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Optical properties of anisotropic excitons in phosphorene
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We study the eigenenergies and optical properties of both direct excitons in a phosphorene monolayer in
different dielectric environments and indirect excitons in heterostructures of phosphorene with hexagonal boron
nitride. For these systems, we solve the 2D Schrödinger equation using the Rytova-Keldysh (RK) potential for
direct and both the RK and Coulomb potentials for indirect excitons. The results show that excitons formed
from charge carriers with anisotropic effective mass exhibit enhanced (suppressed) optical absorption, compared
to their 2D isotropic counterparts, under linearly polarized excitations along the crystal axis with relatively
smaller (larger) effective carrier masses. This anisotropy leads to dramatically different excited states than the
isotropic exciton. The direct exciton binding energy depends strongly on the dielectric environment, and shows
good agreement with previously published data. For indirect excitons, the oscillator strength and absorption
coefficient increase as the interlayer separation increases. The choice of RK or Coulomb potential does not
significantly change the indirect exciton optical properties, but leads to significant differences in the binding
energy for small interlayer separation.
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I. INTRODUCTION

The experimental discovery of graphene in 2004 [1] was
a fascinating first glimpse into the world of two-dimensional
(2D) materials—its exceptional mechanical, thermal, and
electrical properties suggested a new paradigm of flexible,
durable, and highly efficient 2D electronic devices. In 2010,
when monolayers of both insulating hexagonal boron nitride
(h-BN) [2] and semiconducting transition metal dichalco-
genides (TMDCs) [3] were first exfoliated, research efforts
towards the development of next-generation 2D devices accel-
erated. The discovery of monolayer (ML) black phosphorus,
referred to as phosphorene, came a full decade after the advent
of graphene when a flurry of publications in 2014 heralded the
arrival of a new addition to the 2D materials universe [4–9].
Within the first year of its discovery, the number of publi-
cations on phosphorene grew tenfold [10], an unprecedented
rate of growth even within the rapidly expanding field of 2D
materials research. The sudden shift in intense research focus
towards phosphorene is clearly justified, due to phosphorene’s
unique properties which make it a promising candidate for a
variety of applications unsuited to its 2D relatives.

Perhaps the primary distinguishing feature of phospho-
rene is its highly corrugated crystal structure, where a single
monolayer appears to be composed of two distinct planes of
phosphorus atoms. Each atom bonds to three neighbors, two
of which are in the same plane and one which occupies the
opposite plane [11]. The in-plane and out-of-plane bonds are
characterized by very different bond lengths and bond angles,
which in turn leads to extreme anisotropy in its mechani-
cal, thermal, and electronic properties [12–21]. This intrinsic
structural anisotropy is expressed in nearly every property
of phosphorene, manifesting itself in charge carrier effective
masses [22] and mobilities [4,6,9,23], dc conductivity [24],

Raman spectra [23,25–31], optical absorption [9] and pho-
toluminescence [26] spectra, and its response to mechanical
strain [16]. Furthermore, the rippled structure of phospho-
rene leads to a larger surface area, which makes it ideal
[32] for a variety of environmental [33–35] and biomedical
[36,37] sensing applications. In addition to the already unique
and intriguing structure of black phosphorus, it was recently
shown that there are four more allotropes of ML phosphorus,
each exhibiting unique crystal structures and distinct material
properties [38].

Unlike the TMDCs, which are indirect gap semiconductors
for all but their ML forms [39], phosphorene remains a direct
gap semiconductor from its bulk form (≈0.3 eV) [40] down
to a single ML (≈2 eV) [41]. In addition to its dependence on
layer number [25,26,42–47], the band gap, as well as many
other properties, is also sensitive to the magnitude and di-
rection of an applied mechanical strain [12,14,48–52], giving
researchers a variety of ways to tailor the electronic properties
of phosphorene to suit a particular task. Due to its broadly
tunable band gap, phosphorene has also been identified as a
promising material for converting solar energy to chemical
energy [53].

Characterizing the optical properties of phosphorene is
not only important in the context of phosphorene’s potential
applications to optoelectronic devices but is an essential tool
in understanding its fundamental properties, e.g., its electronic
band structure. Indeed, some of the first experimental studies
of phosphorene measured its photoluminescence (PL) [6,54],
optical absorption [9], and Raman [7] spectra, as well as pho-
tocurrent generation [27]. In particular, one group observed
an “extraordinary” PL peak in a phosphorene bilayer sample
[54], and another found a similarly strong PL signal in ML
phosphorene, centered at 1.45 eV [6]. It was quickly realized
that these remarkable optical properties were due to strongly
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bound and optically active excitons within the phosphorene
ML.

Exciton binding energies in bulk semiconductors tend to
be on the order of a few tens of meV due to strong dielectric
screening, adversely affecting their stability at room temper-
ature and restricting the energy ranges in which they are
optically active. By contrast, excitons in 2D semiconductors
exhibit dramatically increased binding energies compared to
their bulk counterparts, due on the one hand to quantum
confinement effects reducing the degrees of freedom and
therefore the average kinetic energy of the system [55], while
on the other hand experiencing weaker electrostatic screening.

Around the same time that experimentalists first observed
evidence of strongly bound and optically active excitons in
mono- and few-layer phosphorene, a number of ab initio stud-
ies of the electronic band structure and excitonic properties
of phosphorene were published. Using a variety of theoret-
ical approaches and numerical methods, the binding energy
of the direct exciton in a phosphorene ML was calculated
to be between 0.7–0.8 eV [13,25,30,52,56–58], while the
exciton binding energy of ML phosphorene on an Si/SiO2

substrate was calculated [13] and measured [59] to be around
0.3 eV. Another ab initio study [25] predicted that the exciton-
forming optical transition centered at 1.45 eV in a freestand-
ing phosphorene monolayer could absorb a staggering 15% of
incident light, but only if the excitation was linearly polarized
along the armchair crystal direction—the extreme anisotropy
of phosphorene left the transition almost completely dark for
light polarized perpendicular to the armchair crystal axis.

While research on excitons in phosphorene has largely
focused on direct excitons in ML phosphorene, the field has
recently expanded to consider spatially separated excitons
formed in heterostructures (HS) consisting of two phospho-
rene monolayers separated by few-layer insulating h-BN,
abbreviated as PHP HS.

In this configuration, the electron and hole occupy different
parallel phosphorene monolayers and their recombination is
suppressed by the tunneling barrier created by the dielectric
separating the phosphorene. As a result, indirect excitons
exhibit much longer lifetimes than their direct counterparts.
Indirect excitons (also called dipolar excitons due to their
intrinsic dipole moment) exhibit many of the same proper-
ties as direct excitons, but importantly, this intrinsic dipole
moment creates a weak, repulsive exciton-exciton interaction.
As a result of their enhanced binding energy, the typically
small effective mass of charge carriers in semiconductors,
and weakly repulsive inter-particle interactions, indirect ex-
citons in, e.g., the TMDCs have been identified by theorists
as promising candidates for high-temperature Bose-Einstein
condensation (BEC) and superfluidity [60–62]. By extension,
indirect excitons in phosphorene recently attracted interest
when it was proposed that they could exhibit directionally-
dependent BEC and superfluidity [63,64].

In this work, we calculate the eigenfunctions and eigenen-
ergies of (i) direct excitons in ML phosphorene and (ii)
indirect excitons in a PHP HS.

First, the Schrödinger equation for an interacting elec-
tron and hole with anisotropic effective masses is solved
numerically, yielding the eigenenergies and corresponding
eigenfunctions of the excitonic ground and excited states. We

then use well-established methods [65–68] for analyzing in-
traexcitonic optical transitions to study the anisotropic exciton
eigensystem, obtaining the optical transition energies, oscilla-
tor strengths and absorption coefficients of the transitions.

This paper is organized as follows. In Sec. II, we summa-
rize the theoretical approach for solving the 2D Schrödinger
equation of the electron-hole system with anisotropic effective
masses. In Sec. III, we present the theoretical framework for
calculating the optical properties of excitons. We describe
our computational approach and discuss the choice of input
parameters in Sec. IV. The results of our calculations for
direct and indirect excitons follow in Sec. V. We compare
the calculated properties of excitons in phosphorene to the
properties of excitons in other 2D materials in Sec. VI. Our
conclusions follow in Sec. VII.

II. EXCITONS WITH ANISOTROPIC EFFECTIVE MASS

In order to analyze the optical properties of excitons in
phosphorene, we must first calculate the eigenenergies and
eigenfunctions of the exciton by solving the Schrödinger
equation describing an interacting electron and hole with
anisotropic effective masses. This in turn requires providing
the material properties of phosphorene as input parameters
to the Schrödinger equation, in particular, the anisotropic
effective carrier masses, the dielectric screening length of
ML phosphorene, and the dielectric constant of the envi-
ronment. Significant effort has already been dedicated to
characterizing the electronic structure of phosphorene both
experimentally [43,54] and using theoretical [22] and ab initio
techniques [17,21,30,41,42,49,69]. Importantly, these analy-
ses have yielded, among other things, the anisotropic effective
masses of both electrons and holes. Both the static dielectric
constant [40] and ML thickness of phosphorene [70] are also
known, which is important for characterizing the electrostatic
interaction between the electron and hole. These parameters
can be inserted directly into the Schrödinger equation de-
scribing the electron-hole system, enabling a straightforward
solution of the anisotropic exciton eigensystem. We therefore
present the quantum mechanical description of the electron
and hole using the 2D Schrödinger equation in such a way
that it can be applied to either direct or indirect excitons—
further discussion on the formal differences between the two
systems will be given as necessary. Finally, we note that the
orthogonal crystal axes of phosphorene are referred to as the
armchair and zigzag directions [16,18,71–75]—following the
convention in the literature [13,25,30], we associate the x and
y axes with the armchair and zigzag directions, respectively.

Within the effective mass approximation, the Hamiltonian
for an interacting electron and hole with anisotropic effective
mass, constrained to move in the plane of their respective
monolayers, is given by

Ĥ0 = −h̄2

2
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∂2
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e
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)
+V (re − rh), (1)

where the m j
i , j = x, y, i = e, h correspond to the effective

mass of the electron or hole in the x or y direction, re-
spectively, the positions of the electron and hole are given
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by ri = (xi, yi, zi ), and V (re − rh) describes the electrostatic
interaction between the electron and hole. Equation (1) can
be used to treat both direct excitons (ze − zh = 0) and indirect
excitons (ze − zh ≡ D), where the interlayer separation D =
lphos + NBNlBN is the distance between the middle of the
phosphorene monolayers, lphos and lBN are the thicknesses
of ML phosphorene and h-BN, respectively, and NBN is the
number of h-BN monolayers separating the phosphorene. For
indirect excitons in a PHP HS, we consider the average z
position of the electron and hole to be in the middle of their
respective phosphorene monolayers. Therefore the electron-
hole separation D must account for (i) the thickness of one
phosphorene ML, which can be pictured as being “split”
between the upper half of the lower ML and the lower half of
the upper ML, as well as (ii) the vertical distance between the
phosphorene monolayers themselves due to the intervening
h-BN.

Applying the standard procedure for separation of vari-
ables in the two-body problem [76] to the anisotropic
Hamiltonian (1), we define the center-of-mass coordinate
as R = (X,Y ), X = (mx

exe + mx
hxh)/(mx

e + mx
h), Y = (my

eye +
my

hyh)/(my
e + my

h), and the relative separation between the
electron and hole as r = re − rh = (x, y, D), x = xe − xh, y =
ye − yh, D = ze − zh. After separation of variables in (1), the
Schrödinger equation for the relative motion of the electron-
hole system is given by[

− h̄2

2μx

∂2

∂x2
− h̄2

2μy

∂2

∂y2
+ V (r)

]
ψ (r) = Eψ (r), (2)

where μ j = (m j
em j

h)/(m j
e + m j

h), j = x, y, is the reduced mass
of the exciton in the x and y directions and E and ψ (r) are the
eigenenergies and eigenfunctions of the exciton, respectively.

For the direct exciton, the electron-hole interaction V (r) is
described by the Rytova-Keldysh (RK) potential [77,78]

VRK(r) ≡ VRK(r) = −πke2

2κρ0

[
H0

(
r

ρ0

)
− Y0

(
r

ρ0

)]
. (3)

In Eq. (3), k = 9 × 109 N m2 C−2, r ≡ |r| =
√

x2 + y2

(for the direct exciton in a phosphorene ML) or r =√
x2 + y2 + D2 (for the indirect exciton in a PHP HS) is

the magnitude of the relative electron-hole separation, κ =
(ε1 + ε2)/2 describes the surrounding dielectric environment,
where ε1 and ε2 correspond to the dielectric constants of the
materials (a) above and below the ML for the direct exciton,
or (b) between and surrounding the phosphorene monolayers
for the indirect exciton in a PHP HS, H0 and Y0 are the Struve
and Bessel functions of the second kind, respectively, and ρ0

is the screening length, given by [79,80]

ρ0 = 2πχ2D

κ
, (4)

where χ2D is the 2D polarizability, which can be calculated
via ab initio methods.

The celebrated Rytova-Keldysh potential has been widely
used to describe the Coulomb interaction of few-body com-
plexes in monolayers of TMDCs and other 2D materials (see
Ref. [55] and references therein for a detailed review). The
asymptotic behavior of the RK potential with respect to the

interparticle separation r is given by

VRK(r) =
{

ke2

κρ0

[
ln

(
r

2ρ0

) + γ
]

r � ρ0

− ke2

κr r � ρ0

, (5)

where γ is Euler’s constant.
It was determined theoretically [40] that the static dielectric

constant of phosphorene is anisotropic, εx = 12.5, εy = 10.2,
and a more recent ab initio study [13] likewise found that
the 2D polarizability χ2D was anisotropic, χ x

2D = 0.42 nm and
χ

y
2D = 0.397 nm. However, the authors of Ref. [13] found that

if χ x
2D ≈ χ

y
2D, one can approximate the 2D polarizability as

isotropic by taking the average χ2D = (χ x
2D + χ

y
2D)/2 without

changing the results significantly, and we will employ the
same approach here. Let us also mention that in Ref. [7], the
authors instead used the geometric average of the components
of the anisotropic dielectric constant, i.e., ε ≈ (εxεyεz )1/3.

We must note here that the RK potential was originally
formulated as an explicitly 2D description of the electrostatic
interaction in thin films. Nevertheless, there have been recent
studies applying the RK potential to spatially indirect excitons
in van der Waals (vdW) heterostructures of 2D materials such
as the TMDCs [60,62,63,67] and Xenes [68]. The logic behind
applying the RK potential to spatially indirect excitons fol-
lows from two considerations: (i) the dielectric environment is
still inhomogeneous, just as in the case of the direct exciton,
so the electron-hole interaction potential should account for
both the phosphorene monolayers and the interlayer dielectric,
and (ii) as the interlayer separation D becomes larger than ρ0,
the total separation, r =

√
ρ2 + D2, between the electron and

hole necessarily becomes much larger than ρ0, and therefore
the RK potential converges towards the Coulomb potential in
any case.

Despite the recent aforementioned efforts to use the RK
potential to study indirect excitons in vdW heterostructure, it
is still quite common to use the Coulomb potential to study
these systems. Therefore, for indirect excitons, we solve the
2D Schrödinger equation using both the RK and Coulomb
potentials and compare the results. The Coulomb potential de-
scribing the interaction between spatially separated electrons
and holes in a PHP HS can be written as

VC(r) ≡ VC(r) = − ke2

ε′√x2 + y2 + D2
, (6)

where the dielectric constant ε′ takes the value of the environ-
ment, i.e., ε′ = κ .

Now, the eigenenergies E and corresponding eigenfunc-
tions ψ (r) of the exciton are obtained by solving the
Schrödinger equation (2) with the RK potential (3) and D = 0
for direct excitons, or for indirect excitons with either the RK
(3) or Coulomb (6) potentials and D = lphos + NBNlBN.

While studying the optical properties of indirect excitons
in a PHP HS, we use both the Coulomb and RK potentials as
a means of comparing and contrasting our results, while ac-
knowledging that neither interaction potential is a completely
accurate description of the electron-hole interaction in a PHP
HS. Therefore let us mention here some recent approaches to
more accurately describe the electrostatic interaction in van
der Waals heterostructures composed of arbitrary combina-
tions of 2D materials.
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In Ref. [81], the authors discuss and compare two es-
tablished methods of determining the effective electron-hole
interaction potential before presenting their own methodology
based on a transfer matrix approach. In particular, the authors
first describe a classical electrostatic approach focused on
obtaining an analytical solution of the Poisson equation, the
same approach used by Rytova and Keldysh to independently
derive the RK potential, but the authors note that this approach
may be inadequate to describe atomically thin materials. On
the other hand, a more recently developed method, known
as the quantum electrostatic heterostructure (QEH) model
[82–84], takes the opposite approach, using ab initio calcula-
tions to incorporate quantum mechanical effects—the authors
of Ref. [81] note that QEH yielded more accurate results than
the classical approach for at least one set of experimental
data [85]. For their part, the authors of Ref. [81] expand
upon the classical Poisson equation method to consider the
effective electron-hole interaction in an N-layer vdW stack
by self-consistently solving the Poisson equation in each
layer of interest using the transfer matrix method. Using
transfer matrices to unify the description of the layers in the
vdW heterostructure allows for a computationally fast and
efficient means of obtaining accurate results which are highly
competitive with the more sophisticated and computationally
demanding QEH model.

Later in the same year, in Ref. [86], another approach was
developed focused specifically on the electron-hole interac-
tion in the TMDCs. Here, the authors effectively expand upon
the dielectric slab concept upon which the RK potential is
based by recognizing that the ML TMDCs are best described
not as one uniform layer, but rather as three dielectric slabs,
i.e., a central slab of Mo/W surrounded on the top and bottom
by layers of S/Se/Te, which are then placed in an arbitrary
dielectric environment. This insightful modification of the
theory results in significantly more accurate predictions of
quasiparticle eigenenergies in the TMDCs, especially trion
binding energies and the relationship between the ground and
excited states of the neutral exciton.

Noting finally that the methods developed in Refs. [81,86]
reduce to the RK potential under appropriate circumstances,
it is clear that these methods represent, at the very least, a
promising step towards the development of a theoretically
comprehensive, physically accurate, and computationally effi-
cient means of calculating quasiparticle properties in arbitrary
stacks of vdW materials. As the authors of both studies note,
these new approaches exhibit varying degrees of improvement
over the RK potential depending on the situation, and further
study is necessary to determine the optimal circumstances
under which to employ their respective methods. Application
of these methods towards the PHP HS studied in this work
would be a more than welcome addition to the field, and a
comparison of the results obtained here using the RK and
Coulomb potentials to these aforementioned newer methods
would be a fascinating and highly informative benchmark
moving forward.

III. EXCITON OPTICAL ABSORPTION

Our calculations of the optical properties of excitons
in phosphorene employ well-established methods [65] for

modeling the response of atomic-like systems to an incident
electromagnetic (EM) wave of frequency ω and polarization.
This approach was successfully used to study optical transi-
tions in excitons in semiconductor quantum wells [66], and
has recently been applied to excitons in 2D materials [67,68].
The optical transition energy Etr corresponds to the difference
in energy between the initial state, ψi, and the final state, ψ f ,
and must coincide with the energy of the incident EM wave,
i.e., Etr = E f − Ei = h̄ω.

The oscillator strength, f0, is a dimensionless quantity
which gives the relative strength of a particular optical tran-
sition. For the isotropic 2D exciton, f0 is proportional to the
exciton reduced mass μ and does not depend on the in-plane
orientation of the linearly polarized EM wave [65]. Modifying
the standard expression for f0 to account for anisotropy,
we consider and calculate two distinct oscillator strengths,
f j
0 , which correspond to the oscillator strengths of optical

transitions induced by linearly polarized light oriented along
the x and y axes, respectively. The polarization-dependent
oscillator strength is thus given by

f j
0 = 2μ j (E f − Ei )|〈ψ f |ê|ψi〉|2

h̄2 . (7)

In Eq. (7) |ψi〉 and |ψ f 〉 are the wave functions of the
initial and final states, respectively, and ê is the polarization
operator. The allowed and forbidden optical transitions for a
particular polarization can be determined by calculating f j

0 ,
or more specifically by computing the dipole transition matrix
element, |〈ψ f |ê|ψi〉|2, which represents the overlap integral
between the initial and final wave functions when the initial
state interacts with an external electric dipole moment. The
dipole transition matrix element is zero for forbidden tran-
sitions and nonzero if the transition is allowed. For allowed
transitions, the oscillator strength is positive under photon
absorption (E f − Ei > 0) and negative under photon emission
(E f − Ei < 0).

A theoretical study [13] of the eigenstates of excitons in
phosphorene with the RK potential using both Gaussian and
sinudoidal basis functions provides crucial insight into the
allowed optical transitions of the anisotropic exciton. It is
well known that for 2D-hydrogen-like systems with either
the Coulomb (isotropic dielectric environment) or RK (thin
semiconducting film in an inhomogeneous dielectric environ-
ment) potentials, the allowed optical transitions of linearly
polarized light are strictly limited to those in which the
angular momentum quantum number differs by 1 between
the initial and final eigenstates [13,76]. For the anisotropic
exciton, on the other hand, the authors of Ref. [13] found
that linearly polarized light can induce a transition between
any two states in which the symmetry of the eigenfunction
along the polarization axis changes from even to odd, or
vice versa. For example, the ground state eigenfunction is
even along both the x and y axes, nx = ny = 0. Therefore
linearly polarized light along the y direction can induce a
transition to any state which is odd with respect to y, that
is, n′

y = ny + 1, 3, 5, . . . ; n′
x = nx, while x-polarized light can

likewise induce a transition from the ground state to the
eigenstates characterized by n′

x = nx + 1, 3, 5, . . . ; n′
y = ny.

When referring to the excitonic eigenstates in terms of the
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quantum numbers nx and ny, we use the notation (nx, ny),
and denote the excitonic ground state by (0,0). Similarly, the
pairs (1,0) and (0,1) refer to the eigenstates where the exciton
has absorbed one quantum of energy in the x or y directions,
respectively—we colloquially refer to these states as the “first
excited state in (x or y).” Further analysis of the eigenstates of
the anisotropic exciton is given in Appendix B.

While the oscillator strength gives us insight into the
relationship between the eigenstates of the system and their
response to an external EM force, there is a related quantity,
the absorption coefficient α(ω), which describes how strongly
a particular material absorbs light of a given frequency due to
an optical transition specified by f j

0 . Let us consider the atten-
uation of an EM wave propagating through a homogeneous
material. The intensity I of an EM wave of frequency ω is a
function of the propagation distance z, given by

I (z, ω) = I0e−α(ω)z, (8)

where I0 is the initial intensity of the wave. Equation (8)
illustrates the physical meaning of the absorption coefficient
α(ω), i.e., it is the reciprocal of the propagation distance z over
which the intensity of the EM wave of frequency ω decreases
by a factor e. The absorption coefficient of optical transitions
in isotropic atomic systems is given by [65]

α(ω) =
(

ω

ω0c

πe2

2ε0
√

κμ

nX

leff
f0

)(
(�/2)(

ω2
0 − ω2

)2 + (�/2)2

)
,

(9)
where ω0 = (E f − Ei )/h̄ is the Bohr angular frequency of
the optical transition, c is the speed of light, nX is the 2D
concentration of excitons in the system, leff is the effective
vertical spatial extent of the exciton wave function, and � is
the full width at half maximum of the optical transition, often
referred to as the broadening, line broadening, or damping.

The fraction nX /leff physically represents the 3D exciton
density, which for direct excitons in ML phosphorene can be
straightforwardly written as the 2D concentration divided by
the ML thickness, leff = lphos. Considering indirect excitons
in a PHP HS with the same 2D concentration nX , it follows
that the 3D exciton density must be reduced compared to
direct excitons, i.e., leff > lphos. In this case, we consider the
electron and hole to be bound to their respective phosphorene
monolayers, and that the wave functions of the electron and
hole do not penetrate far into the surrounding h-BN, so that
the indirect excitons are effective contained within the two
phosphorene monolayers. As the EM wave passes through the
PHP HS, it only interacts with the exciton in regions where
the exciton wave function is appreciably nonzero, i.e., the
interaction only occurs within the phosphorene monolayers
themselves. Therefore we use leff = 2lphos for indirect exci-
tons.

Summing Eq. (9) over all possible optically induced tran-
sitions in a given material (that is, not restricted to excitonic
transitions) yields the absorption spectrum, a thorough de-
scription of how strongly the material absorbs light of fre-
quency ω. Since we only consider a very limited subset of all
possible optical transitions in phosphorene, let us focus on the
scenario where the energy of the incident excitation is equal to
the energy of the transition given by f j

0 , h̄ω = E f − Ei, which

corresponds to a local maximum in the absorption spectrum
α(ω):

α j (ω = ω0) ≡ α j =
(

πe2

2cε0
√

κμ j

nX

leff
f j
0

)(
2

�

)
. (10)

Equation (10) can be used to characterize how strongly a
particular optical transition absorbs the incident excitation.
Additionally, the value of α j can be used to conveniently com-
pare the relative strengths of different excitonic transitions.

As previously stated, the anisotropic absorption coefficient,
α j , describes the attenuation of an EM wave of frequency
ω and polarization as a propagates an arbitrary distance z
through a dielectric. 2D materials, however, do not have
arbitrary thickness—indeed, 2D materials are noteworthy pre-
cisely because each monolayer has a well-defined thickness.
Therefore it would be instructive to consider how the intensity
of the incoming EM wave is reduced due to the wave propa-
gating a distance which corresponds exactly to the thickness
of the phosphorene ML(s) occupied by the excitons. Recalling
Eq. (8), we now define the polarization-dependent absorption
factor as A j ≡ 1 − (I (z = leff , ω = ω0)/I0), or

A j = 1 − exp[−α j leff ]

= 1 − exp

[
−

(
πe2nX

2cε0
√

κμ j
f j
0

)(
2

�

)]
. (11)

Equation (11) therefore gives the fractional decrease in the
intensity of the EM wave as it propagates through one exciton
layer (that is, one ML for direct excitons, or one PHP HS
for indirect excitons), i.e., A = 0.01 means that each exciton
layer absorbs 1% of the incident EM wave. The absorption
factor is particularly convenient when comparing absorption
between direct and indirect excitons, or between excitons
in 2D materials with different thicknesses. Simplified forms
of Eqs. (10) and (11) are given by Eqs. (A6)–(A10) in
Appendix A.

IV. COMPUTATIONAL APPROACH

Discussion of input parameters used in numerical
calculations

Calculating the optical properties of the exciton using
Eqs. (7), (10), and (11) requires the excitonic eigenenergies
En and eigenfunctions |ψn〉, which are obtained by solving the
Schrödinger equation (2) with either the RK potential (3) (for
both direct and indirect excitons) or the Coulomb potential
(6) (for indirect excitons only). The Schrödinger equation
takes as input parameters the anisotropic exciton reduced
masses μx and μy and either the uniform dielectric constant
ε′ for the indirect exciton with the Coulomb potential, or the
average environmental dielectric constant κ and 2D polariz-
ability χ2D for either direct or indirect excitons with the RK
potential. We consider four different dielectric environments
when calculating the properties of direct excitons in ML
phosphorene: freestanding (FS), supported on an SiO2 (SS)
or h-BN substrate (HS), and encapsulated by h-BN (HE). The
corresponding values of κ are shown in Table I.

Numerical solution of the Schrödinger equation using the
aforementioned interaction potentials and input parameters
is performed using the finite element method (FEM), which
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TABLE I. All input parameters used in numerical calculations. Each set of masses, denoted μi, i = a, b, c, d , was taken from the
corresponding reference. Electron, hole, and exciton reduced masses are given in units of m0, where m0 is the free electron mass. The
anisotropic exciton reduced masses μ j , calculated using the corresponding effective charge carrier masses m j

i , are printed in bold to aid
the eye. The next three columns denote the following quantities: the phosphorene ML thickness lphos, the 2D polarizability χ2D, and the 2D
exciton concentration nX . The column titled “Env.” denotes the four dielectric environments for which we calculate the properties of direct
excitons in ML phosphorene: freestanding, i.e., suspended in vacuum (FS); supported on either an SiO2 substrate (SS) or h-BN substrate (HS)
with the top of the ML exposed to air or vacuum (“uncapped”); and encapsulated by h-BN on the top and bottom (HE). Each of the four
environments are associated with a particular value for κ and �, given in the following two columns, respectively. The value of � for FS, SS,
and HS was chosen based on Refs. [6,26,59], while the value for HE is based on Refs. [87–89]. Additional discussion of these quantities are
given in the text below.

mx
e mx

h μx my
e my

h μy lphos (nm) [70] χ2D (nm) [13] nX (m−2) [90] Env. κ � (s−1)

μa [75] 0.16 0.15 0.0630 1.24 4.92 0.968 0.541 0.41 5 × 1015 FS 1 1014

μb [91] 0.1 0.2 0.0667 1.3 2.8 0.888 SS 2.4 1014

μc [92] 0.199 0.1678 0.0910 0.7527 5.35 0.660 HS 2.945 1014

μd [42] 0.17 0.15 0.0797 1.12 6.35 0.952 HE 4.89 1013

yields N pairs of eigenenergies and eigenfunctions which are
solutions to the Schrödinger equation, corresponding to the N
most-strongly-bound states. The eigenenergies En and eigen-
functions ψn, along with the appropriate anisotropic reduced
mass μ j , are then used as input parameters to calculate the
oscillator strength, f j

0 according to Eq. (7). The corresponding
polarization-dependent absorption coefficients α j and absorp-
tion factors A j can then be calculated using as inputs the
oscillator strength, f j

0 , the anisotropic exciton reduced mass
μ j , the 2D exciton concentration nX , the phosphorene ML
thickness l , environmental dielectric constant κ (or ε′ for the
Coulomb potential), and the excitonic optical broadening �.

The standard values of these input parameters are given
in Table I—unless otherwise noted, all subsequent results
were obtained using these values. Whereas the sets of carrier
masses μi, i = a, b, c, d , were straightforwardly taken from
the corresponding references, some additional discussion of
the other input parameters is necessary.

The phosphorene ML thickness lphos, obtained via ab initio
calculations in Ref. [70], agrees well with theoretical results
from other works, namely, 0.53 nm [26] and 0.6 nm [6]—we
note that these last two references also measured the ML
thickness using atomic force microscopy (AFM), obtaining
values of 0.85 and 0.7 nm, respectively, but the authors
themselves note that AFM measurements tend to overesti-
mate ML thickness. The 2D polarizability χ2D was calcu-
lated from first principles in Ref. [13] and agrees well with
the value of 0.38 nm, also obtained from first principles in
Ref. [58].

The 2D exciton concentration nX differs from the previ-
ous quantities in that it is not a material property that can
be definitively measured or calculated—instead, nX depends
mainly on the excitation intensity, that is, a high-intensity
laser will excite a higher concentration of excitons than a
low-intensity laser. Therefore it is reasonable to expect that
nX can and will vary significantly between experimental con-
figurations, and even from one trial to the next. Instead of
exhaustively considering a wide range of possible values of
nX , we instead choose one value of nX which is representative
of a typical experiment to use throughout our calculations.
One recent study [93] of exciton-exciton annihilation rates
in a phosphorene ML found that exciton-exciton annhiliation

becomes the dominant recombination mechanism (as opposed
to, e.g., thermal decomposition or radiative recombination)
at an exciton concentration of about 6.1 × 1016 m−2. While
this value is not representative of a typical experiment, it may
still be helpful to consider as an upper bound. Lacking an
appropriate result from experimental studies in phosphorene,
we turn instead to excitons in TMDCs, where we find a
reasonable value of nX in Ref. [90], which studied excitons
in a WSe2 ML.

Based on previous optical studies of excitons in 2D ma-
terials, we will use two values of �. It is important to note
that the � obtained from experimental measurements is, like
nX , dependent on several external factors, including but not
limited to: the sample temperature; the presence of structural
defects within the sample; and/or surface contaminants at
either the substrate/monolayer interface or the monolayer/air
interface. These confounding variables can significantly alter
the observed optical properties of the material, especially the
presence of defects and contaminants which may be difficult
to identify, characterize, isolate, and prevent.

In choosing a value for �, we therefore adopt a similar
approach to our choice of a value for nX —we will choose a
value for � which is generally appropriate for the system in
question, but need not correspond exactly to one particular
observed value. Many experimental PL/absorption studies of
excitons in phosphorene are conducted with the phosphorene
ML placed on a substrate (typically SiO2), while the opposite
side of the ML is left exposed to the atmosphere. These
studies all observed significant broadening of the excitonic
emission/absorption peak, with reported values of 70 meV
[59], 100 meV [6], and 150 meV [26]. Therefore, when
calculating α and A for FS or uncapped phosphorene (that
is, on an SiO2 or h-BN substrate), we will use the value
� = (70 meV)/h̄ ≈ 1014 s−1. For phosphorene encapsulated
by h-BN, we again turn to similar studies on the TMDCs,
where large excitonic broadening was observed in uncapped
TMDC samples at room temperature [3,94,95], but encapsu-
lating the TMDC with h-BN was found to drastically reduce
the excitonic linewidths to their cryogenic limit [87–89],
� = (11 meV)/h̄ ≈ 1013 s−1. Results for α and A for direct
excitons will therefore be presented using two different values
of �, depending on the dielectric environment, while for
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indirect excitons only � = 1013 s−1 will be used since only
h-BN encapsulation of the PHP HS is considered.

V. RESULTS OF CALCULATIONS

A. Direct excitons

In this section, we present the results of our calculations of
the eigenenergies and optical properties of the direct exciton
using the input parameters listed in Table I, focusing in
particular on how our results change depending on the four
sets of masses μi and the four dielectric environments denoted
by FS, SS, HS, and HE. The notation X [i, k] will be used as a
shorthand for “the value of the quantity X calculated using the
set μi in the dielectric environment k ∈ [FS, SS, HS, HE],”
i.e., f y

0 [a, FS] means “the value of f y
0 in FS phosphorene

calculated using μa.” For the input parameters that produce
the minimum or maximum value of a particular quantity, a
min or max subscript will be added to the corresponding
parameter, i.e., Eb[dmax, k] means that μd yields the maximum
value of Eb for the given k. The percent difference between the
maximum and minimum values, with respect to, e.g., the μi,
of a particular quantity will be denoted with a % subscript
on the parameter, i.e., Eb[i%, k]. Averaging a quantity over a
set of parameters will be denoted by the subscript avg., as
in Eb[iavg., k]. If i or k have been previously established in
context, either index may be omitted from the notation X [i, k].

In Table II, the eigenenergies of the direct exciton in
a phosphorene ML are calculated for four different dielec-
tric environments and for each of the four sets of μi from
Table I. The binding energies follow the relation Eb[d, k] >

Eb[c, k] > Eb[b, k] > Eb[a, k] for all dielectric environments
k. The choice of the μi does not change Eb significantly,
though the difference between the minimum and maxi-
mum Eb increases with κ , e.g., we find Eb[i%, FS] ≈ 5%,
while Eb[i%, HE] ≈ 8.5%. This percent difference also in-
creases for higher excited states. Of course, the parameter
which most significantly changes Eb is κ , where Eb[i, FS] ≈
2Eb[i, (SS,HS)] and Eb[i, SS] ≈ 2Eb[i, HE].

In addition, our results for the binding energy of the direct
exciton shown in Table II agree very well with previously
reported results in a variety of different dielectric environ-
ments. The binding energy of the direct exciton in a FS
phosphorene ML has been calculated via ab initio methods
on several occasions—prior calculations vary between 700–
850 meV [13,25,30,52,56,57], which agrees quite well with

TABLE II. Eigenenergies of the direct exciton in four dielectric
environments: freestanding, supported on an SiO2 or h-BN substrate,
and encapsulated by h-BN.

En[FS] (meV) En[SS] (meV) En[HS] (meV) En[HE] (meV)

|n〉 min max min max min max min max

|1〉 718.7 753.3 381.7 407.5 317.8 341.1 187.9 204.7
|2〉 478.6 508.1 202.2 221.9 156.3 173.2 74.32 84.61
|3〉 377.6 408.7 144.7 162.2 109.5 123.7 50.31 57.78
|4〉 310.9 330.3 105.6 117.7 76.97 87.22 31.97 37.94
|5〉 272.4 300.0 88.40 101.3 63.60 74.25 26.96 31.62
|6〉 250.4 281.3 80.36 94.27 58.38 69.04 24.70 29.61

FIG. 1. Relationship between f j
0 and E j

tr for the first allowed
optical transition (i.e., the x or y transition with the smallest transition
energy) under x- and y-polarized excitations, shown by solid and
open markers, respectively. The plot marker denotes the values of
E j

tr and f j
0 averaged over the four μi, while the axes of the ellipses

around each data point correspond to the minimum and maximum
values of E j

tr and f j
0 .

our average value of about 740 meV, considering the previous
results were obtained using a variety of methods and, there-
fore, a variety of input parameters. Regarding phosphorene
on an SiO2 substrate, the direct exciton binding energy was
theoretically calculated to be about 400 meV [13], which is
within the range shown in Table II. Another experimental
study of phosphorene on an SiO2 substrate [59] determined
the binding energy to be about 300 meV, while a separate
experimental investigation performed around the same time
[26] obtained a surprisingly high value of 900 meV. Finally,
in Ref. [13], where the electron-hole interaction was also
modeled using the RK potential, the direct exciton binding
energy was calculated to be about 200 meV for κ = 5, which
falls within our calculated range for HE (κ = 4.89).

The oscillator strengths of the first allowed optical tran-
sitions for x- and y-polarized light are shown for all four
dielectric environments in Fig. 1. In particular, f y

0 (shown with
the open markers) refers to the (nx = 0, ny = 0) → (nx =
0, ny = 1) transition and f x

0 (shown by the solid markers)
refers to the (0, 0) → (1, 0) transition. Since both E j

tr and f j
0

depend on μi, both quantities are averaged across the four μi

and the average value is denoted by the plot marker. The major
and minor axes of the ellipses encircling each data point mark
the minimum and maximum values of E j

tr and f j
0 .

From Fig. 1, we see that both f j
0 and E j

tr are decreasing
functions of κ . The effect of anisotropy is also evident in the
relative magnitudes of f x

0 and f y
0 , where f y

0 [i, k] � f x
0 [i, k]

for all k, and furthermore, f y
0 [i, HE] > f x

0 [i, FS].
Table III shows the ratios f̃ j

0 [iavg., k] along with the
corresponding C̃D[k]. Following the procedure outlined
in Appendix A, the average absorption coefficient with
respect to the μi can be easily calculated as α j[iavg., k] =
C̃D[iavg., k] f̃ j

0 [iavg., k]. The values of the f̃ j
0 [i, k] for all i, k are

given in Appendix A, Table IV.
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TABLE III. Calculated ratios f̃ j
0 [i, k] ≡ f j

0 /μ
j
i , averaged over

the four μi, as well as the absorption coefficient scale factor C̃D from
Eq. (A6). For tabulated values of the f̃ j

0 for each μi, see Appendix
A, Table IV. The units of f̃ j

0 are m−1
0 .

Env. f̃ x
0 [iavg.] f̃ y

0 [iavg.] C̃D (×106 m−1)

FS 8.812 1.056 3.082
SS 6.543 0.991 1.990
HS 5.834 0.965 1.796
HE 4.05 0.874 13.93

Interestingly, whereas f y
0 [i, k] > f x

0 [i, k] for all i and k, we
find that the opposite is true for αx and αy. The reason for this
can be seen from Tables I and III—although f y

0 can exceed f x
0

by anywhere between about 30% (in FS) and over 100% (in
HE), μ

y
i can be more than an order of magnitude larger than

μx
i , so that the ratio f̃ x

0 is always greater than f̃ y
0 , and hence αx

will always be larger than αy.
A prior study [9] of the optical absorption and PL prop-

erties of ML phosphorene found that interband excitations
were much more strongly absorbed if the excitation was
polarized along x than along y. While the underlying theory
of exciton-forming transitions differs substantially from the
treatment of intraexcitonic transitions, it is plausible that in
both cases, the fact that μx is much smaller than μy leads
to enhanced absorption of x-polarized light. In other words,
the amplitude of the oscillatory response of the exciton to an
x-polarized driving force is much larger than the amplitude of
oscillations induced by a y-polarized excitation, due to the fact
that μy � μx.

From Eqs. (10) and (11), we see that α j and A j are
inversely proportional to

√
κ . At the same time, we find

that f̃ y
0 [i, FS] ≈ 1.25 f̃ y

0 [i, HE], while f̃ x
0 [i, FS] > 2 f̃ x

0 [i, HE].
Combining these two trends and assuming for the moment
that � remains the same in all dielectric environments, we
would expect a significant change in both αx and αy, approx-
imately αx[i, FS] ≈ 5αx[i, HE] and αy[i, FS] ≈ 3αy[i, HE].
Assuming instead that h-BN encapsulation significantly re-
duces �, we find that αx[HE] is about twice as large as
αx[FS], while αy[HE] is greater than αy[FS] by nearly a
factor of four. The absorption factor A j reveals the signifi-
cant difference in excitonic optical activity between the two
polarization directions and the four dielectric environments,
where we obtain Ax[iavg., k] as 1.36%, 0.68%, 0.55%, 3.0%
and Ay[iavg., k] as 0.017%, 0.011%, 0.009%, 0.066%, for
k = FS, SS, HS, HE, respectively.

Furthermore, analysis of Eqs. (7) and (10) reveals that the
difference in magnitude between αx and αy is due to the
product of the optical transition energy, E j

tr , and the dipole
transition matrix element, |〈ψ f |ê|ψi〉|2. As shown in Fig. 1,
the difference between the E j

tr is roughly a factor of two in
most cases, whereas αx can exceed αy by at least a factor of
five, indicating that the dipole transition matrix element differs
greatly between x- and y-polarized transitions. Indeed, further
consideration of the excitonic eigenfunctions underpinning
the dipole transition matrix element illuminates the root cause
of the observed phenomena. Qualitatively speaking, a smaller

effective mass results in a wave function with a broader spatial
distribution, such that in phosphorene the eigenfunctions are
much more spread out along the x axis than along the y axis.
We see that the polarization operator ê, which is substituted in
the integral as the coordinate variables x or y (as appropriate),
is responsible for the dramatic difference between the value
of the integrals corresponding to x- or y-polarized excitations,
since the eigenfunctions decay more quickly along the y axis
than they do along the x axis.

In other words, the dipole transition matrix element is
evaluated as the integral of the product of three functions, two
of which (i.e., ψi and ψ f ) decay exponentially at large |r|,
while the third function is simply linear with respect to the co-
ordinate axis corresponding to the polarization operator. If the
functions ψi and ψ f exponentially decay much more slowly
along the x axis than the y axis, specifically because μy � μx,
then the integrand for ê → x remains nonvanishingly small
farther away from the origin than when ê → y.

Comparing the optical quantities E j
tr , f j

0 , α j , and A j for all
μi and across all dielectric environments, we observe some
general trends. Let us first address the quantities related to the
y-transitions, followed by the x-related quantities.

The optical transition energies follow the relation
Ey

tr[c, k] > Ey
tr[d, k] > Ey

tr[b, k] > Ey
tr[a, k] in all k. Curiously,

the oscillator strengths in FS phosphorene are reversed com-
pared to the transition energies, i.e., f y

0 [a, FS] > f y
0 [b, FS] >

f y
0 [d, FS] > f y

0 [c, FS], though we instead obtain f y
0 [a, k′] >

f y
0 [d, k′] > f y

0 [b, k′] > f y
0 [c, k′] for k′ = (SS, HS, HE). The

ordering with respect to the μi is reversed again for the f̃ y
0 ,

and therefore for αy and Ay as well, i.e., f̃ j
0 [c, k] > f̃ j

0 [b, k] >

f̃ j
0 [d, k] > f̃ j

0 [a, k], for all k. Recalling from Table I that μy
a >

μ
y
d > μ

y
b > μ

y
c, it appears that f j

0 is an increasing function of
μ j , while E j

tr is a decreasing function of μ j .
In contrast to the y-polarized quantities, whose relative

magnitudes were constant across the four dielectric environ-
ments for Ey

tr and f̃ y
0 but were inconsistent in f y

0 , we find
that the ordering of the Ex

tr[i, k] is different for each k, while
the relative magnitudes of both f x

0 and f̃ x
0 are consistent for

all k. The transition energies Ex
tr show significant variation

between different environments, with the only constant being
that Ex

tr[d] is always the largest value. Whereas Ex
tr[d, FS] >

Ex
tr[a, FS] > Ex

tr[b, FS] > Ex
tr[c, FS], we find that the relative

magnitude of Ex
tr[c] increases as the dielectric screening in-

creases, while Ex
tr[a] decreases relative to the other values,

such that Ex
tr[d, HE] > Ex

tr[c, HE] > Ex
tr[b, HE] > Ex

tr[a, HE].
The oscillator strengths, on the other hand, follow the same
order as the μx

i themselves, i.e., μx
c > μx

d > μx
b > μx

a, for all
dielectric environments k. Additionally, for all k, the ordering
of the f̃ x

0 , αx, and Ax is reversed with respect to the μx
i .

These observations suggest that while the optical proper-
ties corresponding to a particular excitation polarization are
primarily determined by the corresponding μ j , these quan-
tities also exhibit some dependence on the opposite μ j′ �= j ,
stemming from the dependence of the optical properties on
the excitonic ground state, whose properties must represent
both μx and μy. Considering the uniquely strong response of
the material properties of phosphorene, e.g., the anisotropic
effective charge carrier masses, to external stimuli such as
mechanical strain [26,52], the preceding analysis should prove
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FIG. 2. Comparison of the eigenstates |1〉, |2〉, |3〉, and |6〉 for
the indirect exciton, calculated using both the RK (solid markers)
and Coulomb (open markers), as a function of the number of h-BN
monolayers separating the phosphorene monolayers, NBN . The states
|4〉 and |5〉 are not shown due to overlap with the |3〉 and |6〉 states.
Calculations were performed for all four μi, where the average
value of En from the four μi is denoted by the plot marker and the
boundaries of the shaded regions denote the minimum and maximum
values of En.

useful in guiding future efforts to engineer phosphorene MLs
with specific optical properties.

B. Indirect excitons

In this section, we present and analyze the same calculated
quantities as for the direct exciton, now for the indirect exciton
in a PHP HS. All quantities were calculated by solving
the Schrödinger equation with both the RK and Coulomb
potentials, for different interlayer separations corresponding
to NBN = 1, 2, 3, . . . , 8. We will adapt the notation X [i, k]
used in the previous section to accomodate the different
input parameters for the indirect exciton. Here, the notation
X [i, p, NBN] will denote “the quantity X calculated using μi,
the potential p = (RK, C), and interlayer separation NBN.”

In Fig. 2, we plot the dependence of the indirect exci-
ton eigenenergies En, n = 1, 2, 3, 6, on the interlayer sep-
aration, NBN, where all En were calculated for both the
RK (solid markers) and Coulomb (open markers) interaction
potentials.

The difference between the RK and Coulomb poten-
tials is significant only for the first couple eigenstates
at small interlayer separations. We find that the per-
cent difference between the RK and Coulomb poten-
tials decreases as NBN increases, that is, Eb[i, p%, NBN ] ≈
11%, 7.7%, 5.5%, . . . , 2% for NBN = 1, 2, 3, . . . , 8. The
excited state energies follow a similar trend, where we find
E2[i, p%, (1, 8)] ≈ (7.5%, 1.5%). As shown in Eq. (5) when
the relative separation |r| exceeds the screening length, ρ0 =
(2πχ2D)/κ , the RK potential converges to the Coulomb po-
tential. For a PHP HS with κ = 4.89 and χ2D = 0.41 nm,
we calculate ρ0 = 0.526 nm. Therefore one would expect the
RK and Coulomb potentials to converge as the total electron-

FIG. 3. Relationship between f j
0 and E j

tr for different interlayer
separations characterized by the number of h-BN monolayers, NBN.
The vertical range of the plots is [0,1], so that the horizontal grid
lines denote f j

0 = 0.2, 0.4, 0.6, 0.8. The location of the plot markers
denote the point (E j

tr[iavg.], f j
0 [iavg.]), while the axes of the ellipses

around each data point correspond to the minimum and maximum
values, respectively, of E j

tr[i] and f j
0 [i].

hole separation exceeds 0.526 nm. Considering that lBN =
0.333 nm, it is unsurprising that the indirect exciton binding
energies for the RK and Coulomb potentials start to overlap as
NBN > 2. The convergence of the excited state eigenenergies
is also the result of increasing electron-hole separation, since
the average separation of a two-particle bound state increases
as progressively higher excited states are accessed.

As with the direct exciton, the choice of μi does not
significantly change the indirect exciton binding energy—for
example, we calculate Eb[i%, p, 1] ≈ 6%, decreasing to about
Eb[i%, p, 8] ≈ 4%. Although the value of κ is the same, the
indirect exciton binding energy is reduced by about 40%
compared to the direct exciton in HE due to the increased
electron-hole separation in the PHP HS, from Eb[i, HE ] ≈
200 meV to Eb[i, p, 1] ≈ 120 meV.

In Fig. 3, we present our calculations of f j
0 for both the RK

and Coulomb potentials for NBN = 1–6. The f j
0 are shown in

separate plots for each value of NBN. Our calculations show
that increasing NBN leads to an increase in f j

0 and a decrease in
E j

tr . Similar numerical studies of the indirect exciton in Xene
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[68] and TMDC [67] heterostructures with interlayer h-BN
also indicated that f j

0 is an increasing function of NBN.
In general, f y

0 does not change much as NBN increases be-
cause f y

0 was already quite large for the direct exciton. On the
other hand, since f x

0 was small in the case of the direct exciton,
we observe a significant increase in f x

0 as NBN is incrementally
increased. We also find that Etr[i, C, NBN] > Etr[i, RK, NBN],
while f j

0 [i, RK, NBN] > f j
0 [i, C, NBN ], for any i and NBN.

Let us also mention an unusual trend in the range
of calculated f x

0 [i, p, NBN] with respect to increasing
NBN—whereas the f x

0 [i] become more tightly clustered as NBN

increases from 1 to 5, the values become more spread out as
NBN continues to increase from 5 to 8. The relative magnitudes
of the f x

0 [i] do not change with NBN nor with p—they are
always related by f x

0 [c] > f x
0 [d] > f x

0 [b] > f x
0 [a], as is

the case with the direct exciton for k = (SS, HS, HE).
Considering instead the incremental increase in f x

0 [i] with
NBN provides insight into the observed behavior. For example,
the calculated values of f x

0 [a] increase nearly linearly at small
NBN before their growth is suddenly and strongly suppressed
around NBN = 6, i.e., f x

0 [a, RK, (1, 2, 3, 4, 5, 6, 7, 8)] =
(0.523, 0.603, 0.671, 0.728, 0.773, 0.804, 0.820, 0.821).
By contrast, f x

0 [c] increases nearly linearly for all
NBN, i.e., f x

0 [c, RK, 2] − f x
0 [c, RK, 1] = 0.067, while

f x
0 [c, RK, 8] − f x

0 [c, RK, 7] = 0.057. For comparison, the
change in f x

0 [b], which in general is only slightly larger
than f x

0 [a], starts to taper off between NBN = 7 and NBN = 8,
suggesting that it is also approaching some kind of asymptotic
limit, while f x

0 [d], only slightly smaller than f x
0 [c], also shows

nearly linear growth throughout the range of NBN calculated
here.

We are therefore led to the conclusion that the incremental
increase of f x

0 [c] must be strongly suppressed for NBN � 8,
such that f x

0 [c] approaches some constant value less than 1.
On the other hand, it appears to be the case that the f x

0 [a]
has already converged towards its asymptotic value, which
must be close to the calculated value of 0.821 at NBN =
8—meanwhile, f x

0 [b] has an asymptotic maximum which
is probably not much greater than f x

0 [b, RK, 8] = 0.875.
Recalling μx

c > μx
d > μx

b > μx
a, it appears that the magnitude

of μ j is directly related to this asymptotic value of f j
0 at large

separations NBN, and furthermore that the NBN at which this
asymptotic value is reached also increases with μ j .

Heterostructures of 2D materials exhibit a variety of in-
teresting excitonic and optical behavior, including but not
limited to the ability to tune the excitonic optical absorption
strength and the corresponding transition energies. A more
comprehensive study, one which, for example, systematically
varies each input parameter individually over a broad yet
physically plausible range, is necessary. By examining in
detail how the excitonic properties change with respect to
variations in the individual input parameters, we can deepen
our understanding of which input parameters determine the
maximal asymptotic value of f j

0 and the interlayer separation
NBN at which the asymptotic value is reached, and whether or
not the asymptotic properties of f j

0 can be further tuned by
strain, dielectric environment, external electromagnetic fields,
etc., and if so, by how much these quantities may change when
these external tuning mechanisms are applied.

TABLE V. Dependence of the ratio f̃ j
0 , averaged over the μi,

on the number of h-BN monolayers, NBN, for the RK and Coulomb
potentials. The values of f̃ j

0 for each μi are tabulated in Table VI in
Appendix A. The units of f̃ j

0 are m−1
0 .

NBN = 1 NBN = 2 NBN = 3 NBN = 4 NBN = 5 NBN = 6

f̃ x
0 [iavg.] RK 7.531 8.557 9.441 10.22 10.89 11.46

C 6.963 8.155 9.136 9.981 10.71 11.33
f̃ y
0 [iavg.] RK 1.083 1.107 1.122 1.133 1.140 1.146

C 1.072 1.101 1.119 1.131 1.139 1.145

Let us now analyze in depth the effect that the choice
of interaction potential has on the optical properties of the
indirect exciton.

Our calculations show that the percent differences for
E j

tr and f j
0 between the RK and C potentials generally de-

crease as NBN increases. First, we find that E j
tr[i, p%, NBN ] >

En[i, p%, NBN], for all i, j, n, and NBN, i.e., the choice of
interaction potential leads to a larger difference in the op-
tical transition energies than in the corresponding individ-
ual eigenenergies, though in general the E j

tr[i, p, NBN] fol-
low the same trends with respect to increasing NBN as the
eigenenergies themselves. These differences between the RK
and Coulomb potentials decrease quickly with NBN, from
E j

tr[i, p%, 1] ≈ (14.5%, 16.5%) for j = (x, y), respectively,
to E j

tr[i, p%, 5] ≈ (4.2%, 4.9%).
Turning now to the oscillator strengths, we observe some

unusual deviations from the consistent patterns observed for
E j

tr . First, let us discuss the general relationship between f j
0 ,

NBN, and μi, returning later to the exceptions mentioned
earlier.

As mentioned earlier, since f y
0 is already quite large for

the direct exciton, it does not change significantly as NBN

increases. By the same logic, the percent difference in f y
0 [p%]

is similarly small and decreases sharply as NBN increases.
In particular, f y

0 [p%, (1, 8)] ≈ (1%, 0.06%), and further-
more, f y

0 [c, p%, NBN] > f y
0 [b, p%, NBN] > f y

0 [a, p%, NBN] >

f y
0 [d, p%, NBN], for all NBN. By contrast, the relationship

between f x
0 [i] and the interaction potential is less straight-

forward. Whereas f x
0 [(c, a), p%, 1] ≈ (6.4%, 8.87%), corre-

sponding to the minimum and maximum values, we find
unexpectedly that the relationship is reversed at large in-
terlayer separations, i.e., f x

0 [(c, a), p%, 7] = (1.28%, 0.19%).
Furthermore, the percent difference f x

0 [a, p%] actually in-
creases from NBN = 7 to NBN = 8, from 0.19% to 0.25%. This
is the only time that we observe an increase in the RK/C
percent difference of any quantity with increasing NBN.

While these quantities may not be noteworthy on their
own, they are analyzed in-depth here because of their unusual
deviation from the trends which until now have consistently
held true. It is unclear why only f x

0 shows this abnormal
progression, even as Ex

tr and f y
0 do not.

In Table V, we present the calculated ratios f̃ j
0 , averaged

over the four μi, for all NBN. We find that Ax[RK] increases
from about 5.5% to about 8.8% as NBN increases from 1
to 8, while Ay[RK] increases from about 0.81% to 0.87%
across the same range of NBN. The results for the Coulomb

155433-10



OPTICAL PROPERTIES OF ANISOTROPIC EXCITONS IN … PHYSICAL REVIEW B 100, 155433 (2019)

potential are very similar, especially for Ay and at larger
NBN for both x and y, though we find that Ax[C, 1] ≈ 5.1%,
nearly a 10% decrease compared to Ax[RK, 1]. The values of
the f̃ j

0 [i, p, NBN] for all i, p, NBN are given in Appendix A,
Table VI.

VI. ANALYSIS AND DISCUSSION

Now let us compare the properties of excitons in phos-
phorene to the properties of excitons in the TMDCs [67] and
the buckled 2D allotropes of silicon (Si), germanium (Ge),
and tin (Sn), known as silicene, germanene, and stanene, and
collectively as the Xenes [68]. In Ref. [67], the properties
of indirect excitons in a TMDC/h-BN heterostructure (THT
HS) were calculated using a similar method to the one used in
this work.

For indirect excitons in a THT HS, the binding
energies were calculated to be between Eb[RK, NBN =
1] = (90–110, 100–105, 90–105, 90–110) meV in MoS2,
MoSe2, WS2, and WSe2, respectively. Increasing the sep-
aration to NBN = 5, the binding energies were reduced to
between 50–70 meV for all materials, decreasing to about
40–55 meV at NBN = 8. Comparing these values to the results
shown in Fig. 2, we find that the binding energy of indirect
excitons in a THT HS is smaller than in a PHP HS by
about 5%–10%. The 1s → 2p optical transition energy of the
indirect exciton in a THT HS was calculated to be about
Etr[RK, (1, 5, 8)] = (50–60, 30, 20) meV. By comparison,
Fig. 3 demonstrates that the anisotropic exciton reduced mass
causes Ex

tr (Ey
tr) to be significantly larger (smaller) than the

analogous optical transition energy of the isotropic exciton.
To facilitate the comparison of the optical properties of

excitons in different materials, we use the absorption factor
A j to control for the factor of l , which is different for each
2D material, in the denominator of Eq. (10). For a THT
HS, the indirect exciton absorption factor was calculated to
be A[RK, 1] = 2%–3.7%, while in a PHP HS, we calcu-
late Ax[p, 1] ≈ 5.1%–5.5% and Ay[p, 1] ≈ 0.81%, with the
Coulomb potential yielding slightly smaller values of A than
the RK potential. The calculated values of A in the TMDCs
do not change significantly with increasing NBN, reaching
a maximum of about 2.5%–4.4% at NBN = 8, because f0

is already quite large at NBN = 1, similar to the observed
behavior of f y

0 in a PHP HS. Again, we see here that the
anisotropy of excitons in phosphorene leads to strongly en-
hanced (suppressed) optical activity under x- (y)-polarized
excitations.

Turning now to the properties of excitons in Xenes,
we note that a direct comparison is complicated by the
uniquely tunable nature of excitons in the Xenes. We will
restrict the discussion here to a range of E⊥ which lead
to binding energies that are comparable to excitons in
phosphorene.

In Ref. [68], the properties of both direct and indirect
excitons were calculated. For direct excitons, results were
obtained for freestanding (FS) Xene monolayers and for Si
monolayers encapsulated by h-BN. The properties of indirect
excitons were calculated using both the RK and Coulomb
potentials in Xene/h-BN heterostructures, primarily focusing
on silicene (SHS HS).

For the direct exciton in ML Xenes, it was cal-
culated that Eb[Si, FS] ≈ 740 meV for E⊥ ≈ 1.5 V/Å,
Eb[Ge, FS] ≈ 740 meV at E⊥ = 2.7 V/Å, while the bind-
ing energy in FS Sn reached a maximum of about
550 meV. Compared to Eb[HE] ≈ 200 meV in phospho-
rene, the direct exciton binding energy in HE Si reached
a maximum of about 350 meV at the maximum elec-
tric field of E⊥ = 2.7 V/Å, while the binding energy was
about 200 meV for E⊥ ≈ 0.8–1.2 V/Å.

Originally, calculations of α and A of excitons in the
FS Xenes were performed for � = 1013 s−1, but for con-
sistency we will instead assume � = 1014 s−1 as used here.
Since the tuning mechanism of excitons in Xenes involves
changing the charge carrier effective mass, the absorption
coefficient and absorption factor are strongly suppressed at
moderate to high electric fields, while the oscillator strength
increases with increasing electric field. In general, when the
electric field is large enough that the exciton binding energy
is comparable to that of phosphorene, the value of A in the
FS Xenes is only about 1%, much weaker than Ax[FS] but
comparable to Ay[FS]. On the other hand, A[Si, HE] ≈ 2%
at E⊥ = 1.0 V/Å, while Ax[HE] ≈ 3% and Ay[HE] ≈ 0.6%,
comparable to A in the FS Xenes.

For indirect excitons in an SHS HS, the maximum bind-
ing energy at E⊥ = 2.7 V/Å was calculated to be about
Eb[Si, p, 1] ≈ 150 meV, not much bigger than the value of
Eb[i, p, 1] ≈ 120 meV shown in Fig. 2. The data for A in an
SHS HS again show that indirect excitons are more optically
active than direct excitons, where A[Si, p, 1] ≈ 3%–4% for
E⊥ ≈ 1 V/Å. Also, A[Si, p, NBN] was found to depend only
weakly on the choice of interaction potential p, while the
change in A with respect to NBN is again quite small in the
SHS HS, comparable to Ay.

By comparing the properties of the anisotropic exciton in
phosphorene to isotropic excitons in the TMDCs and Xenes,
the effects of anisotropy are clearly emphasized. Whereas
binding energies were mostly comparable in all three types
of materials, the polarization-dependent optical properties of
anisotropic excitons in phosphorene are drastically different
from the optical properties of isotropic excitons in the TMDCs
and Xenes. In particular, the small value of μx in phosphorene
leads to a larger optical transition energy and significantly
enhanced optical absorption, while the corresponding optical
quantities for y-polarized excitations are much smaller than in
isotropic excitons.

VII. CONCLUSIONS

We study the optical properties of direct excitons in ML
phosphorene, and of indirect excitons in a PHP HS, by
calculating the x- or y-linear-polarization-dependent optical
transition energies, oscillator strengths, absorption coeffi-
cients, and absorption factors. To calculate these properties,
the eigenenergies and eigenfunctions of the exciton were
obtained by solving the Schrödinger equation using four
different sets of anisotropic exciton reduced masses found
in the literature. Additionally, we considered four different
dielectric environments for the direct exciton correspond-
ing to four common experimental (or theoretical, in the
case of FS phosphorene) configurations. For the indirect
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exciton, the Schrödinger equation was solved using both the
Rytova-Keldysh and Coulomb interaction potentials, and at
different interlayer separations D corresponding to an integer
number NBN = 1–8 of h-BN monolayers separating the ML
phosphorene. Further analysis of our results for direct and
indirect excitons was performed by examining how the results
changed with respect to the change in exciton reduced mass,
dielectric environment, choice of interaction potential, and
change in interlayer separation.

The intrinsic anisotropy of phosphorene manifests itself
most noticeably in the optical properties of both direct and
indirect excitons, where for direct excitons we predict that
αx > αy by as much as a factor of 8 in FS phosphorene,
with this difference decreasing to about a factor of four for
ML phosphorene encapsulated by h-BN. By combining the
calculated absorption coefficient with the known thickness
of ML phosphorene, we predict that direct excitons in a
single phosphorene ML may absorb as much as 3% of in-
cident x-polarized light, though this figure depends strongly
on the 2D exciton concentration in the ML as well as on
the line broadening of the excitonic transition. Analysis of
the relationship between the absorption coefficient and the
input parameters, and subsequent comparison to the optical
properties of isotropic excitons in TMDCs and Xenes, sug-
gests that the anisotropic mass is directly responsible for
enhancing (suppressing) optical activity along the crystal axis
with relatively light (heavy) exciton reduced mass.

While exciton binding energies were comparable between
the TMDCs, Xenes, and phosphorene, the excited states of the
anisotropic exciton exhibit significant deviations from those
of the isotropic exciton, where we find for the direct exciton
that Ex

tr[FS] > Ey
tr[FS] by nearly a factor of two, with this

difference decreasing as dielectric screening increases. The
exciton binding energy also strongly depends on the dielec-
tric environment, where we calculate direct exciton binding
energies of about 800, 350, and 200 meV, corresponding to
FS phosphorene, uncapped phosphorene on an SiO2 or h-BN
substrate, and ML phosphorene encapsulated by h-BN. Fur-
thermore, we find excellent agreement between our calculated
binding energies and previous theoretical and experimental
results.

The increased spatial separation of the electron and hole
in a PHP HS leads to a significant reduction in the indirect
exciton binding energy compared to the direct exciton in the
same dielectric environment. Specifically, we obtain an indi-
rect exciton binding energy of about 120 meV in an PHP HS
separated by only one ML of h-BN, compared to a direct exci-
ton binding energy of 200 meV in HE phosphorene. Whereas
the binding energy of the indirect exciton is reduced due to
the increased interparticle separation, we find that the optical
activity of the indirect exciton is enhanced compared to the
direct exciton, and furthermore, that the oscillator strength is
an increasing function of interlayer distance. As a result, we
predict that indirect excitons in a PHP HS can absorb up to
5% of an incident x-polarized excitation when separated by
one ML of h-BN, increasing to more than 8% absorption for
eight layers of h-BN, though we again note that the specific
values of these quantities depend heavily on external factors
such as exciton concentration and exciton broadening. Our
calculations of the optical absorption properties of anisotropic

excitons in phosphorene can be studied experimentally by
first creating excitons in the ground state via, e.g., optical
pumping, then inducing intraexcitonic transitions to the ex-
cited states.

In general, analysis of our results shows that increased
dielectric screening leads to a decrease in all calculated
quantities, i.e., the eigenenergies En, oscillator strength f j

0 ,
absorption coefficient α j , and absorption factor A j . The
calculated binding energies are not particularly sensitive to
the choice of μi, but the optical properties can vary signif-
icantly depending on the relative magnitudes of μx and μy.
In particular, our results indicate that the optical transition
energies E j

tr , absorption coefficients α j , and absorption factors
A j are decreasing functions of the corresponding reduced
mass μ j , while the oscillator strength f j

0 is an increasing
function of μ j . While the dependence of the optical properties
on the μ j is not completely straightforward, it is clear that
any mechanism which affects the anisotropic charge carrier
masses in phosphorene will in turn affect the optical properties
of excitons in phosphorene. Considering that phosphorene is
interesting to researchers precisely because of the external
tunability of its properties via, e.g., mechanical strain, an
exhaustive study of the dependence of the excitonic and op-
tical properties on parameters such as the anisotropic reduced
mass, Rytova-Keldysh screening length, and environmental
dielectric constant would be a welcome contribution to the
literature.

Our results represent the first comprehensive numerical
calculations of the eigenenergies and optical properties of
indirect excitons in a PHP HS with up to eight layers of
h-BN. Furthermore, our calculations support experimental
observations and theoretical studies of the direct exciton bind-
ing energy in ML phosphorene. We then expand upon these
results by analyzing the dependence of the optical properties
of excitons in phosphorene on a variety of common input
parameters. Our analysis indicates that the excitonic optical
properties are highly sensitive to the anisotropic effective car-
rier masses, which can be tuned experimentally. Finally, our
results demonstrate that an exhaustive study of the eigenstates
and optical properties of the anisotropic exciton, in particular
the dependence of these quantities on the input parameters
shown in Table I, is warranted.
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APPENDIX A: CONVENIENT SIMPLIFICATIONS TO THE
ANALYTICAL EXPRESSIONS FOR THE EXCITONIC

OPTICAL QUANTITIES

Examining Eqs. (7), (10), and (11), we see that f j
0 de-

pends directly on the numerically calculated eigenenergies
and eigenfunctions, while α j and A j are given by purely
analytical expressions, provided f j

0 is known. In other words,
f j
0 is the only optical quantity that depends directly on the

numerical results—on the other hand, l and κ are specified
for a particular scenario, while nX and � do not have specific
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TABLE IV. Tabulated values of the ratio f̃ j
0 ≡ f j

0 /μ
j
i for each

set of μi, as well as the absorption coefficient scale factor C̃D from
Eq. (A6). The units of f̃ j

0 are m−1
0 .

f̃ x
0 [a] f̃ x

0 [b] f̃ x
0 [c] f̃ x

0 [d] f̃ y
0 [a] f̃ y

0 [b] f̃ y
0 [c] f̃ y

0 [d] C̃D (m−1)

FS 9.96 9.56 7.51 8.21 0.93 1.01 1.33 0.94 3.082 × 106

SS 7.20 7.00 5.81 6.18 0.88 0.95 1.24 0.89 1.990 × 106

HS 6.36 6.20 5.25 5.53 0.86 0.93 1.21 0.87 1.796 × 106

HE 4.31 4.24 3.77 3.86 0.78 0.84 1.08 0.79 1.393 × 107

values. As a result, α j and A j will exhibit the same qualitative
behavior as the corresponding f j

0 and μ
j
i . By distinguishing f j

0
and the associated μ j from the constants and input parameters
l , κ , nX , and �, we aim to provide the reader with a simple
way to calculate α j and A j using different parameters than
those given in Table I. These quantities, which we call the
scale factors and denote by C for the absorption coefficient α j ,
and C for the absorption factor A j , act as a sort of conversion
factor between the cumbersome but straightforward analytical
expressions for α j and A j and the values of, e.g., μi and f j

0
which are unique to our numerical results.

Let us begin with Eq. (10), and as a first step separate the
physical constants from the input parameters:

α j = C

(
nX f j

0√
κμ j leff�

)
, (A1)

C = πe2

cm0ε0
= 3.335 × 10−5 m2/s, (A2)

where m0 is the rest mass of the electron.
Now, the fraction within brackets in Eq. (A1) contains

all possible input parameters used in calculating α j , but we
can further refine our expression for C by recognizing that
not every quantity shown in brackets in Eq. (A1) is a free
parameter. In particular, we consider only four values for
κ for the direct exciton and only one value for the indi-
rect exciton as shown in Table I. Similarly, we use only
leff = lphos and leff = 2lphos for the direct and indirect exciton,
respectively.

TABLE VI. Tabulated values of the ratio f̃ j
0 corresponding to

each of the μi, given in terms of the number of h-BN monolayers,
NBN, for the RK and Coulomb potentials. The units of f̃ j

0 are m−1
0 .

f̃ x
0 [a] f̃ x

0 [b] f̃ x
0 [c] f̃ x

0 [d] f̃ y
0 [a] f̃ y

0 [b] f̃ y
0 [c] f̃ y

0 [d]

NBN = 1 RK 8.310 8.039 6.615 7.161 0.957 1.037 1.366 0.973
C 7.603 7.382 6.024 6.663 0.947 1.026 1.348 0.964

NBN = 2 RK 9.577 9.227 7.350 8.073 0.976 1.059 1.402 0.993
C 9.070 8.750 7.076 7.725 0.971 1.054 1.392 0.988

NBN = 3 RK 10.66 10.27 7.967 8.866 0.988 1.073 1.424 1.005
C 10.29 9.904 7.758 8.593 0.985 1.070 1.419 1.002

NBN = 4 RK 11.57 11.17 8.530 9.596 0.996 1.083 1.440 1.012
C 11.31 10.90 8.354 9.367 0.994 1.081 1.437 1.011

NBN = 5 RK 12.28 11.93 9.073 10.29 1.002 1.090 1.451 1.018
C 12.11 11.73 8.916 10.09 1.001 1.088 1.449 1.017

NBN = 6 RK 12.77 12.53 9.612 10.94 1.007 1.095 1.460 1.023
C 12.68 12.40 9.469 10.77 1.005 1.094 1.459 1.022

There are now five possible values of C which are applica-
ble to our results:

CD = C√
κlphos

=

⎧⎪⎪⎨⎪⎪⎩
6.164 × 104 m/s, FS
3.980 × 104 m/s, SS
3.592 × 104 m/s, HS
2.788 × 104 m/s, HE

; (A3)

CI = C√
κ (2lphos)

= 1.394 × 104 m/s, (A4)

where the subscripts D and I denote direct and indirect
excitons, respectively.

Now Eq. (A1) can be further simplified to

α j = CD/I

(
f j
0

μ
j
i

)(nX

�

)
. (A5)

Now, the foundation of our results, which consist of the
numerically calculated eigenvalues and eigenfunctions, are
effectively contained within the fraction f j

0 /μ
j
i , for which we

will use the notational shorthand f̃ j
0 ≡ f j

0 /μ
j
i . On the other

hand, nX and � are essentially free parameters, insofar as the
values given in Table I are rough estimates meant to represent
typical values of these quantities. Using the default values of
nX and � given in Table I, we define the absorption coefficient
scale factor as C̃D/I = CD/I ( nX

�
) and obtain

C̃D =

⎧⎪⎪⎨⎪⎪⎩
3.082 × 106 m−1, FS
1.990 × 106 m−1, SS
1.796 × 106 m−1, HS
1.393 × 107 m−1, HE

;

C̃I = 6.969 × 106 m−1. (A6)

We also note that C̃D/I is independent of the x or y po-
larization of the excitation. Using Eqs. (A2), (A4), or (A6),
one can easily modify parameters such as nX or � to match
a particular scenario while still facilitating direct comparisons
with the results presented in Sec. V.

Ultimately, the values of α j presented in Sec. V can there-
fore be calculated using the following expression:

α j = C̃D/I
(

f̃ j
0

)
. (A7)

The calculation of the absorption factor A j can likewise be
simplified:

A j = 1 − exp
[ − C̃D/I

(
f̃ j
0

)]
, (A8)

where the dimensionless quantity C̃D/I ≡ C̃D/I leff is given by

C̃D =

⎧⎪⎪⎨⎪⎪⎩
1.668 × 10−3, FS
1.076 × 10−3, SS
9.717 × 10−4, HS
7.541 × 10−3, HE

;

C̃I = 7.541 × 10−3. (A9)

Finally we note that C̃D/I � f̃ j
0 , so that the exponent

in Eq. (A8) is always much smaller than unity. Applying
the well-known expansion of ex for small x, ex ≈ 1 + x +
(x2)/2 + . . . , the absorption factor can be approximated by

A j ≈ 1 − (
1 + ( − C̃D/I

(
f̃ j
0

)) + · · · ) = C̃D/I
(

f̃ j
0

)
. (A10)
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This convenient approximation may prove useful for quickly
estimating A j from the values of C̃D/I given above, along with
the values of f j

0 and μ
j
i presented in Sec. V.

APPENDIX B: ANALYSIS OF CALCULATED
EIGENFUNCTIONS

Since the Schrödinger equation (2) features anisotropy
along the x and y axes, the calculated eigenfunctions are most
conveniently characterized by the quantum numbers nx and ny,
in contrast to the isotropic case, where 2D polar coordinates
are used and the eigenfunctions are described in terms of the
principal and angular momentum quantum numbers, n and l ,
analogous to the 2D hydrogen atom [67,96,97]. The quantum
numbers nx and ny corresponding to a particular eigenstate can
be deduced by inspecting the eigenfunction and counting the
number of times the eigenfunction changes sign along each
axis. This is because eigenfunctions obey the empirical rule
that the number of times the eigenfunction crosses ψ (r) = 0
increases as the quantum number increases.

TABLE VII. Correspondence between the two notations for the
calculated eigenstates: ranked in order of decreasing eigenenergy
(|n〉), and in terms of the quantum numbers (nx, ny ). The correspon-
dence between these notations is primarily determined by inspecting
the calculated eigenfunctions, some of which are shown in Fig. 4.

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉
μa (0,0) (0,1) (0,2) (0,3) (0,4) (1,0)
μb (0,0) (0,1) (0,2) (0,3) (0,4) (1,0)
μc (0,0) (0,1) (0,2) (1,0) (0,3) (0,4)
μd (0,0) (0,1) (0,2) (0,3) (1,0) (0,4)

Discussion of the eigenstates of the anisotropic exciton is
further complicated by our computational method, which does
not explicitly characterize the excitonic eigenstates in terms
of the quantum numbers nx and ny, or indeed, in terms of
any set of quantum numbers. Instead, our calculations yield
only the eigenvalues and eigenfunctions, sorted by decreasing

FIG. 4. Comparison of the eigenfunctions for different eigenstates |n〉 and different choices of μi. The red (thick) lines represent plots
along the x axis with y constant, while the blue (thin) lines are plotted along the y axis with different constant values for x.
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eigenenergy. In the process of analyzing and discussing our
results, it may be instructive to refer to a particular eigenstate
not in terms of the quantum numbers nx and ny, but by
denoting it by its “rank” amongst all eigenstates produced
by a particlar calculation. In this case, we use the standard
ket notation |n〉, that is, the ground state (which of course
has the largest eigenenergy) is |1〉 and its eigenenergy is E1,
the first excited state (i.e., the state with the second-largest
eigenenergy) is |2〉, with corresponding eigenenergy E2, the
second excited state (corresponding to the state with the third-
largest eigenenergy, E3) is |3〉, and so on.

Curiously, we find that the ordering of the eigenstates
with respect to the quantum numbers nx and ny is sensitive
to the choice of μi. In other words, the anisotropic reduced
masses μx and μy change the eigenenergy of the first x excited
state (1,0) relative to the eigenenergies of the higher excited
states in y, in particular the states (0,3) and (0,4) as shown
in Table VII and in Fig. 4. Further analysis of the eigenfunc-
tions corresponding to |n > 6〉 confirms that the ordering of
the eigenstates in terms of (nx, ny) differs depending on the
relative magnitudes of μx and μy.

Finally, let us mention that while solutions to the
Schrödinger equation were obtained up to the |12〉 eigenstate,
we have restricted our discussion and presentation of the
results in the text to the first six eigenstates. Our reasons
for this are fourfold: (i) to reduce visual clutter in the fig-
ures and emphasize the lower eigenstates which are more
experimentally relevant; (ii) the optically active state (1,0)
can appear as late as |6〉, so we do not truncate our results
before this state; (iii) the eigenenergies of states |n > 6〉
change by a very small amount, and their optical activity is
very strongly suppressed due to the presence of other allowed
optical transitions to states with |n � 6〉; (iv) eigenstates be-
yond approximately |8〉 strain our numerical methods and can
occasionally yield physically ambiguous or even nonsensical
results.

In Fig. 4, we plot slices of the direct exciton eigenfunctions
along the x and y axes. Also shown on the plots are the
corresponding μi, the eigenstate |n〉, and the eigenenergy
of the state, En. We find that μa and μb share the same
internal structure, and so plots for μb are not shown. The
associations between |n〉 and (nx, ny) shown in Table VII
were determined by first examining the eigenfunctions (some
of which are shown in Fig. 4) and counting the number of
times the function changes sign along each axis, then cross-
referencing those associations with the allowed and forbidden
optical transitions of the anisotropic exciton, as determined
theoretically in Ref. [13] and supported by our numerical
results in Fig. 5.

However, we note that the plots of the (0,2) and (0,4) states,
corresponding to the states |3〉 (for all μi) and either |5〉 (for
i = a, b) or |6〉 (for i = c, d), respectively, clearly show that
the eigenfunction changes sign twice with respect to the x
coordinate, suggesting that the states should have quantum
number nx = 2. Considering that these anomalous eigenstates
appear before the (1,0) eigenstate for all μi, we conclude
that this behavior is an aberration, and not to be interpreted
as an appearance of a symmetric excited state in x (e.g., a
state characterized by nx = 2, 4, 6, . . . ). These eigenstates
are optically dark, so it is difficult to assess how the abnormal

FIG. 5. Allowed optical absorption transitions of the direct exci-
ton using the set μa from any initial eigenstate |ni〉 (corresponding
to the rows) to a final eigenstate |nf > ni〉 (corresponding to the
columns) given a linearly polarized excitation along either the x or y
axes. Allowed transitions are shown in red for x-polarized light and
blue for y-polarized light. Disallowed transitions are colored white.
Since the allowed optical transitions for radiative and absorptive
processes are the same, the plot is symmetric along the diagonal.
Therefore the bottom-left half of the plot has been colored gray to
reduce visual clutter.

behavior of the eigenfunction would affect calculations of the
optical properties related to these states, if at all.

In Fig. 5, the allowed and forbidden optical transitions
between the first six eigenstates are shown in blue for y-
polarized excitations and in red for x-polarized excitations.
Counting from the top-left of the plot, the row numbers
denote the initial eigenstate |ni〉, while the column numbers
correspond to the final eigenstate |n f 〉. Boxes lying to the right
(left) of the diagonal thus correspond to optical absorption
(emission) transitions, where the location of each box in the
array, specified by the ordered pair of (row, column) numbers,
corresponds to the initial and final eigenstates of the transition.
Each box corresponds to a possible optical transition, and the
color of the box is based on the result of calculating f x

0 and f y
0 .

The box was colored red (blue) if f x
0 ( f y

0 ) was calculated to be
nonzero, and was colored white if neither calculation returned
a nonzero result.

Due to intrinsic error both in the numerical eigenfunc-
tions themselves and resulting from numerical integration of
the dipole transition matrix element, the oscillator strength
was “nonzero” if it was greater than 10−4. The cutoff value
of 10−4 was chosen after computing f j

0 for all 12 calcu-
lated eigenstates and observing that the oscillator strengths
of allowed transitions decreased by roughly an order of
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magnitude for each successive allowed transition from a
given initial state. On the other hand, the numerical error
in the calculated oscillator strengths for “dark” transitions
was of the order of 10−10 or smaller for small ni and
n f , but reached as high as 10−7 for transitions involving
eigenstates n > 8.

Qualitatively, the allowed and forbidden optical absorption
transitions shown in Fig. 5 agree exactly with the theoreti-
cally predicted optical selection rules of Ref. [13]. Appar-
ently, the aforementioned anomalous eigenfunctions had no
effect on the calculation of the optical selection rules using
Eq. (7).
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