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The branched pattern typically observed through the scanning gate microscopy (SGM) of two-dimensional
electron gases in the presence of weak, smooth disorder has recently been found to be robust against a very large
shift in the Fermi energy of the electron gas. We propose a toy model, where the potential landscape reduces to
a single localized feature, which makes it possible to recast the understanding of branch formation through the
effect of caustics in an appropriate set of classical trajectories, and it is simple enough to allow for a quantitative
analysis of the energy and spatial dependence of the branches. We find the energy stability to be extremely
generic, as it rests only upon the assumptions of weak disorder, weak scattering, and the proportionality of the
SGM response to the density of classical electron trajectories. Therefore the robustness against changes of the
electron’s Fermi energy remains when adopting progressively realistic models of smooth disorder.
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I. INTRODUCTION

Over the last two decades, developments in the field of
scanning gate microscopy (SGM) have allowed for the de-
tailed investigation of nanostructured devices based on a two-
dimensional electron gas (2DEG) where different confining
geometries can be defined; among them, a quantum point
contact (QPC) [1–7], a quantum billiard [8,9], a ballistic ring
[10,11], an electron waveguide [12], and a tunable electron
cavity [13]. The change in electrical conductance of the nanos-
tructure under the effect of a charged atomic force microscope
raster scanning above the surface of the device results in a
mapping that provides a characterization of the nature of the
device well beyond that of a conventional electrical transport
measurement [14]. This space-dependent data needs to be
interpreted in order to extract useful information about the
2DEG and the nanostructrure.

Two limiting cases appear in an SGM setup. In the nonin-
vasive regime, the voltage applied to the tip is weak enough
as to result in a small perturbation of the transport problem.
In the invasive regime, the tip strength is sufficiently strong
as to create a divot at the level of the 2DEG under the tip.
In this last case, the presence of a depletion disk much larger
than the Fermi wavelength results in the backscattering of the
impinging electrons. Recent experiments using tunable reflec-
tors bridged the gap between these two limits by modulating
the tip strength and the electronic confinement [13].

In the noninvasive regime, the SGM response is given
by the unperturbed scattering wave functions describing the
nanostructure, and a relationship with the local density of
states can be established in the case of a QPC operating
very close to the condition of perfectly transmitting channels
[15–17]. In the invasive regime, the SGM map on a weakly-
disordered 2DEG surrounding a QPC is not uniform through
space, but is rather organized into thin, collimated structures,

typically referred to as “branches” [1–3,18]. Already the pi-
oneering investigations of branching [2,3] provided quantum
and classical simulations of the electron flow in the 2DEG out-
side the QPC indicating that a classical approach is sufficient
for the description of the branches. More complicated patterns
are observed when the nanostructure is an electron waveguide
[12] or a ballistic cavity [13].

The filamentary structure of the branches is a striking
feature of the above-cited invasive SGM setup, since the
electrons propagate along the 2DEG almost ballistically over
the disorder potential. The electrons only suffer small-angle
scattering because the disorder is rather smooth, with long-
range spatial correlations, and weak enough as to have an
amplitude significantly smaller than the Fermi energy. Inter-
estingly, this branching phenomenon is not limited to 2DEG
systems, and similar behavior has been observed in a variety
of other physical phenomena, ranging from the propagation
of ocean waves [19,20] and the focusing of tsunamis [21] to
microwave transport experiments [22], light in thin dielectric
films [23], and electron flow in Dirac solids [24].

Previous work in the case of disordered 2DEG systems has
identified the local bumps and dips of the disorder potential as
being responsible for forming caustics, or localized, singular
concentrations of classical trajectories [2,3] that result in the
observed branching effect. The example of an incoming plane
wave with parallel rays that are focused by the effect of a
potential dip has been used to visualize the existence of direc-
tions exhibiting an increased density of scattered rays [25–27],
as well as to quantify the statistics of branch formation in a
weak correlated random potential [28].

The observed branches exhibit a surprising stability with
respect to different parameters. In the case of ocean waves,
once the branches are formed, the wave front remains stable
as it propagates over long distances, despite the dispersion
generated by the potential fluctuations [29]. In the case of
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disordered 2DEG systems, the structure of the branches was
found to be stable at distances far away from the QPC when
the latter is shifted laterally by the application of unequal po-
tentials to its two gates [5]. Recently, changes in the electrons’
Fermi energy have been seen to leave the shape and location
of many of these branches largely intact, though often with a
change in their relative intensity [7].

In this work, we focus on explaining the recently observed
stability of the branching pattern with respect to a relatively
large shift in the Fermi energy that exceeds the amplitude
of the fluctuations of the disorder potential, as observed in
Ref. [7]. We introduce a toy model of disorder, describing
the scattering of classical electron trajectories from a single
localized feature of the disorder potential that accounts for
the branch formation and the stability of the branches with
respect to changes in the electron Fermi energy. In spite of
the considerable simplicity of the above model, the identified
mechanisms are still found at work when we consider more
elaborate descriptions of the smooth disorder present in a
2DEG. The advantage of the toy model is to allow for a
reformulation of the branching problem which is sufficient to
understand the phenomenon of energy stability at the quan-
titative level, while avoiding any complications not directly
related to this behavior.

This paper is organized as follows. In Sec. II, we present
a toy model designed to represent a single localized feature
in a disorder potential. Numerical and analytical results for
this model indicate that it is capable of leading to branch
formation which is stable with respect to a shift in energy. We
examine the role that energy plays in the formation of these
branches through its influence on the scattering of individual
classical trajectories and explain how the qualitative features
of this model lead to the energy stability of the branches.
In Sec. III, we argue why these features should be generic
for any situation in which the scattering is sufficiently weak.
In Sec. IV, we compare the results from the toy model with
those generated using more realistic descriptions of disorder,
to motivate that our simple model is sufficient to capture both
the formation and energy stability of experimentally realistic
branches. We conclude in Sec. V.

II. BRANCH FORMATION AND STABILITY
IN A TOY MODEL

The formation of branches and their robustness with re-
spect to changes of the electron energy, appearing in a smooth
disorder potential, can already be understood in a classical toy
model with a single localized feature in an otherwise clean
potential. The detailed shape of this feature is not important;
we simply require that (1) the feature consists of an isolated
local minimum or maximum whose amplitude is less than the
electron energy and (2) this local feature decays sufficiently
“quickly” over some characteristic length scale. In the context
of our model, we refer to the Fermi energy of the electrons as
simply the “energy,” to emphasize its classical nature.

The classical trajectory-counting description, already em-
ployed in some of the first papers on the subject [2,3], identi-
fies the SGM response with the density of classical trajectories
at the position of the tip when the latter is not present. Such
a description relies on two assumptions. Firstly, we treat the

scattering off of the tip in the semiclassical limit, since the size
of the divot is much larger than the Fermi wavelength of the
electrons, while the electrostatic potential landscape presents
small amplitude modulations and smooth spatial variations
such that the changes of the electron momentum over a
wavelength remain small when compared to the momentum
itself [30]. The semiclassical approach allows to show that,
in the leading order in h̄, the change in resistance by the
effect of an invasive tip is given by the fraction of classical
trajectories that hit the depletion divot and get back to the QPC
[31]. This leading-order (incoherent) contribution stemming
from the diagonal terms in the semiclassical expression of the
conductance dominates over the off-diagonal (coherent) one,
which in addition is suppressed by some amount of decoher-
ence that can never be avoided [32]. Secondly, we surmise
that among the trajectories hitting the tip almost head-on, the
subset that make it back to the initial electrode represents a
constant fraction of the total. That is, the probability of being
reflected back through the QPC is independent of the position
of the tip. Detailed numerical calculations [7] have recently
confirmed the approximate validity of the proportionality
between the local trajectory density in the absence of the
tip and the tip-induced conductance change in the case of a
smooth disordered potential. In order to be consistent with the
semiclassical approximation, the QPC is assimilated to a point
source and we simply assume that the angular distribution of
the emerging classical trajectories is smooth.

To properly address the physics of scattering within the
toy model, we treat the case of a local minimum and a local
maximum separately.

A. The case of a local maximum

Figure 1 displays the numerically calculated density of
classical electron trajectories in the case of electrons scattered
off of a radially symmetric Gaussian bump potential,

V (r) = V0 exp(−r2/2σ 2), (1)

with V0 the amplitude of the Gaussian bump, r the dis-
tance from the center of the bump, and σ the characteristic
width of the bump (details of the numerics can be found in
Appendix A). Due to the radial symmetry of the potential,
the figure is symmetric around the axis x = 0 and equivalent
structures appear on either side of the bump. For simplicity,
we study the case of a uniform angular distribution of electron
trajectories starting at the QPC, and we have found that our
results do not significantly depend on this choice. On either
side of the figure, the formation of a well-collimated branch
is clearly visible, while the rest of the background density of
trajectories becomes fainter. In this figure, the energy of the
electrons is tuned to be 8.23 V0, and the distance to the bump
is taken to be 15σ , a parameter regime which we will later
identify as a characteristic one for branch formation in this
model. A pattern similar to that of Fig. 1 is obtained from a
plot of the modulus squared of the wave function representing
a plane-wave impinging on a localized bump, calculated by a
multiple scattering expansion [33].

Figure 2 addresses the question of the branch stability with
respect to a change of the electron’s energy. The two panels
display the density of trajectories for an energy smaller (left)
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FIG. 1. Density of classical electron trajectories as a result of
scattering from a localized, repulsive Gaussian bump (indicated by
the red dot) with width σ and height V0, illustrating the formation
of well-collimated branches. The distance between the center of the
bump and the QPC is taken to be a = 15σ , with the QPC taken to be
at the origin. The energy is tuned to be E = 8.23V0. The numerical
simulation involves 500 000 trajectories distributed uniformly across
an angular range of π radians, for an angular trajectory density of
N ≈ 159 154 trajectories per radian. The density is computed by
counting the number of trajectories n which pass within a radius of
r = s/2 of a given lattice site on a grid of spacing s = 0.02σ . The
green dashed line indicates the horizontal cut considered in Fig. 3.

and larger (right) than that of Fig. 1, while keeping all other
parameters unchanged (only for x > 0, since the figures have
axial symmetry around x = 0). We see that the location of
the branch is only slightly modified as we change the energy
by a factor of two. Hence our toy model, in the case of a
repulsive feature, exhibits stability against a relatively large
shift in energy similarly to the experimental observation of

FIG. 2. Density of classical electron trajectories as a result of
scattering from the same localized, repulsive Gaussian bump as in
Fig. 1. The choice of parameters is the same as in Fig. 1, except
the electron energy, that now is 5 (left) and 10 (right) V0. The green
dashed lines indicate the horizontal cuts considered in Fig. 3.

FIG. 3. The density of trajectories across the horizontal cut
displayed in Figs. 1 and 2, which is located at a vertical position
of y = 84σ . The blue, orange, and green data points correspond
to energies of the scattered electrons equal to 5, 8.23, and 10 V0,
respectively.

Ref. [7]. We have found this stability to be independent of
the precise shape of the potential, and also that it does not
require radial symmetry. To obtain an intuitive understanding
of branch formation and its energy stability, we display in
Fig. 3 the spatial density of trajectories across a horizontal
cut downstream with respect to the scatterer (indicated by the
green dashed lines in Figs. 1 and 2) for different electron
energies. For the case of the lowest energy, there are two
closely-spaced divergent points marking the boundaries of the
branch, and these divergences disappear for larger energies
as we explain in the next sections. The trajectory densities of
Fig. 3 show that the lateral shift of the branch is small on the
scale of Figs. 1 and 2, which translates into the robustness of
the SGM scans under energy changes. However, the values
attained by the trajectory density present an important depen-
dence on the electron energy. This observation is consistent
with the variations of trajectory density seen in Figs. 1 and 2,
and also with the SGM scans of Ref. [7].

Notice that in Figs. 1 and 2 there is a significant residual
background flux of trajectories immediately outside of and far
away from the branch. As we discuss in the next sections, once
we go beyond the toy model, upon encountering another scat-
tering center, the residual flux could induce the formation of
another branch. In an experiment or a graphical representation
with an appropriately adjusted resolution or threshold, these
branches would be visible, while the residual background may
not be.

B. The case of a local minimum

In contrast with the previously discussed case of a repulsive
feature, Fig. 4 demonstrates the density of classical electron
trajectories after scattering from a weakly attractive localized
feature, given by a radially symmetric, Gaussian profile. In
this case, only one branch is observed, centered around the
axis x = 0, with two symmetric divergences marking the
boundary of the branch. The classical trajectories are first fo-
cused by the attractive potential, before propagating outwards
in these two symmetric divergences. The distance to the QPC
is again taken to be 15 times the width of the localized feature,
with the energy tuned to 8.23 times the amplitude of the
localized feature. The two panels of Fig. 5 display the density

155435-3



FRATUS, JALABERT, AND WEINMANN PHYSICAL REVIEW B 100, 155435 (2019)

FIG. 4. Density of classical electron trajectories as a result of
scattering from a localized, attractive Gaussian bump (indicated by
the red dot) with width σ and height V0. The distance between the
center of the bump and the QPC is taken to be a = 15σ , with the
QPC taken to be at the origin. The choice of plotting parameters
is the same as in Fig. 1, including the value of the electron energy
E = 8.23 V0.

of trajectories for an energy smaller (left) and larger (right)
than that of Fig. 4, while keeping all the other parameters
unchanged. Comparing the data of Figs. 4 and 5 we observe
that, in contrast with the case of a repulsive feature, there is
less stability in the width of the branch for this energy regime
when it is formed by an attractive feature, while the position of
the branch is trivially stable at x = 0. Additionally, the resid-
ual flux of trajectories is largely concentrated between the two
divergences, as opposed to outside the region delineated by
the divergences.

Figure 6 displays the density of electron trajectories along
the horizontal cuts of Figs. 4 and 5. Only the data for x > 0 is
shown, since the branches are symmetric.

FIG. 5. Density of classical electron trajectories as a result of
scattering from the same localized, attractive Gaussian bump as in
Fig. 4. The choice of parameters is the same as in Fig. 2.

FIG. 6. Density of trajectories across the horizontal cuts dis-
played in Figs. 4 and 5, which is located at a vertical position
of y = 84σ . The blue, orange, and green data points correspond
to energies of the scattered electrons equal to 5, 8.23, and 10 V0,
respectively.

C. The role of energy in the branch formation
for the case of a local maximum

In order to understand the role that energy plays in the
formation of branches, and to move towards a quantitative and
qualitative explanation of the stability with respect to energy,
we now consider in more concrete terms the scattering of
classical trajectories as a function of energy in our toy model.

Figure 7 displays a qualitative sketch of scattering for two
different energies EA and EB, with EA > EB. We measure
angles α, before and after the scattering event, with respect
to the y axis. In order to investigate the conditions for the
sharp focusing of the classical trajectories by such a bump and
how these conditions are affected by the electron’s energy, we
focus on the probability distribution Pf (α f ) of final outgoing

FIG. 7. A sketch of the scattering mechanism displaying classi-
cal trajectories at two energies EA > EB, emitted from a QPC and
incident upon a localized, repulsive potential “bump.” Trajectories in
the forward direction, as well as trajectories scattering at large angles,
suffer minimal deflection. Trajectories at intermediate angles suffer
some nontrivial scattering, depicted here in caricature by a red “X.”
If the scattering function is not monotonic with initial angle, which
will occur for sufficiently low energies, some trajectories will cross
with each other behind the bump. The deflection of the scattered
trajectories is exaggerated here for the sake of visual aide.
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angles α f , after scattering by the localized feature, that can be
formulated as

Pf (α f ) =
∫

dα′
i Pi(α

′
i ) δ(α f − ℵ(α′

i )). (2)

Pi is the distribution of initial angles αi and the scattering
function ℵ(αi ) computes the outgoing angle for a given initial
angle. We restrict ourselves to the case of a radially symmetric
bump, and thus limit our discussion to αi > 0. Using a stan-
dard identity for the Dirac delta function, we write

Pf (α f ) =
∑

j

Pi
(̃
α

( j)
i

)∣∣ dℵ
dαi

(̃
α

( j)
i

)∣∣ , (3)

with the sum taken over all initial angles α̃
( j)
i which satisfy

ℵ(̃α( j)
i ) = α f . Thus a divergence in the distribution of final

angles, which can be associated with the formation of a
branch, occurs when the scattering angle, as a function of
the initial incident angle, presents a zero derivative. Large
enhancements in the distribution of final angles, which can
also be associated with the formation of a branch, occur when
this derivative is small but nonzero. We will shortly see that
these two categories of branches, corresponding to singu-
lar and nonsingular behavior, lead to branching phenomena
which would ultimately appear similar in an SGM experiment.
Furthermore, a strict divergence of classical trajectories does
not occur in the case of a finite-width QPC, and no divergence
of the partial local density of states is expected in a fully
quantum treatment of branching [19,26–28], rendering the
distinction even less crucial.

With such a criterion in mind, we now examine the qual-
itative form of the scattering function for our toy model
shown in Fig. 8. The figure displays the shape of ℵ(αi) for
several choices of E/V0, the ratio of the electron energy to
the amplitude of the potential bump. This figure is displayed
for the case of a Gaussian bump, but its qualitative features
are robust against the precise shape of the model potential.
From top to bottom, the energies of the curves increase, with
the middle dashed curve representing the energy at which the
divergence condition is first satisfied. The scattering function
depends on the initial angle through the impact parameter

b = a sin (αi ) ≈ aαi , (4)

where the approximation is valid in the limit of small angle
scattering. Assuming our localized feature is defined in terms
of a characteristic width σ , the final scattering angle becomes
a function of the combination aαi/σ , as it is displayed in
Fig. 8.

Since the height of the potential bump is assumed to be
lower than the electron energy, trajectories which approach the
center of the bump head-on at zero initial angle suffer minimal
deflection, and scatter largely in the forward direction, corre-
sponding to zero final angle. In the simplifying case of a sym-
metric bump, there will be zero deflection, with α f = αi = 0.
At small angles away from head-on scattering, the trajectory
will begin to suffer some outward angular deflection, so that

dα f

dαi
> 1 ; α f > αi. (5)

FIG. 8. Scattering function for electrons impinging upon a lo-
calized, repulsive bump as the energy is increased from top to
bottom. As the critical condition is reached with lowering energy, the
scattering function develops a zero derivative at exactly one point,
and then develops a behavior which is not monotonic, with a zero
derivative at two points. The green dashed curve represents the case
in which the system is tuned precisely to the threshold energy. The
inset to the figure displays the derivative of the scattering function,
with the curves displayed in the opposite order, from top to bottom,
as the main figure. These particular curves were computed for the
example of a Gaussian bump at a distance a = 15σ from the QPC,
though we find that this overall qualitative behavior does not depend
on the detailed nature of the scattering potential. The corresponding
energies, from top to bottom, are 5, 6, 7, 8.23, 9, and 10 times the
height of the bump, with 8.23 being the threshold energy.

At larger angles, where the potential vanishes, the deflection
will again be essentially zero, so that the scattering function
will asymptotically approach α f = αi. In this case, the deriva-
tive of the scattering function is unity. Whether or not there
will be a zero derivative at some point between these two lim-
iting cases depends on whether the scattering function remains
monotonically increasing at intermediate angles. For a given
scattering bump, whether this condition holds will depend
on the energy of the incident electron. Figure 7 displays the
possible cases, which we will now address in turn.

Case A in Fig. 7 represents the situation in which the
electron energy is high enough that the scattering function
always remains monotonic. Trajectories with larger initial
angles scatter to larger final angles, and trajectories never
cross. This corresponds to the lower curves in Fig. 8. In case
B, the energy is low enough that the intermediate angles suffer
very large deflection. Trajectories at smaller initial angle cross
with trajectories at larger initial angle behind the bump. In this
case, the final scattering angle α f as a function of incident
angle αi must reach a local maximum, then decrease to a local
minimum, before asymptotically approaching α f = αi. Such
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FIG. 9. The same qualitative sketch as Fig. 7, now for the case of
an attractive potential “dip.”

a nonmonotonic behavior of the scattering function leads to
two points with zero derivative. This corresponds to the upper
curves in Fig. 8. The transition between these two scenarios
occurs at a critical threshold energy at which the derivative of
the scattering function is zero at precisely one initial angle.
This corresponds to the central, dashed scattering curve in
Fig. 8, and the choice of parameters in Fig. 1.

At each initial angle where the scattering function ex-
hibits a zero derivative, the outgoing probability distribu-
tion diverges on the corresponding outgoing angle. Such
a divergence that occurs due to the vanishing of dℵ/dαi

is the requirement necessary for the sharp accumulation of
trajectories, which in case B occurs at two points, and at
the crossover between cases A and B occurs at precisely one
point. However, we will shortly see that in case B, these two
points can be identified as forming only a single branch.

The condition for divergence formation we have derived
here for a pointlike QPC, that the derivative of the final scat-
tering angle must be zero with respect to the initial scattering
angle, can be shown, under the assumption of weak scattering,
to be equivalent to the more traditional condition [34] for the
formation of a caustic, ∣∣∣∣δq(t )

δpi

∣∣∣∣ = 0, (6)

where δq(t ) is the position of some scattered electron at
some fixed time t , and pi is the initial momentum of
the electron trajectory. We elaborate on this equivalency in
Appendix B.

D. The role of energy in the branch formation
for the case of a local minimum

Turning to the case of an attractive feature, Figs. 9 and
10 display the scattering mechanism and scattering function,
respectively. Again, there are two qualitatively distinct cases,
corresponding to low and high energies. In both cases, α f =
αi at zero initial scattering angle, as well as large initial scat-
tering angle. At intermediate angles, the scattering function is
again nontrivial. At high energies, the scattering function is

FIG. 10. Scattering function for electrons scattering from a lo-
calized, attractive bump as the energy is decreased from top to
bottom. As the critical condition is reached with lowering energy, the
scattering function develops a zero derivative at the origin, and then
develops a behavior which is not monotonic, with a zero derivative
that shifts to larger angle with lower energy. The green dashed curve
represents the case in which the system is tuned precisely to the
threshold energy. The inset shows the derivative of the scattering
function, with the curves displayed in the same order, from top to
bottom, as the main figure. These particular curves were computed
for the example of a Gaussian bump at a distance a = 15σ from
the QPC, though we find that this overall qualitative behavior does
not depend on the detailed nature of the scattering potential. The
corresponding energies, from top to bottom, are 25, 20, 17.75, 10,
7.5, and 5 times the height of the bump, with 17.75 being the
threshold energy.

monotonic - while it is always necessarily bounded above by
α f = αi, the scattering function is still strictly increasing. At
small angles the derivative of the scattering function is less
than unity, yet still positive, and approaches unity monotoni-
cally at large angle. This corresponds to case A in Fig. 9.

At lower energies, corresponding to case B, the scattering
function is no longer monotonic. Trajectories at small initial
angle are deflected more strongly as the angle is increased,
corresponding to a scattering function with negative deriva-
tive. At some nonzero angle, the scattering function reaches
a minimum, corresponding to maximum deflection in the
negative direction, and hence obtains a zero derivative. As can
be seen in the scattering function, this occurs for only one
angle, as opposed to two angles for the case of the repulsive
feature. This angle shifts towards zero as the energy is raised,
and the case of intermediate energy occurs when the derivative
of the scattering function is zero at precisely zero initial
scattering angle.

In this case, the presence of a zero derivative at only
one angle at low energies corresponds to the single branch
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centered around the axis x = 0, whose width varies consider-
ably with energy, yet whose position is trivially fixed.

E. Stability of the branching patterns with energy

While the qualitative nature of the scattering functions in
Figs. 8 and 10 appears to vary considerably over the range of
displayed energies, the structure of the branches in Figs. 2 and
5 looks remarkably stable. We now investigate the underlying
mechanism for this energy stability in our toy model. This
stability crucially depends on the qualitative shape of the
scattering function, and how it evolves with changing energy.

We begin with the case of a repulsive feature. At higher
energies, while there is no point at which the scattering
function is zero, we can see in Fig. 8 that there is a range
of angles over which the derivative of the scattering function
comes very close to zero, resulting in a peak of Pf in Eq. (3),
though not a strict divergence. In fact, the inset to Fig. 8
demonstrates that the point at which the derivative reaches a
minimum, and hence comes closest to zero, is effectively the
same as the initial angle at which the derivative first crosses
zero, α∗

i , as the energy is lowered.
As the energy of the trajectories is lowered below the

threshold energy, there are two points at which there is a zero
derivative, which move further apart from each other with
decreasing energy. However, we find that the point between
these two locations remains relatively fixed at α∗

i , so that the
central impact parameter between these two angles, and hence
the central location of branch formation, remains stable.

Below the critical energy, the shape of the scattering func-
tion, with a peak at smaller angles, and a valley at larger
angles, causes the scattered trajectories in the two divergences
to bend inwards slightly towards a central point, centered
around trajectories which possess an initial scattering angle
of α∗

i . An experimental probe like SGM, having a finite
spatial resolution, is not able to distinguish the case of branch
formation which is precisely at the threshold energy, from the
case of branch formation due to two slightly inward bending
divergences that converge towards the same central angle.
Hence, a branch, originating from the same central impact
parameter, and hence the same initial point in space, will still
be visible.

For this reason, below the threshold energy, there is in
fact a somewhat stronger divergence of trajectories in phys-
ical space, in the near-field region, as the trajectories cor-
responding to the two divergent points will cross at some
finite distance from the scattering center. However, in a more
realistic model of disorder, this distinction is not crucial,
as subsequent scattering off of the disorder potential will
render any questions of propagation over very long distances
irrelevant.

In fact, in Fig. 8, we observe that for a range of energies
around the threshold energy, the scattering function becomes
very flat over a broad range of initial scattering angles, cen-
tered around the critical angle where there is a zero derivative.
Thus a large number of trajectories scatter into nearly the
same outgoing angle, and thus these trajectories propagate in
parallel. However, they do so with different initial scattering
angles, and hence a nonzero range of impact parameters.
The outgoing branch thus has a finite width, which translates

into the visibility and robustness of branches as seen by
measurements with finite resolution.

However, as the energy is varied, an examination of Fig. 8
demonstrates that while the initial angle α∗

i at the center
of the branch remains relatively stable, the final outgoing
angle corresponding to this initial angle changes moderately
(with stronger deflection for lower energies). Thus, while
the branch may initially form in the same location in space,
the angular orientation of the outgoing branch may change
slightly with energy, resulting in a slightly displaced branch.
This phenomenon is indeed observed in our toy model of
branch formation in Fig. 2.

To elucidate the magnitude of the previously discussed
phenomenon, we consider the case of a Gaussian bump with
amplitude 1 meV and width 50 nm, placed 750 nm from the
QPC, chosen to resemble realistic experimental values. For
energies 6, 7, and 8 meV, just below the threshold energy of
8.23 meV, the central angle halfway between the two points
with zero derivative is given as 0.1152, 0.1137, and 0.1123
radian, with corresponding outgoing angles of 0.1935, 0.183,
and 0.1746 radian. Thus, over a change of 2 meV, the outgoing
angle of the branch deviates by 0.0189 radian, equal to an
approximately ten percent shift in the outgoing angle, in terms
of the initial scattering angle, and would lead to the branch
becoming displaced by 18.9 nm over a propagation length of
1 micrometer. This sort of shift in physical space is consistent
with those seen in experiments [7].

In contrast, we see that when considering the case of an
attractive feature, there is only one minimum of the scattering
function, and its location moves substantially as we vary the
energy of the scattered electrons. Again, this behavior has
been found to be generic, and does not rely on the detailed
choice of potential. This leads to one branch which has a
highly variable width, but is trivially fixed in space in the
forward direction. In the following section, we will understand
the reason for this generic qualitative difference.

III. GENERIC NATURE OF THE ENERGY STABILITY
FOR A LOCALIZED FEATURE

For both, the repulsive and attractive localized features,
we have found a generic behavior, which does not depend
on the detailed shape of the potential, so long as it meets
the basic requirements outlined at the beginning of Sec. II.
Additionally, while we have studied the simplified case of an
isolated Gaussian bump, we note that any localized feature of
the potential where the scattering function develops a zero
derivative will lead to the formation of branches that are
quite robust with respect to the electron energy. A saddle
point, or any other sloping feature of the potential presenting a
similar scattering behavior will result in similar branching. We
emphasize that the necessary accumulation of classical trajec-
tories occurs when the energy is higher, possibly significantly,
than the amplitude of the scattering potential. The classical
trajectories are not being “guided” by any sort of valley in the
potential. Rather, the trajectories are being weakly scattered
by the features of the potential, in such a way that a large
number of trajectories are being deflected with almost the
same outgoing angle, leading to an increase in the density of
trajectories in that direction.
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As our explanation for the stability of the branching struc-
ture relies on the qualitative shape of the scattering function
when the energy is varied, we now discuss the scattering
in the generic case, not restricted to the particular case of
our toy model with a Gaussian bump. As a result of energy
and angular momentum conservation, it is a straight-forward
exercise (see Appendix C) to find that the final scattering angle
for an electron scattering off of a localized, radially symmetric
potential V is given according to

α f = αi + π − I (b, E ,V ), (7)

with

I (b, E ,V ) ≡ 2
∫ ∞

1

ds/s2√
λ2 − 1/s2 − λ2 V (λbs)/E

, (8)

where E is the energy of the classical trajectory, b is the impact
parameter from Eq. (4), and λ satisfies

1 − 1/λ2 − V (λb)/E = 0. (9)

While this is indeed the expression we have used to gen-
erate the plots of ℵ(αi ) in Fig. 8, it does not lend itself to
a simple interpretation in the context of the energy stability.
To gain more insight into this matter, we will simplify our
problem by making the approximation that the electron energy
is much higher than the typical potential energy, and suffers
only weak deflection. We have checked that this approxi-
mation is extremely good for the parameter regimes we are
interested in.

We leave the details of the derivation to Appendix C,
where we find the expression for the scattering function in
this limiting case

α f ≈ αi − 1

E
fa,V (αi ). (10)

We have defined

fa,V (αi ) ≡ aαi

σ

∫ ∞

1

dξ√
ξ 2 − 1

∂V

∂ (r/σ )

∣∣∣∣
r = aαiξ

, (11)

which depends on the distance to the scattering center and the
shape and width of the potential, but not the energy of the
incident electrons. We have assumed that V is defined in terms
of a characteristic width, and only depends on the ratio r/σ .
Our condition for a zero derivative of the scattering function
then becomes

f ′
a,V (αi ) − E = 0. (12)

In addition to being derivable through an impulse approx-
imation, Eq. (10) can also be obtained by simply performing
a Taylor series expansion of the integral expression in Eq. (8)
in the parameter V/E .

Beginning with the case of a repulsive feature, Fig. 11
displays f ′

a,V − E for several choices of energy, while the
inset displays the function fa,V . The case of a Gaussian bump
with width σ and distance a from the QPC has been chosen
for illustration purposes. The upper-most curve in Fig. 11
represents the original function f ′

a,V . The key observation
regarding the shape of f ′

a,V in Fig. 11 is that it reaches a
local maximum, with a value independent of the energy. This
general feature must always be present for any reasonable
choice of potential, as we can easily argue on the basis of

FIG. 11. The function f ′
a,V − E in the impulse approximation,

generated for the case of a repulsive Gaussian bump with width σ ,
placed at a distance a = 15σ from the QPC. The energies E , from
top to bottom, are 5, 6, 7, 8.23, 9, and 10 V0. The inset to the figure
displays the function fa,V .

Eq. (11). For small angles, the prefactor of αi in the definition
of fa,V will guarantee .

fa,V (0) = 0. (13)

As αi is increased, and the potential decreases away from its
maximum, we have

V ′ < 0 ⇒ fa,V < 0. (14)

The value of fa,V will reach a minimum where αi is tuned
to some intermediate value such that the integral over V ′ is
largest in magnitude, before approaching zero again at large
angles. This is indeed the qualitative behavior seen in the inset
to Fig. 11. The derivative of this function must reach some
maximum positive value as the magnitude of the scattering
approaches zero again, which is in fact observed in Fig. 11.

As a result, adjusting the energy modifies the condition
for a zero derivative, f ′ − E = 0, in a way that simply cor-
responds to translating the function f ′ vertically. For large
E , this function is shifted entirely below the axis, while for
low enough E , it intersects the origin at two points. Since any
analytic function will be symmetric around a local maximum
for small enough deviations, this explains the symmetry of
the scattering function geometry observed in Sec. II E, which
was crucial for explaining the stability of α∗

i with respect
to a change in the electron energy. In fact, one could take
the Taylor expansion of the function f ′ as fundamentally
defining the energy range over which the branches formed
by a repulsive feature should be stable, as the magnitude
of the third order term in the expansion will measure the
extent to which the function is symmetric around its local
maximum.

In contrast to this, Fig. 12 and its inset display the functions
f ′
a,V − E and fa,V , respectively, for the case of an attractive

feature of the same width and shape. In this case, the functions
fa,V and f ′

a,V merely acquire an overall minus sign. As a result,
the qualitative behavior of f ′

a,V is such that it is positive at
zero angle, obtains some minimum negative value at some
nonzero scattering angle, and then eventually asymptotes to
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FIG. 12. The function f ′
a,V − E in the impulse approximation,

generated for the case of an attractive Gaussian bump with width
σ , placed at a distance a = 15σ from the QPC. The energies E , from
top to bottom, are 5, 7.5, 10, 17.75, 20, and 25 V0. The inset to the
figure displays the function fa,V .

zero from below. In order for the function f ′
a,V − E to cross

the horizontal axis at two points, we would require the total
energy of the electrons to be negative, an unphysical result,
as the electrons are not bound by the disorder potential. As
we shift the function f ′

a,V − E downwards with some positive
energy E > 0, there is only ever one point which crosses the
horizontal axis, the location of which is not fixed in place by
any symmetry principle. As we eventually lower the energy
far enough that the entire curve is below the horizontal axis,
we are left with only the trivial case of an enhancement of
trajectories at zero initial angle. Thus we see that there is
only one branch formed in the case of an attractive feature,
and its width varies considerably with respect to energy. At
sufficiently high energies, there is no divergence in the density
of trajectories, only a nonsingular enhancement.

We thus see that the above-discussed geometric features of
the scattering function are completely generic, so long as the
general requirements on the potential outlined in Sec. II are
satisfied, and the scattering of electrons is sufficiently weak.

While we have described the mechanism of branch forma-
tion due to a local feature in the context of electrons with
varying energies and fixed distance to the QPC, there is also a
complementary picture, in which the energy is kept fixed, and
the distance to the QPC is varied. We can repeat our argument
with cases A and B representing bumps which are at different
distances, but with the same incident electron energy. We can
estimate (see Appendix C) that for weak deflection, the strong
accumulation criterion will be satisfied so long as

a|V0|/σE � 1, (15)

where a is again the distance from the QPC to the bump,
σ is the characteristic width of the bump, E is the energy
of the electrons, and V0 is the height of the potential. Thus,
the width of the bump, in combination with the amplitude
of the localized potential (with respect to the energy), sets
the critical distance required for the formation of branching
from a single potential feature to ac ∝ σE/|V0|. Note that this
condition holds for both repulsive and attractive bumps. For

the typical distance of the first caustic formation in classical
flow through a weak random potential, a slightly different
scaling, at/ξ ∝ (E/v0)2/3, where ξ is the correlation length
and v0 the amplitude of the random potential, has been derived
from diffusive motion in the transverse direction [28] and
found in microwave transport experiments [35].

IV. BRANCH FORMATION AND STABILITY
IN DISORDER POTENTIALS

In the previous sections we saw that a generic local-
ized feature leads to the formation of branches in the SGM
response which are robust with respect to changes of the
electron energy. As discussed at the end of Sec. II A, when
going beyond the case of our toy model, by considering other
scattering centers, new branches could be generated from the
residual flux of the first-appearing branch. In order to study
how the mechanisms behind branch formation and energy
stability carry over to the experimentally investigated 2DEG,
we present two generalizations towards a realistic description
of a smooth disorder potential. Firstly, we consider a disorder
potential modeled by a collection of several randomly placed
repulsive and attractive Gaussian features, all with the same
amplitude and width as before. Secondly, we provide results
for the more realistic modeling of the disorder potential
described in Appendix A.

Figure 13 displays the trajectory density resulting from
a pointlike QPC emitting a uniform angular distribution of
classical trajectories, for the model of several local features,
with the energy of the electrons increasing from top to bottom.
This simple model allows us to make the transition from
the one-feature phenomena to a genuine disorder potential.
The closest features verifying the criterion (15) give rise to
first-generation branches. These branches might be affected
by other features downstream and, as explained before, new
branches might appear from the residual flux. The combined
effects of repulsive and attractive features result in a spa-
tial pattern which is similar to that of more refined models
(i.e., Fig. 14) or the experimentally obtained SGM scans.
At this point, it is important to remark that the quantitative
description of the branching phenomena is limited by the
lack of a satisfactory definition of what it means to be in a
branch (as opposed to not being in one), as well as by the
obvious fact that not all the contributing trajectories belong
to branches [25]. For instance, we remark that the threshold
used to represent the trajectory density considerably affects
the characteristics of the corresponding mapping. This is why
the quantitative analysis aimed at in this work, concerning the
branch formation and the associated energy stability, becomes
particularly relevant.

The robustness associated with the individual repulsive
and attractive features results in an important energy stability,
since the branching pattern remain largely fixed over the large
range of chosen energies. An even closer resemblance with the
experimentally obtained branching pattern can be achieved
when modeling the disorder potential in a more realistic
fashion (Fig. 14). This last model is intended to represent
the disorder created by a collection of impurities distributed
randomly in the dopant layer at a distance of 70 nm from the
2DEG (the details of this disorder potential and its generation
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FIG. 13. Density of classical electron trajectories as a result of
scattering from 70 randomly placed, localized Gaussian bumps, half
of them repulsive (blue dots), and half of them attractive (orange
dots). The numerical simulation involves 100 000 trajectories dis-
tributed uniformly over an angular range of π radians, thus N ≈
31 831 trajectories per radian. From top to bottom, the energies are
5, 8, and 10 V0. The choice of plotting parameters is the same as in
Fig. 1.

can be found in Appendix A). The contours in the background
of the plots highlight the features of the disorder potential. We
observe the same qualitative features of branching as in our
previous simpler model, including the stability of many of the
branches with respect to energy. Notice, however, that many
of the branches have variable width under energy changes,
becoming more focused in the forward direction as the energy
is raised, a feature consistent with the behavior of branches
formed by scattering from a localized attractive feature, while

FIG. 14. Density of classical electron trajectories as a result of
scattering from a smooth disorder potential, the details of which can
be found in Appendix A. The black curves indicate contour lines of
the potential. The choice of parameters is the same as in Fig. 13.
The maximum amplitude of the disorder potential is approximately
1 meV. The characteristic width σ in this case is roughly set by the
distance to the doping layer in our simulation of the realistic disorder,
which in this case is taken to be 70 nm.

other branches remained almost unchanged in width, consis-
tent with the behavior of scattering from a repulsive potential.
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This emphasizes the need to consider both cases in order to
understand the phenomena of branch formation and energy
stability.

It is important to note that it is not always possible to
identify the formation of a branch in Fig. 14 with a specific,
isolated minimum or maximum of the potential. Indeed, a
realistic model of disorder will necessarily involve features
significantly more complicated than this. As explained in
Sec. II, however, the key feature of our toy model which
allows for branch formation regards the nature in which the
geometry of the edge of the potential varies with respect to
other relevant parameters of the model, a mechanism which is
not specific to isolated peaks.

The criterion (15) put forward for individual features re-
mains useful in order to estimate the distance for the ap-
pearance of the first branches in the case of more realistic
models of the disorder potential. For typical experiments, the
distance to the doping layer determines the scale of variation
of the smooth potential [5] (and thus a minimum “bump
width”), and the energy of the scattered electrons is an order of
magnitude larger than the amplitude of the fluctuations of the
disorder potential. These estimations, when combined with
the condition (15), predict that the scale over which branches
first appear should be about an order of magnitude larger
than the distance to the doping layer, which is consistent both
with experiment [2,3,5,7,25], and our numerical simulations
of smooth disorder.

As the energy of the electrons is lowered, the threshold
distance for branch formation will also be reduced. As local
features closer to the QPC begin to form new branched
structures, some of the flux of electron trajectories will be
focused into these branches, before reaching bumps in the
potential which are further from the QPC. Thus, the relative
intensity of some branches may change slightly with energy,
while the overall branching structure remains static in space.
This is again observed in experiment [7], as well as our
own numerical simulations, as displayed in Figs. 13 and 14.
Each scattering center which is sufficiently far from the QPC
to meet the branching criteria outlined previously, yet close
enough to receive a sufficiently large portion of the flux from
the QPC, will result in a narrowly focused branch of classical
trajectories.

The pertinence of the latter model of smooth disorder can
also be appreciated since, as shown in Appendix D, it yields
results which are consistent with experiments [5] and previous
theoretical work [5,36] indicating that the branching pattern
at large distances is stable against a lateral shift of the QPC in
physical space.

V. CONCLUDING REMARKS

In this work, we have provided an explanation for the
robust stability of branches in the scanning gate response of
two-dimensional electron gases with smooth disorder, with
respect to a change in the Fermi energy observed in Ref. [7].
We have done so by first invoking a toy model for the
formation and the energy stability of these branches, which we
have argued is sufficient to capture all of the observed features
of branching in more refined models and in the experiments.
We have found that the stability of these branches is extremely

generic, and does not rely on the detailed shape of the disorder
potential, but only upon the assumptions of weak scattering,
weak electron interactions, and the hypothesis that the SGM
response can be interpreted as being proportional to the local
density of classical trajectories.

The quantitative criteria for branch formation and energy
stability, found for a toy model of a single localized feature,
provide valuable insight for the case of more elaborated
descriptions of the smooth disorder present in the 2DEG. Our
findings could have applications in probing the nature of the
disorder potential in setups of two-dimensional electron gases
other than that of GaAs heterostructures, for example, those
created in samples of bilayer graphene [37,38]. Moreover,
even if we have studied the specific case of disordered electron
gases, our methods are quite general, and should be equally
applicable to the wide range of other physical systems men-
tioned in the introductory remarks. It is our hope that our work
may aid towards a more detailed understanding of the precise
microscopic processes which give rise to branched flow and
its prominent robustness.

ACKNOWLEDGMENTS

We thank Beat Braem, Klaus Ensslin, Carolin Gold,
Thomas Ihn, Steven Tomsovic, and Guillaume Weick for
helpful discussions. This work was funded by the French
National Research Agency (ANR) through the Programme
d’Investissement d’Avenir under contract ANR-11-LABX-
0058_NIE within the Investissement d’Avenir program ANR-
10-IDEX-0002-02, and through the Grant ANR-14CE36-
0007-01 (project SGM-Bal).

APPENDIX A: GENERATION OF SMOOTH DISORDER
AND NUMERICAL SIMULATION OF

TRAJECTORY DENSITY

We describe in this Appendix the generation of the smooth
disorder potential which appears in Sec. IV, following the
lines of Ref. [39], as well as the numerical simulation used
to compute the classical trajectories in both this disorder
potential, and also the toy model presented in Sec. II.

We assume that the disorder is caused by randomly dis-
tributed singly ionized dopants in the doping plane of the
semiconductor heterostructure used to generate the 2DEG
[39,40]. We will assume the 2DEG is a square with side length
L, and a total number of dopants M, for an average dopant
density of

nd = M/L2. (A1)

Under such conditions, the screened potential in the plane
of the electron gas can be shown [39] to take the form

V (r) = −2
(	q)2

π
E∗

Ryda∗
B

∑
q j>0

e−q j s

q j + qTF
Rj cos(q j · r + φ j ).

(A2)

Here, E∗
Ryd is the effective Rydberg energy, a∗

B the effective
Bohr radius, and the distance between the electron gas and
the doping layer is given by s. The vectors q j live on a
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discrete lattice in Fourier space with lattice spacing 	q =
2π/L, and qTF = 2/a∗

B. The terms Rj and φ j form a set of
random amplitudes and phases that define a complex variable
C̃(q j ) ≡ Rjeiφ j associated to each Fourier lattice vector q j .
This complex variable is equal to the Fourier transform of C2,
which is the projection of the fluctuating part of the charge
distribution into the two-dimensional plane of the doping
layer,

C3(ρ) ≡
[

M∑
i=1

δ(r − ri ) − nd

]
δ(z − s) ≡ C2(r)δ(z − s),

(A3)
where r is a point in a two-dimensional plane parallel to the
electron gas and the doping layer, z is the coordinate direction
perpendicular to this plane, with z = 0 at the location of the
electron gas, ρ ≡ (r, z) is a point in the three-dimensional
heterostructure, and the vectors ri are the locations of the
randomly distributed dopants.

Due to the exponential term in the summation in Eq. (A2),
large Fourier modes do not contribute substantially, which
allows for a significant truncation of the sum. Notice that this
effectively suppresses fluctuations of the potential on length
scales shorter than the spacing s.

Due to the large number of dopants, which are typically
present in a realistic heterostructure, it would not be compu-
tationally tractable to randomly select a collection of dopant
positions and compute all of their contributions to C̃. Thus, in-
stead of selecting a collection of random dopants, we directly
study the statistical properties of C̃. From the definition of C̃,
along with the fact that the original dopants are uniformly
distributed and there is a macroscopically large number of
them, it is a straight-forward exercise [39] to invoke the central
limit theorem and find that the real and imaginary parts of C̃
are both normally distributed, with mean zero and variance

σ 2 = M/2. (A4)

In our computation of the disorder potential, we therefore
draw a random distribution of real and imaginary terms
(which we use to compute the phase angles and amplitudes),
for sufficiently small lattice momentum.

Figure 15 shows a plot of the disorder potential which
results from these calculations. It is generated as a result of
choosing M = 150 000, L = 10 μm, and s = 70 nm, along
with E∗

Ryd = 5.76 meV and a∗
B = 10 nm, all chosen to match

experimentally realistic values. The resulting potential has a
maximum amplitude of approximately 1.53 meV, an RMS
amplitude of approximately 0.37 meV, and a mean of zero. In
our trajectory simulations, we use a square patch within this
disorder, with dimensions 5 micrometers by 5 micrometers.

For the simulation of classical trajectories, we use a stan-
dard fourth-order Runge-Kutta iterator. For the toy model
presented in Sec. II, we simply evaluate the potential at each
Runge-Kutta iteration. However, due to the large number of
cosine terms which must be computed for each location in
the disorder sample, it would be computationally infeasible to
evaluate the value of the disorder potential at every point along
every trajectory that we simulate. Instead, we perform only
one computation of the disorder potential, along with its first,
second, and third order mixed derivatives, on a lattice with a

FIG. 15. Intensity of the smooth disorder potential used in the
simulation of our disordered 2DEG according to the color scale
indicated at the right (in meV).

spacing of one nanometer. Since the higher order derivatives
of the disorder potential contain the same sine and cosine
terms as the original sum and its first derivative, we can obtain
these higher order derivatives at effectively no extra com-
putational cost. These values are then saved and reused for
each trajectory simulation. During the simulation, the value
of the disorder at any point along a trajectory is computed by
finding the closest lattice point, and performing a Taylor series
approximation. Since the derivatives of the disorder potential
have already been computed at each lattice point, this amounts
to a simple algebraic sum, as opposed to a full Fourier series.
Our benchmarking indicates that this technique allows for
the trajectory simulations to be numerically tractable, with
an error which is essentially negligible compared with the
full computation of the potential for each point along the
trajectory.

For both models of disorder, the density of trajectories is
computed by counting the number of trajectories which pass
within a radius of r = s/2 of a given lattice site on a grid
of spacing s. This number is associated with the density of
trajectories at that lattice point.

APPENDIX B: EQUIVALENCE BETWEEN THE BRANCH
FORMATION CRITERION OF SEC. II C AND THE
CONDITION FOR FORMATION OF A CAUSTIC

Here we elaborate on the claim of Sec. II C that the
mathematical criterion we have found for a divergence in the
density of classical trajectories is approximately equivalent to
the condition for caustic formation.

The condition for the formation of a caustic is given by
Eq. (6) of the main text, where q(t ) is the position of some
scattered electron at fixed time t , and pi is its initial momen-
tum. Expressing the electron trajectories in polar coordinates
(r, t ), which are themselves functions of the initial angle αi,
the initial momentum p = √

2mE , and the time t , we write

qx(t ) = r(t ) sin (α(t )) ; qy(t ) = r(t ) cos (α(t )). (B1)
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Equation 6 becomes, after some straight-forward algebra,

∂α

∂ p

∂r

∂αi
− ∂α

∂αi

∂r

∂ p
= 0. (B2)

At sufficiently large times at which we can associate α(t ) with
α f , this becomes

∂α f

∂ p

∂r

∂αi
− ∂α f

∂αi

∂r

∂ p
= 0. (B3)

For weak scattering, the radius at a fixed large time is
only weakly dependent on initial scattering angle, and so
satisfaction of the above equation is roughly tantamount to

∂α f

∂αi
= 0, (B4)

as claimed in the main text.

APPENDIX C: COMPUTATION OF THE SCATTERING
FUNCTION AND THE CRITICAL ENERGY AND

DISTANCE RELATIONSHIP

Here we derive the scattering function and its form in
the impulse approximation, and also briefly elaborate on the
relationship we have displayed in the main text regarding the
critical energy and distance relationship exhibited in Eq. (15).

As a result of energy and angular momentum conservation
in our system, we can write

E = 1

2
mṙ2 + Veff(r) ;

dθ

dt
= l/mr2, (C1)

where r is the distance from the center of the localized
scattering feature, and θ is the polar angle defined with respect
to the axis between the QPC and the scattering center. The
electron mass is given by m, and l is the angular momentum.
The effective potential is given

Veff(r) = 1

2

l2

mr2
+ V (r). (C2)

Using the last two equations to eliminate time from our
problem, we find

dθ = ± l√
2m

dr

r2
√

E − Veff(r)
. (C3)

Integrating this equation from infinity to the radius of closest
approach r∗, and then out to infinity again, we find Eqs. (7)
through (9) of the main text in Sec. III. Equation (9) comes as
a result of the requirement that the radius of closest approach
is a turning point of the effective one-dimensional potential.

In order to obtain the approximate form of this expression
in the limit of weak scattering, we can take two equivalent
approaches. First, it is possible to simply Taylor expand the
square root in Eq. (8) in the limit of small V/E . Along
with this, we assume an expansion of the parameter λ in
powers of V/E , and take λ = 1 to lowest order. Using these
approximations and performing an integration by parts on the
integral, we eventually arrive at the approximate form (11)
given in the main text.

Alternatively, it is possible to obtain this approximate form
from first principles, using an impulse approximation, which

we briefly outline here. For simplicity, we redefine our coordi-
nate axes slightly, so that the momentum along the direction of
propagation is taken to be py. The force acting on the particle
in the x direction, transverse to the propagation, is Fx, and the
momentum px gained by the particle after scattering from the
potential is given by

px =
∫ ∞

−∞
dtFx (t ) = −

∫ ∞

−∞
dt

∂V

∂x

∣∣∣∣
x=b,y=t py/m

, (C4)

where V is the potential. Using x = b and y = t py/m, and
assuming that the potential is radial, V (x, y) ≡ V (r), we find

px =
∫ ∞

−∞
dt

x

r

∂V

∂r

= −mb

py

∫ ∞

−∞
dy

1√
b2 + y2

∂V

∂r

∣∣∣∣
r=

√
b2+y2

. (C5)

With some additional rearrangement, and the approximation

b = a sin αi ≈ aαi, (C6)

this result can be stated as

px = −2m

py

∫ ∞

aαi

dr√
(r/aαi )2 − 1

∂V

∂r
. (C7)

With this result for the change in transverse momentum,
we can find the net deflection as

px/py = tan δα ≈ δα, (C8)

where we have assumed that the deflection is small. Thus, in
this approximation,

α f = αi + δα ≈ αi − 2m

σ p2
y

∫ ∞

aαi

dr√
(r/aαi )2 − 1

∂V

∂ (r/σ )
(C9)

or

α f ≈ αi − aαi

σE

∫ ∞

1

ds√
s2 − 1

V ′(aαis). (C10)

In Fig. 16, which compares the full scattering expression to
the approximate one, we see that this is indeed a very accurate
approximation for the parameter regime we are interested in.

This approximate integral can now be solved exactly for
some special choices of the model potential. In particular, we
will focus on two example cases, a Lorentzian potential hill

V (r) = V0
σ 2

r2 + σ 2
(C11)

and a Gaussian hill

V (r) = V0 exp(−r2/2σ 2). (C12)

For the Lorentzian, we find

αL
f ≈ αi + π

2

V0

E

aαiσ
2

[(aαi )2 + σ 2]3/2
, (C13)

while for the Gaussian, we find

αG
f ≈ αi +

√
π

2

V0

E

aαi

σ
exp[−(aαi )

2/2σ 2]. (C14)
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FIG. 16. A comparison of the exact and approximate scattering
functions, for the case of a repulsive Gaussian bump of width σ ,
placed a distance a = 15σ from the QPC. The solid lines represent
the exact scattering function, while the dashed lines represent the
approximate scattering function. The energies, from top to bottom,
are 5, 7.5, and 10 V0.

The condition for a zero derivative then becomes, for the case
of the Lorentzian,

1 + π

2

V0

E

aσ 4

[(aαi )2 + σ 2]5/2

(
1 − 2

a2

σ 2
α2

i

)
= 0, (C15)

and for the case of the Gaussian,

1 +
√

π

2

V0

E

a

σ
exp[−(aαi )

2/2σ 2]

(
1 − a2

σ 2
α2

i

)
= 0. (C16)

In both cases, the prefactor on the second term in the expres-
sion must be of order one in order for this condition to be
satisfied. Examination of these terms reveals that this will be
the case so long as Eq. (15) is fulfilled.

APPENDIX D: STABILITY OF THE BRANCHING
PATTERN WITH RESPECT TO A PHYSICAL

SHIFT OF THE QPC

We address in this Appendix a feature of branch formation
in realistic models of disorder, not treated in the main text,
which is nonetheless consistent with our toy model. Experi-
mental and numerical studies of electron flow in disordered
potentials resulted in branching patterns at large distances
that are stable against a lateral shift of the QPC in physical
space [5]. Previous authors have identified the finite width
of the QPC as being necessary for explaining this observed
behavior, in particular, requiring a width which is roughly
the same order of magnitude as the size of the shift [5,36].
This phenomenon, thoroughly investigated by these authors,

FIG. 17. Density of classical electron trajectories as a result of
scattering from a localized, repulsive Gaussian bump (red dot). The
distance between the center of the bump and the QPC is taken to
be a = 15σ , with the center of the QPC taken to be at the origin.
The QPC is modeled as having a finite width of 0.02σ (left) and
σ (right). The numerical simulation involves 1 000 000 trajectories
distributed nonuniformly over a range of π radians (which results in
an average N ≈ 318 310 trajectories per radian), all with an energy
of 7.5 V0; the details of the probability distribution of electron initial
conditions that we use can be found in the main text of the Appendix.
The choice of plotting parameters is the same as in Fig. 4.

constitutes a good test case for our proposed model of branch
formation.

The stability with respect to the lateral displacement of the
QPC observed in Ref. [5] could be considered, in first sight,
surprising since the chaotic nature of the underlying classical
electron dynamics goes together with an extreme sensitivity to
the initial conditions. The coherent overlap between two wave
packets representing the evolution associated with different
Hamiltonian was found to become sizable at some distance
from the QPC and remain significant even very far away [36].
And the same kind of argument was proposed to be applicable
in the classical case.

To study the more physically realistic case of a QPC
with a finite opening width, we use an approach previously
outlined by Liu and Heller [36]. For a QPC with harmonic
confinement, the Hamiltonian is given

H0 = p2

2m
+ 1

2
m[ω(y)]2x2, (D1)

where ω(y) is a slowly varying function of y, which decreases
as the QPC opens. For electrons with a given energy, the
Wigner quasiprobability distribution associated with the scat-
tering eigenstates yields

P(x, px ) = 1

πσpx σx
exp

[−(
p2

x/σ
2
px

) − (
x2/σ 2

x

)]
, (D2)

where σpx and σx are related by

σpx = h̄/σx, (D3)
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FIG. 18. Density of trajectories across the horizontal cut dis-
played in Fig. 17, located at a vertical position of y = 68σ . Each
panel displays the density after having shifted the QPCs in Fig. 17
either 0.5σ to the left (blue dots) or to the right (green dots), as well
as the case of no shift at all (orange dots). The top panel displays the
results for the QPC with a width of 0.02σ , while the bottom panel
displays the results for the QPC with a width of σ . The energy of the
electrons in all cases is 7.5 V0.

and can be determined from the bare parameters of the Hamil-
tonian, if desired.

Here, we will choose to set σx to values of 0.02 and 1
times the width of the Gaussian bump. Following Ref. [36],
we perform our numerical simulation by randomly selecting
initial x and px according to the probability distribution above.
For a given electron energy E , we eliminate any randomly
selected px which result in a total electron energy larger than

E , and we boost all other trajectories in py such that the
total electron energy is E . The vertical starting position y
of all electron trajectories is taken to be the same. After the
generation of such a random electron initial condition, we
propagate the corresponding trajectory classically.

Our numerical results indicate that the stability with re-
spect to a lateral shift of the QPC is present in our toy model.
Figure 17 displays the trajectory density for a Gaussian bump,
with the QPC being modeled to have two different widths.
We note that the overall branching structure is qualitatively
similar, with the branch becoming wider for a QPC with
larger width. Figure 18 displays the density of trajectories
across the horizontal cuts indicated in Fig. 17, when the QPC
is shifted to the left and right by an amount comparable to
the width of the wider QPC. In fact, the change in branch
position is essentially due to a tilt in the axis connecting
the QPC center with the potential hill, which is small when
the shift is small as compared to the QPC-hill distance. For
a more realistic disorder potential, a similar effect should
occur with respect to the potential features that are responsible
for branch formation. While the location of the branch is
relatively unstable for the case of a narrow QPC, it becomes
broader, yet significantly more stable, for the case of a QPC
whose width is chosen to be the same size as the shift in
physical space. This is consistent with the results of previous
authors [5,36] studying more realistic models of disorder, and
provides further evidence that our proposed mechanism is
capable of capturing the correct physics of branch formation.

We have also found that the stability with respect to a QPC
shift is consistent with the presence of a localized attractive
feature. We note that, since the effect of a finite width QPC is
to broaden the branches, it is possible that some of the lack of
stability in the width of the branches formed by an attractive
feature could be less noticeable if the branches are washed out
over a distance scale comparable to the separation between the
two branches on either side of the attractive feature. However,
since this mechanism would rely on the detailed nature of the
QPC, we will not investigate it here, as we are interested in a
more generic understanding of branch stability.
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