram, and calculate
the end states originating from the hidden Chern number. The
hidden Chern numbers agree with the topological invariant
considered in Ref. [36].

By inspecting the characteristic polynomial of Hk satisfy-
ing Eq. (1) we note that if λ is the eigenvalue of Hk , then also
is −λ�. Every square matrix can be easily decomposed into
Hermitian and anti-Hermitian parts, namely, Hk = Hh

k + Ha
k

with Hh/a
k = 1

2 (Hk ± H†
k ). The chiral relation (1) means that

SHh
kS = −Hh

k ,
(2)

SHa
kS = Ha

k ,

so S anticommutes with the Hermitian and commutes with
the anti-Hermitian part of the Hamiltonian. Moreover, the
NH Hamiltonian Hk satisfies the relation with a Hermitian
Hamiltonian Hk (see Ref. [72]),

SHkS = −H†
k ⇐⇒ Hk = iSHk, H†

k = Hk . (3)

For traceless S we find that Hk satisfying Eq. (1) has a
generic block structure in the eigenbasis of S . Namely,

Hk =
(

iPk Q†
k

Qk iRk

)
, (4)

where Pk and Rk are N × N Hermitian matrices and

S =
(
1 0
0 −1

)
. (5)

It is worth noticing that any 2 × 2 real traceless Hamiltonian
Hk can be put in the form of Eq. (4) so it satisfies the chiral
symmetry (1), as shown in Ref. [72].

Now consider the real-space version of this Hamiltonian
with open boundary conditions Hobc. If Hk satisfies (1) then
also Hobc satisfies it with Sobc = 1L ⊗ S , where L is the

number of unit cells stacked along the chain. We are interested
in the end states of Hobc with zero real part of the energy.
Thus, we demand that there exists η ∈ R such that

Hobc|ψ〉 = iη|ψ〉. (6)

Using (3) we obtain Hobc = iSobcHobc and H†
obc = Hobc, so

that we get from Eq. (6)

(Hobc + ηSobc)|ψ〉 = 0. (7)

Notice that this is a zero-energy eigenproblem for an effective
Hermitian Hamiltonian,

H eff
obc(η) ≡ Hobc + ηSobc = Sobc(η − iHobc). (8)

We can use this to define a k-space effective Hermitian
Hamiltonian,

H eff (k, η) ≡ Hk + ηS = S (η − iHk ). (9)

The above Hamiltonian is defined in a two-dimensional (k, η)
space and its Chern number is quantized if it is gapped and
it can be compactified in η. A nontrivial Chern number C
of H eff (k, η) at half filling implies that we have C chiral
boundary modes of H eff

obc(η) crossing the energy gap and it
means that we have C solutions of the eigenproblem (7)
or (6). Mapping the non-Hermitian Hamiltonians with open
and periodic boundary conditions to the same Hermitian
problem guarantees that if Hk has a gapped real spectrum,
then Hobc also has a gapped real spectrum, meaning that the
non-Hermitian skin effect does not lead to a breakdown of
the bulk-boundary correspondence. Moreover, if H eff (k, η) is
gapped and topological then H eff

obc(η) supports boundary states,
and therefore also Hk is gapped and Hobc supports end states
with zero real part of the energy (see Fig. 1 for the schematic
view of this induced bulk-boundary correspondence).

Now what remains is the question of quantization of the
Chern number of H eff (k, η). We know that it is quantized as
long as H eff (k, η) is periodic in k and η. Periodicity in k is
obvious but in the canonical basis where Eqs. (4) and (5) are
satisfied we obtain

H eff (k,−∞) = −H eff (k,+∞). (10)

We can overcome this problem by defining a compactified
version of Hamiltonian H eff (k, η) given by

H eff
cp (k, η) = RηH eff (k, η)R†

η, (11)

where

Rη = exp
[
i
π

4
(1 + tanh η)G

]
, G =

(
0 1
1 0

)
. (12)

This way R−∞ = 1 and R+∞ = iG so that H eff
cp (k, η) is

compactified in η as

H eff
cp (k, η → −∞) = H eff

cp (k, η → +∞) = −|η|S. (13)

Note that the spectrum of H eff
cp (k, η) and H eff (k, η) is the

same. Now, the Chern number C for H eff
cp (k, η) can be obtained

using the Kubo formula [73,74],

C = 1

2π

∫ +∞

−∞
dη

∫ 2π

0
dk�k,η, (14)
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where the Berry curvature �k,η is given by

�k,η =
∑
n�nF
m>nF


2
〈
ψn

k,η

∣∣∂kH eff
cp

∣∣ψm
k,η

〉〈
ψm

k,η

∣∣∂ηH eff
cp

∣∣ψn
k,η

〉
(
E (n)

k,η
− E (m)

k,η

)2 . (15)

Here, |ψ p
k,η

〉 are eigenstates of H eff
cmp(k, η) (sorted in ascending

order of eigenenergy) and nF is the number of occupied bands.
In what follows, we focus on a minimal tight-binding

model with uniform hopping t supporting nontrivial phases.
In this model we have a four-site unit cell with gain and loss
terms g1, g2, g3, and g4, so that the NH Hamiltonian is

Hk =

⎛
⎜⎜⎝

ig1 t 0 te−ik

t ig2 t 0
0 t ig3 t

teik 0 t ig4

⎞
⎟⎟⎠. (16)

Without loss of generality we can assume that

g4 = −g1 − g2 − g3. (17)

This model satisfies chiral relation (1) with S = 1 ⊗ σz. From
Eq. (9) we find that the effective Hermitian Hamiltonian for
our model is

H eff (k, η) =

⎛
⎜⎜⎝

η + g1 −it 0 −ite−ik

it −η − g2 it 0
0 −it η + g3 −it

iteik 0 it −η − g4

⎞
⎟⎟⎠,

(18)

and similarly from Eq. (8) we can get H eff
obc(η). The phase

diagram of H eff (k, η) is given in Fig. 2. The gapped phases
are located mainly in the plane g3 = −g1 and we find two
nontrivial ones with hidden Chern numbers C = −1 along the
direction g1 = −g2 and two trivial ones with C = 0 along

FIG. 2. Phase diagram of the effective Hermitian model (18).
Inside the colored surfaces there are gapped phases with Chern
numbers C = −1 (orange) and C = 0 (blue). Outside the colored
surfaces there are gapless phases with indirect gap closings.
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FIG. 3. Phase diagram of the effective Hermitian model (18) for
(a) g3 = −g1 and (b) g3 = −g1 + 0.2t . Inside the colored surfaces
there are gapped phases with Chern numbers C = −1 (orange) and
C = 0 (blue). Outside the colored regions there are gapless phases
with indirect gap closings.

the direction g1 = g2. For better clarity Fig. 3 shows two-
dimensional phase diagrams in the planes g3 = −g1 and g3 =
−g1 + 0.2t (see also Ref. [72]).

In Fig. 4 we show the spectra of the Hamiltonian H eff
obc(η)

with open boundary conditions as a function of η for the
gapped phases shown in Fig. 3(a). In the nontrivial phase
[Fig. 4(a)] we can see that the gap around zero energy is
crossed by two states connecting the valence and conduc-
tion band. Each of them crosses the zero-energy level once
and values of η at which this happens correspond to two
solutions of Eq. (6), so that in the case of the original non-
Hermitian Hamiltonian Hobc the real part of the eigenen-
ergy is zero. In the trivial case [Fig. 4(b)] these states are
missing.

Figure 5 shows energy spectra for a topologically nontrivial
non-Hermitian system with open boundary conditions. We
find two end states with zero real part of the energy and the
imaginary parts of the energies stick out of the bulk spectrum.
As one can see from Fig. 5(c) the states with zero real part
of the energy are strongly localized at the left or right end
of the chain. The rest of the states are delocalized in the
bulk.

We have also computed the topological invariant for the
model Hamiltonian [Eq. (16)] using the approach discussed
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FIG. 4. Spectrum of the Hermitian Hamiltonian H eff
obc(η) as a

function of η for (a) g1 = 2t , g2 = −t (C = −1) and (b) g1 = −2t ,
g2 = −t (C = 0). In both cases g3 = −g1. The zero-energy level is
marked with a dashed line and the boundary states localized at the
opposite ends of the chain are shown in red and green.
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FIG. 5. (a), (b) Real and imaginary parts of the eigenenergy
spectrum of the non-Hermitian Hamiltonian Hobc (16) with open
boundary conditions. States are ordered by increasing real part of the
energy and n enumerates states. (c) Local density of states for each
eigenstate. Parameters are g1 = t , g2 = −2.2t , and g3 = −g1 + 0.2t ,
and the system length is L = 100 sites. Red/green dots or lines
correspond to the boundary states localized at the opposite ends of
the chain.

in Ref. [36]. We find that nontrivial invariants appear exactly
in the same gapped regions where our hidden Chern number is

nonzero. Therefore, we conclude that the hidden Chern num-
ber gives an alternative perspective on topological invariants
and bulk-boundary correspondence of NH chiral-symmetric
Hamiltonians.

In summary, we have shown that one-dimensional non-
Hermitian chiral-symmetric models support a hidden Chern
number as a topological invariant. The Chern number deter-
mines the number of end states with zero real part of the
energy and the end states are immune to the non-Hermitian
skin effect. Moreover, we have calculated the topological
phase diagram and end states for a minimal 4 × 4 gain and
loss model that supports a nontrivial topological phase. Our
approach gives another perspective on the topological in-
variants and bulk-boundary correspondence of non-Hermitian
systems and the idea can be generalized to various dimen-
sions and symmetries. Although there exist several proposals
for realizing topological invariants of Hermitian systems in
lower-dimensional non-Hermitian systems [75,76], the idea to
utilize the imaginary part of the energy as another dimension
has not been explored so far. We point out that also gapless
phases can support hidden Chern numbers, and, in particular,
the gapless phase of the non-Hermitian Hamiltonian (16)
carries a hidden Chern number C = −1 in the vicinity of
topologically nontrivial gapped phase, leading to localized
topological end states [72]. The end states can be utilized, for
example, in laser modes which have a topologically protected
frequency stability.

The work is supported by the Foundation for Polish Sci-
ence through the IRA Programme cofinanced by EU within
the SG OP Programme.
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