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Semiconductor-superconductor hybrid systems provide a promising platform for hosting unpaired Majorana
fermions towards the realization of fault-tolerant topological quantum computing. In this study we employ
the Keldysh nonequilibrium Green’s function formalism to model quantum transport in normal-superconductor
junctions. We analyze III-V semiconductor nanowire Josephson junctions (InAs/Nb) using a three-dimensional
discrete lattice model described by the Bogoliubov–de Gennes Hamiltonian in the tight-binding approximation,
and compute the Andreev bound state spectrum and current-phase relations. Recent experiments [Zuo et al.,
Phys. Rev. Lett. 119, 187704 (2017) and Gharavi et al., arXiv:1405.7455] reveal critical current oscillations in
these devices, and our simulations confirm these to be an interference effect of the transverse subbands in the
nanowire. We add disorder to model coherent scattering and study its effect on the critical current oscillations,
with an aim to gain a thorough understanding of the experiments. The oscillations in the disordered junction
are highly sensitive to the particular realization of the random disorder potential, and to the gate voltage. A
macroscopic current measurement thus gives us information about the microscopic profile of the junction.
Finally, we study dephasing in the channel by including elastic phase-breaking interactions. The oscillations
thus obtained are in good qualitative agreement with the experimental data, and this signifies the essential role
of phase-breaking processes in III-V semiconductor nanowire Josephson junctions.
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I. INTRODUCTION

Semiconductor-superconductor hybrid junctions have gen-
erated significant interest over the last decade. In particular,
III-V semiconductor (InAs/InSb) nanowires in proximity to
an s-wave superconductor have been extensively studied as
a platform for topological superconductivity [1–6]. Majorana
bound states (MBSs) emerge as zero energy edge excitations
in a gapped bulk spectrum of the topological superconducting
nanowire [7–15]. Signatures of MBS have been reported
as a zero-bias conductance peak in tunneling experiments
[1–5,16]. The 4π Majorana-Josephson effect has been pre-
dicted and observed in nanowire Josephson junctions tuned
to the topologically nontrivial regime [6,9]. With the massive
progress being made with nanowire setups, it is anticipated
that the focus will shift from the detection to the demon-
stration of non-Abelian statistics and finally to topological
quantum information processing [17–22]. The 4π Majorana-
Josephson effect forms the basis of braiding and readout
schemes of a recent topological qubit proposal [23].
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Josephson junctions based on semiconductor-
superconductor hybrids form the basis for microwave
quantum circuity [24] and superconducting qubits [25,26].
They afford an attractive alternative for a scalable computing
architecture with the possibility of an all-electric qubit control
[24,27,28].

Several studies have focused on the structure of transverse
subbands and magnetoconductance due to radial confinement
in semiconductor nanowires [29–32] and carbon nanotubes
[33]. Recent experiments study the critical current as a func-
tion of the magnetic field and gate voltage in nanowire Joseph-
son junctions tuned to the few-subband regime [34–36]. For a
magnetic field oriented along the nanowire axis, Zuo et al. [35]
measured a strong suppression of the critical current at fields
on the order of 100 mT in InSb weaklinks with NbTiN con-
tacts. At higher fields, the critical current exhibited local min-
ima (nodes). Similar results were obtained by Gharavi et al.
[34] for InAs-Nb Josephson junctions. Unlike the Fraunhofer
diffraction in wide planar junctions, the critical current nodes
were aperiodic in the magnetic field, and highly sensitive
to local fluctuations in the gate voltage. Motivated by these
experiments, the object of this paper is to theoretically analyze
few-mode nanowire Josephson junctions in a magnetic field
oriented along the nanowire axis. We thus employ the Keldysh
nonequilibrium Green’s function formalism (NEGF) [37–42]
to model quasiparticle transport in the junction, and compute
the evolution of the critical current as a function of the axial
field and chemical potential. Based on the simulations, we
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attribute the observed oscillations to the interference of the
transverse subbands in the nanowire. These results are crucial
in the design of Majorana setups [19–22] and in interpreting
experiments, particularly for those based on critical current
measurements [43–48].

Quantum transport traditionally involves excited states
and the use of a variant of the Landauer-Büttiker’s scat-
tering theory [38,49,50] for performing transport calcu-
lations. This essentially involves solving the Schrödinger
equation and an appropriate treatment of the boundary con-
ditions. In a superconductor, however, zero-bias transport
is essentially a ground state phenomenon supported by
Cooper pairs condensed at the Fermi level [51,52]. Blonder
et al. [53] generalized the scattering theory approach to
hybrid semiconductor-superconductor junctions by solving
the Bogoliubov–de Gennes equation across the N-S interface
[53]. Beenakker applied this formalism for mesoscopic N-S
junctions, thus providing a multichannel generalization of
Blonder’s results [54]. This technique has been prevalent in
the literature [55,56] ever since, and it forms the basis for
numerous simulation packages such as Kwant [57]. Despite its
benefits, the scattering theory approach is not very convenient
in dealing with disordered junctions. While phase-coherent
scattering processes can be included via random on-site po-
tentials, it is difficult to model phase-relaxing interactions.
Moreover, this formalism becomes intractable whenever a
self-consistent determination of the order parameter becomes
necessary. This self-consistent computation can be performed
using the correlation Green’s function [58,59], and various
dephasing mechanisms such as electron-electron and electron-
phonon interactions can be included through suitable self-
energy operators in the NEGF formalism. The compatibility
with phase-breaking processes is one of the main advantages
of NEGF over scattering theory. Our results indicate dephas-
ing to be essential in achieving qualitative agreement with the
experiment, and this is one of the key takeaways of this paper.

This paper is organized as follows. We start with the
Bogoliubov–de Gennes mean-field description of a one-
dimensional nanowire Josephson junction (SNS). In Sec. II
we describe the junction in a tight-binding model and outline
the key aspects of the NEGF formalism. The details of this
formalism have been relegated to Appendix A. Employing
the NEGF formalism, we compute the Andreev bound state
(ABS) spectrum and current-phase relationship (CPR) for this
junction. Previous work almost exclusively focused on the
Andreev approximation regime, which assumes the chemical
potential of the nanowire (μ) to be much larger than the super-
conducting order parameter (�0), i.e., μ � �0 [53,56,60,61].
We go beyond this Andreev approximation limit and inves-
tigate the bound states which anticross at a superconducting
phase difference of π between the leads. This anticrossing in
the ABS is further analyzed in Appendix B. In Sec. III we
model three-dimensional Josephson junctions in a discrete lat-
tice tight-binding model (Fig. 1). The radial confinement gives
rise to transverse angular momentum subbands which pick up
characteristic phases in a magnetic field. Section III B details
the procedure we follow to label these angular momentum
subbands. In Sec. IV we reproduce the critical supercurrent
oscillations in the presence of an axial magnetic field. Our
results confirm these observed oscillations to be arising from

FIG. 1. (a) Schematic of the nanowire Josephson junction. The
length L of the junction is defined by the superconducting contact
separation. A set of bottom gates tune the local chemical poten-
tial. Our model treats the junction as a normal (N) cuboidal cross
section (green) with flat superconducting (S) leads (blue). (b) The
discrete lattice structure of our model—highlighted in a section of the
nanowire. The red spheres form the lattice sites in an effective tight-
binding approximation. The length of the nanowire is controlled by
the number of layers of the N region. A potential U on the inner
lattice points (yellow sites) confines the particles to surface of the
nanowire. The transverse square cross section is 60 nm wide.

the interference between orbital channels of the junction.
With the aim of gaining a thorough understanding of the
experiments, we consider scattering processes in the nanowire
and study the effect of disorder, gate voltage fluctuations, and
phase-breaking processes on the critical current oscillations.

II. FORMALISM

Superconducting correlations are induced in a proximitized
semiconductor by electron-hole conversions at the interface,
a process known as Andreev reflection [62,63]. Low bias
transport in normal (N)-superconductor (S) junctions involves
Andreev reflections at the interface. We first consider a
one-dimensional SNS junction consisting of a semiconduc-
tor nanowire with superconducting contacts. We model this
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FIG. 2. Schematic of the SNS junction with a semi-infinite su-
perconducting leads and an N device region. The length L of the
nanowire is given by the number of lattice points (n) in the N region
[L = na], where a is the effective lattice constant. α and β are the
tight-binding on-site and nearest neighbor coupling terms, respec-
tively. �0 and χ is the magnitude and phase of the superconducting
order parameter.

system using the Bogoliubov–de Gennes (BdG) mean-field
Hamiltonian within the tight-binding approximation H =
H0 + Hp, where

H0 =
∫

dz
∑

σ

ψ†
σ (z)

(
− h̄2

2m∗ ∂2
z + V (z) − μ

)
ψσ (z), (1)

Hp =
∫

dzψ†
↑(z)�(z)ψ†

↓(z) + H.c. (2)

H0 is the single-particle effective Hamiltonian, ψσ is the
field operator with spin index σ ∈ {↑,↓}, m∗ is the electron
effective mass, and V models a potential energy induced in
the junction. The chemical potential is defined as the energy
difference between the lowest occupied subband and the
Fermi energy, and is denoted by μ. We assume an identical
effective mass in the N and S regions thus neglecting the
Fermi wave-vector mismatch at the interface. �(z) is the
superconducting order parameter along the junction, which
we assume to be constant with jump discontinuities at the N/S
interfaces:

�(z) = ϑ (−z)�0eiχL + ϑ (z − L)�0eiχR , (3)

where ϑ (x) is the unit step function at x = 0, χL,R is the super-
conducting phase of the left and right leads, respectively, and
φ = χL − χR is the phase difference. In the [ψ†

↑(r), ψ↓(r)]
Nambu basis, we have the BdG equation[

H0 �(z)
�∗(z) −H∗

0

][
u(z)
v(z)

]
= E

[
u(z)
v(z)

]
. (4)

The device is divided into three parts—a normal semicon-
ductor section with a length L extended over z ∈ [0, L], and
semi-infinite superconducting contacts extending to z = ±∞
on either side of the semiconductor (Fig. 2).

We discretize the continuum model of Eqs. (1) and (2) into
a lattice model with a spacing of a. This is shown in Fig. 2.
The superconductors are modeled as semi-infinite leads, while
the number of lattice points in the normal region controls the
length of the nanowire. The on-site tight-binding parameters
in the normal and superconducting regions, in the Nambu
representation, are

αN =
[

2t − μ 0
0 −2t + μ

]
, (5)

αS =
[

2t − μ �

�∗ −2t + μ

]
, (6)

where t = h̄2/(2m∗a2) is the nearest neighbor tight-binding
hopping parameter. The hopping matrix is given by

β =
[−t 0

0 t

]
. (7)

This is not an atomic model, but an “effective” discrete lattice
description of the junction. Parabolic dispersion relations cor-
respond to the parameter space μ � t . Typical experiments
are set up in the μ � �0 (Andreev approximation) regime.
Hence, the choice of the effective lattice parameter a is bound
by the inequalities

t � μ � �0. (8)

The device Hamiltonian is subsequently written as

H =
n∑
i

c†
i αN/Sci +

n∑
|i− j|=1

c†
i βc j, (9)

where c†
i is the creation operator of the Nambu spinor

[ψ†
↑(r), ψ↓(r)] at site i, and n = L/a is the number of sites

in the device. The Hamiltonian of the normal region can be
written in the general form

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

αN β 0 . . . 0
β† αN β 0 0

0 β† αN β
...

... 0
. . .

. . . β

0 . . . . . . β† αN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

A. Andreev bound states in SNS junctions

Andreev reflections at the N/S interfaces give rise to
Andreev bound states in the semiconductor. We use the NEGF
formalism to compute these bound state energies as a function
of the superconducting phase difference (φ) of the leads. The
retarded Green’s function in the energy domain is given by

Gr (E ) = (EI + iη − H − r
1 − r

2

)−1
, (11)

where E denotes the energy, I is the identity matrix, and η

is an infinitesimal real constant. The Hamiltonian H is given
by Eq. (10). The self-energy terms r

1,2 model the coupling
of the device to the semi-infinite leads. The self-energy is not
Hermitian, and its anti-Hermitian part is responsible for the
finite lifetime of the electron in the device. This subsequently
contributes to broadening the energy levels in the device.
The self-energies are computed using the surface-Green’s
function, which requires an iterative procedure as outlined in
Appendix A.

We compute the density of states (d) in the nanowire as the
trace of the spectral Green’s function

d (E ) = 1

2π
Tr[A(E )] = 1

2π
Tr{i[Gr (E ) − Ga(E )]}. (12)

The real-valued singularities of the density of states are the
Andreev bound state (ABS) energies. This is computed as a
function of the phase difference (φ) of the order parameter
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FIG. 3. Andreev bound state spectrum as a function of the su-
perconductor phase difference for a clean, short one-dimensional
SNS junction. The junction is tuned into the Andreev approximation
regime with μ = 30�0.

of the contacts and is shown in Fig. 3. The parameters for
this computation are consistent with the Andreev approxima-
tion [60,62–64] (μ � �0). As discussed in Appendix B, the
breakdown of this approximation is manifested as an avoided
level crossing in the ABS spectrum.

B. Current-phase relationship

The current-phase relationship (CPR) links the macro-
scopic current flow in the junction to the phase gradient of
the superconducting order parameter [65,66]. The traditional
approach to computing the CPR involves a demarcation of the
bound state and continuum currents. The bound state current
involves transport in the subgap energy range (|E | < �0)
while the continuum current is supported by the continuous
energy spectrum outside the gap. Once the ABS spectrum is
computed from scattering theory, a thermodynamic relation is
used to calculate the bound state current, and the transmission
formalism is used for the continuum current. The total current
is the sum of the bound state and continuum currents [61].

By contrast, when using the NEGF formalism, the current-
energy density can be computed at contact i, as a function of
the phase difference φ using the current operator [38,39]

Ji(E ) = 2e

h
f (E )Tr

{
Re
[
Ga(E )a

i (E ) − Gr (E )r
i (E )

]
τz
}
,

(13)

where f (E ) = 1/[exp (E/kBT ) + 1] is the Fermi-Dirac occu-
pation probability for a given energy level and kB is the Boltz-
mann constant. Gr(a) and 

r(a)
i are the retarded (advanced)

Green’s function and contact i self-energy, respectively. To
incorporate the opposite charge of electrons and holes we use
the Pauli-z operator (τz) in the particle-hole Nambu space.
This current operator is reviewed in Appendix A. The total
current at a phase difference φ is then given by

I (φ) =
∫ ∞

−∞
Ji(E )dE . (14)

Figures 4(a) and 4(b) compares the current-phase relations
for a short (L < ξ0) and long junction (L > ξ0), respectively,
as calculated from ideal scattering theory and NEGF. Here
ξ0 is the healing length as defined in the following section
[Eq. (22)]. By the term “ideal scattering theory” we refer to

FIG. 4. The total current-phase relation in an SNS junction com-
puted from the NEGF current operator (orange) is compared with
the ideal scattering theory (purple) calculations (see text). The CPR
is plotted in the (a) short channel (L = 40 nm) and (b) long chan-
nel (L = 400 nm) limit, chemical potential μ = 30�0, and healing
length ξ0 = 222 nm. We recover the expected sawtooth profile for
the total current using the NEGF formalism.

a scattering approach which explicitly neglects normal reflec-
tions at the N/S interface in a clean junction [55,56,60,61].
With this assumption of no normal reflections, the bound
states in a clean junction cross at φ = π . Hence, there is
a discontinuity at φ = π in the CPR calculated using this
method. The NEGF result is expected to match scattering
theory exactly in the μ � �0 limit.

III. TRANSVERSE SUBBANDS IN JOSEPHSON
JUNCTIONS

We now consider a more realistic three-dimensional model
of the junction with a magnetic field along the nanowire axis,
parallel to the direction of current flow. Figure 1 illustrates a
discrete lattice model of the three-dimensional nanowire. The
junction is along the z direction and the transverse subbands
are on the x-y plane. In III-V semiconductors (InAs, InN) the
charge carriers are typically confined close to the surface due
to a positive surface potential, forming a surface accumulation
layer. In accordance with this, we use a shell conduction
model by including a large surface confining potential U at
the core of the nanowire (yellow sites in Fig. 1). The radial
confinement and azimuthal periodicity of the nanowire gives
rise to transverse subbands.

The single-electron Hamiltonian of the nanowire is

H0 = −μ + −h̄2

2m∗
∂2

∂z2
+ HT + U, (15)
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FIG. 5. The Andreev bound state spectrum for an SNS junction with three occupied subbands is plotted in (a) an axial magnetic field with
� = 0.01 and (b) � = 0.03. The subgap density of states (green) and average angular momentum quantum (purple) at φ = π is plotted in
(c) � = 0.01 and (d) � = 0.03. The nanowire has a square cross section (Fig. 1) and hence the transverse subbands do not have quantized
angular momenta. Nevertheless, the computed average angular momenta indicate than each subband is primarily composed of a single angular
momentum eigenstate, and have been correspondingly labeled. The nanowire length L = 8 nm, chemical potential μ = 5�0, and healing
length ξ0 = 90 nm.

where z is the longitudinal direction, U is the surface confine-
ment potential, and HT is the Hamiltonian of the transverse
modes.

For a cylindrical nanowire, the rotational symmetry about
the longitudinal axis results in angular momentum (�) sub-
bands. This is because

[HT , L̂z] = 0, (16)

where L̂z is the angular momentum operator in the z direction.
Hence, � is a good quantum number. The � subbands are
eigenstates of the L̂z operator, labeled by their eigenvalue

L̂z|�〉 = h̄�|�〉. (17)

We can consider the square cross section in Fig. 1 as a per-
turbation to an ideal cylindrical geometry. Each of the trans-
verse subbands in a square cross section can be written as a
superposition of angular momentum eigenstates. In Sec. III B
we compute the average angular momentum of each trans-
verse subband, and observe only a small difference (see Fig. 5)
from the unperturbed quantized eigenvalues (h̄�). We will thus
work within the zeroth order of this perturbation and use the
language of angular momentum subbands in our analysis.

The azimuthal motion of the Andreev quasiparticles cou-
ples with the applied magnetic field, resulting in a quasipar-
ticle phase pickup. Oscillations in the maximal supercurrent
(critical current) with field have been measured by Gharavi

et al. [34] and Zuo et al. [35]. Unlike the Fraunhofer inter-
ference in wide planar junctions, the field is aligned with the
current and the oscillations do not show any periodicity.

Using Peierls substitution, we include the orbital effect of
the vector potential in the phase of the transverse hopping.
For a constant magnetic field along the z direction, the vector
potential can be written as

A = Bxŷ. (18)

Within the tight-binding approximation, the on-site and
hopping matrices in the particle-hole Nambu space are given
by

αN/S =
[

h �N/S

�∗
N/S −h∗

]
, (19)

where h = 2tx + 2tz + |ty|[2 + (2πnx�a)2] − μ,

βx,z =
[−tx,z 0

0 tx,z

]
, (20)

βy =
[−tyei2πnx�a 0

0 tye−i2πnx�a

]
, (21)

where �a is the flux quanta per unit cell of the nanowire cross
section, and nx is the lattice site index in the x direction. This
factor alters the on-site energy (αN/S) and contributes a phase
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to the hopping term corresponding to the gauge chosen for the
vector potential [Eq. (18)].

A. Andreev bound states in a magnetic field

Figures 5(a) and 5(b) plot the subgap density of states
as obtained from the spectral Green’s function [Eq. (12)]
for a nanowire with an InAs effective mass m∗ = 0.023me

[67] (me is the bare electron mass), radiusR = 30 nm, and
chemical potential μ = 5�0. As described in Appendix B,
the bound states anticross at φ = π due to normal reflections
at the N/S interfaces. A normalized flux of � = 0.01 (0.03)
is applied in Fig. 5(a) [Fig. 5(b)], which breaks symmetry in
the transverse direction [Eq. (18)] and lifts the degeneracy
of the ±� subbands. Here � = BS/�0, where S is the cross-
sectional area, and �0 = h/e is the flux quantum.

The chemical potential is adjusted to populate three sub-
bands. In Fig. 5 we see that the � = 0 subband remains
unaffected, while the � 
= 0 subbands split in the presence of
an axial flux. The splitting is proportional to the flux and the
subband angular momentum. The process used to label the
subbands is described in Sec. III B.

The characteristic length scale associated with an occupied
subband is called the healing length (ξ�) [56,61] and is given
by

ξ� = h̄vF,�

2�0
. (22)

vF,� is the Fermi velocity and is given by

vF,� =
√

2

(
μ − h̄2

2m∗R2
(�2 + �2)

)/
m∗. (23)

We have a “short junction” when the nanowire is shorter
than the healing length (L < ξ�). Note that the healing length
depends on the angular momentum quantum number, and
the classification of the junction as long/short is subband
dependent.

We now describe a procedure to label the angular-
momentum subbands using the correlation Green’s func-
tion (Gn).

B. Average angular momentum of the transverse subbands

The angular momentum of the subbands can be computed
as the expectation of the L̂z operator [Eq. (17)], however,
we do not have access to the wave functions in a numeri-
cal simulation. We do have the correlation Green’s function
−iG< = Gn which gives the particle-hole density per unit
energy. Using this, we find the expectation of the L̂z operator
as a function of energy

〈L̂z〉 = Tr[Gn(E )L̂z]

maxE {Tr[Gn(E )]} , (24)

where maxE {Tr[Gn(E )]} returns the peak subgap quasiparti-
cle concentration. In the Cartesian coordinate system, the L̂z

operator is written as

L̂z = x̂ p̂y − ŷ p̂x. (25)

The position operators x̂, ŷ are diagonal in the tight-binding
basis, with each entry a multiple of the lattice constant (a).

For example, if we consider two points along the x and y axis,
and one along z, we have the following position operators:

Ix ⊗ ŷ=a

⎛
⎜⎝

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎠, x̂ ⊗ Iy = a

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎠.

(26)
The linear momentum operators can be written as

p̂i = −i
m

h̄
[x̂i,H0], (27)

where the subscript i is used to denote x, y basis of the position
and momentum operators. Using Eqs. (25)–(27), we write the
L̂z operator and using Eq. (24) we find the expectation of L̂z

as a function of energy.
We employ the above procedure to compute the average an-

gular momentum of the Andreev bound states in an SNS junc-
tion. The chemical potential is fixed to give us three occupied
subbands (� = 0,±1). The average angular momentum of the
subbands at � = 0.01, φ = π is shown in Fig. 5(c). Next,
we increase the axial magnetic flux through the nanowire to
� = 0.03. The � = ±1 subband states further split [Fig. 5(b)],
and the angular momentum of the subbands is plotted in
Fig. 5(d) for φ = π . The zero angular momentum subband
(� = 0) has no azimuthal motion, and hence is unaffected
by the axial field. A nonzero 〈Lz〉 for the � = 0 subband
[Figs. 5(c) and 5(d)] results from its hybridization with the
nearby � = −1 subband. This consequently decreases the 〈Lz〉
magnitude for the � = −1 subband with respect to � = +1.

From Figs. 5(c) and 5(d) we infer that each transverse
subband is primarily composed of a single angular momentum
eigenstate. This resemblance to the subband structure of an
ideal cylindrical nanowire is the basis for Sec. III D, where
we build an effective subband model by including of a fixed
number of angular momentum subbands. In the next section
we explain the importance of including only the zero angular
momentum subband in the superconducting contacts.

C. Zero angular momentum subband in the superconductor

The BdG Hamiltonian in a superconductor is given by[
H0 �

�∗ −H∗
0

][
u
v

]
= E

[
u
v

]
. (28)

For a cylindrical geometry with an azimuthal vector potential,
H0 is given by

H0 = − h̄2

2m∗
∂2

∂z2
+ 1

2m∗

(
−ih̄

1

R

∂

∂θ
− eAθ

)2

− μ. (29)

As discussed, the radial confinement due to the nanowire’s
cylindrical geometry gives rise to angular momentum sub-
bands labeled by �.

We will analyze the eigenenergies of this superconductor
in the presence and absence of a magnetic field.

1. Zero magnetic field, B = 0, A = 0

Using the ansatz wave function exp(ikzz) exp(i�θ ), the
diagonal elements of the BdG Hamiltonian can be written as

h� = h̄2k2
z

2m∗ + h̄2�2

2m∗R2
− μ = h̄2k2

z

2m∗ − μ�,

155431-6
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where μ� is the effective chemical potential

μ� = μ − h̄2�2

2m∗R2
. (30)

The BdG Hamiltonian simplifies to

HBdG =
[

h� �

�∗ −h�

]
(31)

and its eigenvalues E are given by

E = ±
√

h2
� + �2

0. (32)

This is the well-known superconductor dispersion relation,
with a gap of �0 on either side of the Fermi level.

2. Constant axial magnetic field, B = Bzẑ

In the Coulomb gauge we can write the vector potential for
this magnetic field as

A = Aθ θ̂. (33)

From Stoke’s law ∮
A · Rdθ =

∫
B · dA. (34)

Exploiting the symmetry of the cylindrical geometry, the
above equation can be simplified to

Aθ = �h̄

eR
. (35)

Using the same ansatz exp(ikzz) exp(i�θ ), the diagonal ele-
ments can be written as

ζ e
� = h̄2k2

z

2m∗ + h̄2(� − �)2

2m∗R2
− μ = h̄2k2

z

2m∗ − μ� − E�, (36)

ζ h
� = h̄2k2

z

2m∗ + h̄2(� + �)2

2m∗R2
− μ = h̄2k2

z

2m∗ − μ� + E�, (37)

for the electron and hole parts, respectively. The effective
chemical potential μ� is defined in Eq. (30), and the field-
coupling term E� = h̄2(2��)

2m∗R2 . We note that

ζ
e(h)
� = h� ∓ E�. (38)

The BdG Hamiltonian can then be written as

HBdG =
[

h� �

�∗ −h�

]
− E�I (39)

and the eigenvalues E are given by

E = ±
√

h2
� + �2

0 − E�. (40)

Thus, we see that a magnetic field “shifts” the superconduct-
ing gap. It is no longer centered at the Fermi level.

While this may be a good model for a superconducting
“nanowire,” experimental setups usually involve a super-
conductor sputtered into quasiplanar contacts [34,35] which
naturally support only the � = 0 subband. The geometry of
the superconducting contacts implies a large � 
= 0 subband
energy, and can safely be assumed to remain unpopulated.
This difference in geometry prompts the inclusion of � 
= 0

FIG. 6. The Andreev bound state spectrum in an SNS unction
for a nanowire length L = 160 nm, chemical potential μ = 30�0,
and healing length ξ0 = 222 nm. The purple curves are the � = ±1
subbands, and the � = 0 state are plotted in orange. The green dotted
horizontal lines indicate the subgap (E < �0) region. We observe
a shift of the superconducting gap when we have (a) � 
= 0 in the
contacts. In (b) we constrain the contacts to have � = 0 and confirm
that the gap does not shift. The ABS curves of the � = ±1 subbands
are phase shifted while the � = 0 subband is unaffected. The plot
linewidths are proportional to the density of states.

subbands in the nanowire, and their exclusion in the super-
conductor.

For � = 0, we have E� = 0, and thus the superconducting
gap stays centered at the Fermi level. This is illustrated in
Fig. 6—when � 
= 0 subbands are included in the supercon-
ductor [Fig. 6(a)], the ABS move vertically as a result of
the shift in the superconducting gap. However, with only the
zero angular momentum subband � = 0 in the superconductor
[Fig. 6(b)], the ABS curves are horizontally phase shifted
while the superconducting gap remains fixed. This shift is
proportional to the applied flux, and the angular momentum
of quasiparticles occupying the subband.

From Eqs. (36) and (37) the effective chemical potential
for electronlike (holelike) particles in the � subband in the N
section is given by

μ
e(h)
� = μ − h̄2

2m∗R2
(� ∓ �)2. (41)
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The electron and hole wave numbers can then be written as a
function of energy (E ),

ke(h)
� (E ) =

√
2m∗

h̄

√
μ

e(h)
� ± E . (42)

D. The one-dimensional effective subband model

As outlined above, it is important to ensure that we only
have the � = 0 subbands in the contacts. We also note from
Eqs. (30) and (41) that we can incorporate the effect of the
angular momentum subbands via an effective potential μ�,
and a field-coupling term E�.

The tight-binding Hamiltonian of the nanowire can be
written as

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

A B 0 . . . 0
B† A B 0 0

0
. . .

. . .
. . . 0

... 0
. . .

. . . B
0 0 0 B† A

⎤
⎥⎥⎥⎥⎥⎥⎦

, (43)

A = (α−l ⊕ · · · ⊕ α+l ) and B = IN�
⊗ β, (44)

αl =
[

2tz − μ + ty(l − �)2 0
0 −2tz + μ − ty(l + �)2

]
,

(45)

β =
[−tz 0

0 tz

]
, (46)

where N� is the number of subbands. For example, N� = 3 ⇒
(� = −1, 0, 1) and In is the n × n identity matrix.

Meanwhile, the Hamiltonian of the contacts takes a similar
form with

A = (IN�
⊗ α0) and B = IN�

⊗ β. (47)

IV. SUPERCURRENT OSCILLATIONS

A. Clean junction

We compute the CPR of an SNS junction at finite axial
magnetic fields, assuming a shell conduction model, and a
nanowire diameter of 60 nm. Temperature is set to T =
100 mK in all the simulations. In Fig. 7(b) we show the
CPR as a function of the magnetic flux for a single occupied
subband. With only the � = 0 subband populated, there is
no phase shift in the ABS, and the CPR retains its sawtooth
shape with a maximum near φ = π . The critical current as a
function of the flux is plotted in Fig. 7(a). The gradual fall in
the critical current can be attributed to the decrease in aver-
age quasiparticle momentum with increasing flux, as shown
in Eq. (23). Eventually, at � = 4.04 the band depopulates
[min (μe

�, μ
h
� ) = 0] and the current falls to zero. We observe

in Fig. 7(a) that the critical current does not monotonically
decrease to zero, particularly for � ∈ [3, 4]. The appearance
of these small oscillations is due to the interference with the
quasiparticles normally reflected from the N/S interfaces. As
discussed in Appendix B, the discontinuity in the density of
states gives rise to normal reflections. These reflected quasi-
particles interfere and result in the nonmonotonic decrease of
the single subband critical current.

FIG. 7. (a) The critical current is plotted as a function of the
applied magnetic flux for a single occupied subband. (b) The current-
phase relation (CPR) is plotted for � = 0, � = 2.5, and � = 4.
With a single occupied subband, the CPR retains its sawtooth shape,
peaking near φ = π . In the absence of intersubband interference,
oscillations in the critical current are not observed. The simulations
were performed for L = 160 nm, μ = 30�0, ξ0 = 222 nm.

Next, we consider the case when three subbands are oc-
cupied (|�| � 1). The magnetic field evolution of the CPR is
plotted in Fig. 8. Since the ABS for the |�| = 1 subbands are
phase shifted in the presence of a flux [Fig. 6(b)], the total
current is no longer maximum near φ = π . The current in
the junction is the sum over the individual subband currents,
and consequently, the flux-dependent phase shift results in
an interference pattern for the field evolution of the critical
current. The phase shift in a subband CPR is proportional to
the difference in the electron-hole wave numbers (ke

� − kh
� )

[Eq. (42)], and the length L of the junction. Hence, the fluxes
at which the subband currents constructively interfere need
not occur at integer multiples of the flux quantum �0 = h/e.

In Fig. 8(a) we plot the critical current for three occupied
subbands as a function of the axial flux. We see several
oscillations of the critical current before the |�| = 1 subbands
depopulate at � = 3.04. At zero flux, the CPR of each
subband is maximum near φ = π and hence they all add
up constructively. As illustrated in Fig. 8(b), each subband
contributes equally to the critical current.

As the flux is increased, the electron-hole pairs in the
|�| = 1 subbands pickup a phase and the subband CPRs
no longer interfere constructively. Consequently, the critical
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FIG. 8. (a) The critical current is plotted as a function of the applied magnetic flux with three occupied subbands (� = 0, ±1). The black
dotted vertical line indicated the flux at which the � = ±1 subbands depopulate. The current-phase relation (CPR) is plotted for (b) the primary
maxima at � = 0, (c) the minima at � = 0.72, and (d) secondary maxima at � = 1.08 (see text). In (b), (c), and (d), the current supported by
the � = 0 and � = ±1 subband(s) is plotted in orange and purple, respectively. The sum of these is the total CPR, which is plotted in green. The
black dotted vertical lines indicate the phase difference corresponding to the critical current. The |�| = 1 subbands pick up a phase proportional
to the difference in the quasiparticle momenta and hence the |�| = 1 subband CPR transforms with the applied field. The simulations were
performed for L = 160 nm, μ = 30�0, ξ0 = 222 nm.

current decreases with flux. At � = 0.72, the � = 0 and � =
±1 subband CPRs are maximally out-of-phase, resulting in
a local minima (node). The subband and total CPR at this
node is plotted in Fig. 8(c). Beyond � = 0.72, the critical
current switches phase from φ < π to φ > π and the current
increases again. This increase persists till � = 1.08 at which
point the current is maximum near φ = 2π . At this flux,
the |�| = 1 subband current peaks near φ = 2π while it is
negligible near φ = π . Hence, this secondary peak—which
only involves contribution from |�| = 1 subbands—is approx-
imately two-thirds of the primary peak and corresponds to
a phase pickup of π in the aforementioned subbands. The
subband and total CPR for the secondary peak is shown in
Fig. 8(d). As noted earlier, the magnitudes of the primary and
secondary peaks progressively diminish due to the decrease in
average quasiparticle velocity.

Finally, we consider the situation when five subbands are
occupied (|�| � 2). The critical current is plotted as a function
of the magnetic flux in Fig. 9. Once again, at � = 0 the
subband currents are all in-phase and constructively interfere
to give a maximum. In the presence of a magnetic field, the
quasiparticles in the |�| = 1 and |�| = 2 subbands pick up dif-
ferent phases and hence, they do not appear to constructively
interfere again in the presence of a magnetic field to recover
the zero field critical current.

The absence of such oscillations with a single occupied
subband [Fig. 7(a)] confirms the subband supercurrent inter-
ference as the causal agent.

B. Effect of disorder

In order to simulate experimentally relevant conditions, we
include a random uncorrelated on-site disorder potential u ∈
[−W,W ] in the semiconductor. This models phase-coherent
scattering events in the junction. We parametrize the disorder
by the mean-free path (λmf), which is estimated from the

FIG. 9. The critical current is plotted as a function of the applied
magnetic flux with five occupied subbands. The black vertical dotted
lines denote the depopulation of the subbands, in a descending order
of the angular momentum quantum number. The |�| = 1, 2 subbands
pick up a phase proportional to the difference in the quasiparticle
momenta and hence the critical current oscillates with the applied
flux. The simulations were performed for L = 160 nm, μ = 30�0,
ξ0 = 222 nm.
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FIG. 10. The critical current oscillations for a disordered SNS
Josephson junction. The disorder is parametrized by the mean-
free path (λmf) which is calculated from the normal state disorder-
averaged conductance using Eq. (48). Each subfigure shows the
critical current evolution for a particular realization of the disorder,
and is labeled by the mean-free path λmf and nanowire length L.
The chemical potential μ = 30�0 for all the plots. (a) and (b) show
the oscillations for two different realizations of a random disorder
potential resulting in λmf = 30 nm.

disorder-averaged normal state conductance (g) using the
following relation:

g = 2e2

h
N�

1

(1 + L/λmf)
. (48)

N� is the number of subbands and L is the length of the
junction.

In Fig. 10 we plot the critical current oscillations in a
nanowire for particular realizations of the disorder. While
the initial decay and the oscillations are still present, the
secondary maxima are suppressed. In a clean nanowire with
a sawtooth CPR (which peaks near φ = π at zero field), at a
magnetic flux �∗, the |�| = 1 subbands pick up a phase of π

and their CPRs peak near φ = 2π . The � = 0 subband retains
its sawtooth CPR with a negligible current near φ = 2π .
As described in the previous subsection, this results in the
secondary maximum. Upon adding disorder to the nanowire,
we depart from this sawtooth CPR, tending towards a
sinusoidal CPR which peaks further away from φ = π at zero
field. Thus, there exists no �∗ at which the |�| = 1 subband
current peaks while the � = 0 subband current is negligible.
As a consequence of the sinusoidal CPR, on picking up a
phase of π the |�| = 1 subbands destructively interfere with
the � = 0 subband, and this causes the suppression of the
secondary maxima.

In the presence of scatterers the effective path traversed by
the quasiparticles increases and hence, the subbands destruc-
tively interfere at a lower flux. This is shown in Fig. 11, where
the first critical current node in a disordered junction occurs at
a lower field as compared to the clean nanowire.

Furthermore, as shown by Zuo et al. [35], the essential
effect of disorder can be observed by the dependence of the
critical current oscillations on the gate voltage. As shown in

FIG. 11. The critical current as a function of the applied mag-
netic flux for a clean and disordered (λmf = 30, 80 nm) junction.
Each critical current curve is normalized to its respective zero field
value. We observe that the first node in the disordered junction occurs
at a lower field as compared to a clean junction.

Fig. 12(a) for the clean nanowire, small variations in the gate
voltage hardly cause any fluctuations in the oscillations. This
is because small changes in the chemical potential do not
change the number of occupied subbands and only weakly
affects the quasiparticle transmission through the junction.
However, in a disordered nanowire with a small mean-free
path, the quasiparticles traverse a longer path in the nanowire
and hence, the critical current oscillations are significantly
affected by the gate voltage. This is shown in Figs. 12(b) and
12(c) for two disorder realizations.

From Figs. 10 and 12 we infer that the critical current
oscillations are highly sensitive to the gate voltage and the
particular realization of the disorder. Thus, a macroscopic
current measurement indirectly gives us information about
the microscopic specifics of the junction. However, while our
model provides a qualitative understanding of the oscillations,
the high sensitivity with respect to the microscopic parameters
renders a quantitative description of the experiment highly
challenging.

C. Dephasing in the nanowire

The analysis presented in the previous sections described
the phase-coherent flow of quasiparticles in the junction. We
now include phase-breaking processes [39,68] that may arise
from any time-dependent potential, such as the interaction of
an electron with the surrounding bath of phonons, other elec-
trons, or fast-fluctuating charge noise caused by traps in de-
fects. Although it is nontrivial to identify the dominant source
of dephasing, we can adopt a phenomenological model by
introducing a Büttiker probe for the lattice background [39].

We subsume these processes within the NEGF formalism
by including a self-energy term for the lattice background
r

s , proportional to the Green’s function and the emission-
absorption coefficients. This calls for a self-consistent com-
putation of the Green’s function and the bath self-energy [68]

Gr (E ) = (EI + iη − H − r
1 − r

2 − r
s

)−1
, (49)

r
s = D × Gr (E ), (50)
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FIG. 12. Small fluctuations in the gate voltage change the chem-
ical potential (μ) between the blue (μ = 30�0) and red (μ = 33�0)
curves. �0 is the superconducting order parameter. We observe
small variations in the oscillations on slightly varying the chemical
potential in (a) a clean junction. For a disordered junction in (b) and
(c) we observe larger fluctuations in the oscillations in response
to small variations in the chemical potential. Two instances of the
disorder potential are shown.

where × denotes element by element multiplication. The
elements of the matrix D represent the correlation of the
time-dependent interaction potential between pairs of lattice
points. Adopting a homogeneous model, we assume uniform,
elastic, and spatially uncorrelated interactions resulting in a
diagonal D,

Di, j = D0δi, j (51)

for every pair of coordinates zi and z j in the nanowire.
This model discards the off-diagonal elements of the Green’s
function, and hence relaxes both the phase and momentum of
the quasiparticles in the nanowire.

TABLE I. Phase coherence length as a function of dephasing
strength D0.

D0 (eV2) lϕ (nm)

1 × 10−4 247
5 × 10−4 157
1 × 10−3 105

The magnitude of D0 limits the phase relaxation length of
the junction. Molecular beam epitaxy (MBE) and metalor-
ganic vapor phase epitaxy grown InAs nanowires typically
have a phase relaxation length on the order of a few hundred
nanometers lϕ ∼ 100–300 nm [29,30,69]. In our model, lϕ
can be estimated from the statistical properties of universal
conductance fluctuations (UCF) [29,30,69]. The details of this
calculation is presented in Appendix D, and the results are
tabulated here in Table I. The critical current oscillations
in the presence of elastic dephasing interactions, as listed in
Table I, are shown in Fig. 13(a). The green curve in Fig. 13(b)
includes a random disorder potential profile in addition to the
phase-breaking processes. With dephasing in the nanowire,

FIG. 13. Critical current oscillations with phase-breaking scat-
tering processes in the nanowire. The dephasing interaction is
parametrized by the coupling strengths D0 listed in Table I. (a) The
nanowire is free of disorder and only phase-breaking processes are
involved. (b) The green curve corresponds to a nanowire with a
random on-site potential distribution resulting in a mean-free path
λmf = 30 nm, in addition to the phase-breaking processes with D0 =
1 × 10−4 eV2. This is plotted in comparison with the corresponding
disorder-free nanowire in (a) (purple curve). Each critical current
curve is normalized to its respective zero field value. The simulations
were performed for L = 160 nm, μ = 30�0.
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the excess path traversed due to the disorder potentials does
not result in a proportionate phase pickup. Consequently, in
contrast to Fig. 11, the inclusion of disorder does not result in
a significant shift in the critical current nodes.

One of the main effects of dephasing is in pinning down
the critical current nodes so that they are less sensitive to
disorder. A phase-coherent simulation would overestimate
the disorder-induced quasiparticle phase pickup and conse-
quently, the computed critical current oscillations are sensitive
and strongly dependent on the microscopic disorder profile
(see Fig. 10). However, measured oscillations from Zuo et al.
[35] exhibit only a gradual variation in the oscillations with
changing disorder realizations—well modeled by the inclu-
sion of dephasing in the nanowire. Furthermore, dephasing is
necessary to reproduce the observed reduction of the relative
peak height for subsequent primary maxima. Phase-breaking
processes restrict the coherent lifetime of the quasiparticles
in the nanowire, which hinders a constructive interference at
higher fields. This is well illustrated in Fig. 13(a), where the
relative peak height of the second primary maximum (third
peak) decreases with an increase in dephasing strength.

Magnetoconductance calculations by Lahiri et al. [31]
reveal the suppression of higher harmonics of the transmission
characteristics in a nanowire with dephasing. This is manifest
in experiments as an increasing internode spacing [34,35] with
respect to the axial field. As illustrated in Fig. 13, this feature
is captured by the inclusion of phase-breaking processes in
our model. The oscillations in Fig. 13 are in good qualitative
agreement with the experiments by Gharavi et al. [34] and
Zuo et al. [35] Thus, we infer that phase-breaking processes
play a non-negligible role in III-V semiconductor nanowire
Josephson junctions.

V. CONCLUSION

In this paper we employed the Keldysh nonequilibrium
Green’s function formalism to model quantum transport in
semiconductor nanowire Josephson junctions. In our analysis
we used a three-dimensional discrete lattice model described
by the Bogoliubov–de Gennes Hamiltonian in the tight-
binding approximation, and computed the Andreev bound
state spectrum and current-phase relations. We went beyond
the Andreev approximation limit and investigated the avoided
level crossing in the ABS spectrum. Our results confirm
the measured critical current oscillations to arise from the
subband supercurrent interference in the presence of an axial
magnetic field. The phase picked up by the quasiparticles
depend on the difference of their wave numbers, the length
of the junction, and the angular momentum quantum number.
Thus, the oscillations do not show any periodicity in the flux
quantum through the nanowire cross section. We included
phase-coherent scattering to model a disordered junction and
investigated its effect on the critical current oscillations. We
observed that the oscillations in the disordered junction are
highly sensitive to the realization of the random disorder po-
tential, and on small fluctuations of the gate voltage. This high
sensitivity makes a quantitative description of the experiment
a challenging task. Nevertheless, a macroscopic current mea-
surement conveys valuable information about the microscopic
profile of the junction. We include elastic dephasing in the

nanowire by modeling weak phase-breaking interactions. A
good qualitative match of our results with the experiment
is observed, and this underscores the role played by phase-
breaking processes in III-V nanowire Josephson junctions.

The relevance of these results is emphasized by outlining
the points of comparison with experimental data from Gharavi
et al. [34] and Zuo et al. [35]. The data exhibit a strong
suppression of the switching current at magnetic fields on
the order of 100–500 mT. Subsequently, oscillations with
aperiodic nodes are observed in the field dependence of the
switching current. As shown in Fig. 13, our simulations cap-
ture the characteristic features of this evolution. Furthermore,
as observed in the experiments, the simulated oscillations dis-
play a strong gate tunability and are not uniquely determined
by the junction geometry. Finally, a phase-coherence length
in the range 100–300 nm of MBE [30] and metalorganic
vapor phase epitaxy [29,69] grown InAs nanowire samples
corroborates the dephasing in our model, as introduced by a
uniform, spatially uncorrelated dephasing parameter (D0).
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APPENDIX A: NONEQUILIBRIUM GREEN’S FUNCTION
FORMALISM (NEGF)

The retarded Green’s function in the energy domain is
given by

Gr (E ) = (EI + iη − H − r
1 − r

2

)−1
, (A1)

where H is the Hamiltonian, r
1,2 are the retarded self-

energies of the semi-infinite contacts, and η is an infinitesimal
real constant. The advanced Green’s function is the Hermitian
conjugate of the retarded Green’s function (Ga = Gr†).

The Hamiltonian H is written in the tight-binding approx-
imation Eq. (10). The surface Green’s functions (gs) at each
contact are recursively evaluated

gsL(E ) = [(E + iη)I − αL − β†gsL(E )β]−1
η→0, (A2)

gsR(E ) = [(E + iη)I − αR − βgsR(E )β†]−1
η→0, (A3)

where the subscript L, R labels the contact. Using this we
compute the self-energy

r
1 =

(
σ1 0
0 0

)
, r

2 =
(

0 0
0 σ2

)
, (A4)

where σ1 = β†gsLβ and σ2 = βgsRβ†.
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The anti-Hermitian part of the self-energy is responsible
for the finite lifetime of the quasiparticles in the junction and
broadens the energy levels. This broadening matrix is denoted
by �i.

The Fermi functions in the particle-hole Nambu space is
given by

Fi =
[

f (E , μ + eV ) 0
0 f (E ,−μ − eV )

]
, (A5)

where f (E , μ) = 1/{exp [(E − μ)/kT ] + 1} is the Fermi
function, and V is the bias applied to the contact.

The lesser self-energy, or the in-scattering matrix, can be
computed from the broadening matrix and Fermi function as

−i< = in = �1F1 + �2F2. (A6)

The lesser Green’s function is then computed:

−iG< = Gn = GrinGa. (A7)

Next, we construct the current operator

Iop = ie

h
(HGn − GnH) (A8)

= ie

h

(
Grin

1 − in
1 Ga − r

1Gn + Gna
1

)
. (A9)

Electrons and holes traveling in the same direction carry oppo-
site currents and hence, the current is given by the difference
of the partial trace of the current operator over the electron
and hole subspaces

J (E ) = Tre(Iop) − Trh(Iop). (A10)

This can be also be written as

J (E ) = Tr(Iopτz ), (A11)

where τz is the Pauli operator in the particle-hole Nambu
space. The total current is then evaluated by integrating the
current-energy density

I (φ) =
∫ ∞

−∞
J (E )dE . (A12)

There is a small technical caveat to keep in mind when
using the NEGF current operator.

Using the equations for the retarded and advanced Green’s
functions,

a − r + 2iη = i(� + 2η),

where � = i(r − a).
Premultiplying by Gr and post-multiplying by Ga,

Gr (Gr−1 − Ga−1)Ga = iGr (� + 2η)Ga (A13)

⇒ (Ga − Gr ) = iGr (� + 2η)Ga (A14)

⇒ A = Gr (� + 2η)Ga. (A15)

Multiplying the Fermi function,

A f = Gn = Gr (� f + 2η f )Ga = Gr (in + 2 f η)Ga. (A16)

Thus,

−iG< = Gn = A f = Gr (in + 2 f η)Ga. (A17)

However, if we do not consider the term proportional to the
infinitesimal η we end up with

−iG< = Gn = A f = Gr (in)Ga. (A18)

G< from Eq. (A18) misses a term in the current proportional to
(GrGa), the trace of which increases with the number of bound
states. This leads to erroneous results for longer nanowires,
which have a larger number of Andreev bound states. The
NEGF current operator for contact i is given by

Ji(E ) = 2e

h
f (E )Tr{real

[
G<(E )a

i (E ) + Gr (E )<
i (E )

]
τz}.

(A19)

Substituting Gn = A f and in = � f , the current operator
can be simplified to

Ji(E ) = 2e

h
f (E )Tr

{
real
[
Ga(E )a

i (E ) − Gr (E )r
i (E )

]
τz
}
.

(A20)

APPENDIX B: ANDREEV BOUND STATE SPECTRUM:
BEYOND ANDREEV APPROXIMATION

Andreev reflections across an N/S interface were first ana-
lyzed by Blonder et al. [53] in 1982, and have been prevalent
in the literature ever since. Almost always, these results are
derived under the Andreev approximation [60,62–64]. This
approximation deals with a regime where the chemical poten-
tial of the nanowire is much larger than the superconducting
order parameter of the leads (μ � �0). In this Appendix we
analyze the implications of working in a regime where the
Andreev approximation is not valid. Specifically, we consider
the implications of being outside the Andreev approximation
regime on the ABS spectrum in a clean one-dimensional SNS
junction.

The density of states in a superconductor is gapped by
an energy �0 on either side of the Fermi level. There is no
gap in the normal state spectrum. Thus, quasiparticles in the
subgap region face an energy barrier at the interface. This is
an energy barrier between states with the same momentum,
arising due to a difference in the order parameter (0,�0)
across the interface. This has nothing do with an impurity
or any nonideality of the junction. However, it plays a role
very similar to any impurity-induced barrier U at the interface,
i.e., it gives rise to normal reflections at the interfaces, which
cannot be neglected when μ � �0 is not valid, even for a
clean junction.

We now examine the spectrum for the chemical potential
μ comparable to �0. Figure 14 plots the ABS spectrum for
μ = 0.5�0.

We observe an avoided level crossing when μ 
� �0, as
shown in Fig. 14. This anticrossing can be attributed to the
normal reflections which become significant in this parameter
space. When these normal reflections are negligible, we have
independent rightward and leftward moving excitations in the
nanowire, resulting in a crossing at φ = π . However, once
normal reflections become important, as is the case outside the
Andreev approximation, the excitations moving in opposite
directions get coupled to each other. This interaction between
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FIG. 14. Andreev bound state spectrum as a function of the
superconductor phase difference for a clean one-dimensional SNS
junction. The junction is tuned out of the Andreev approximation
regime with μ = 3�0. The avoided level crossing is due to the
normal reflections at the interfaces which couple the leftward and
rightward moving quasiparticles.

them, brought about by the normal reflections at the N/S
interfaces, results in the anticrossing.

In Fig. 15(a) we plot the ABS energy gap (δπ ) at φ = π

as a function of μ/�0. It is evident from this plot that δπ

decreases as μ/�0 increases. Thus, in the Andreev approxi-

FIG. 15. (a) The Andreev bound state energy gap at a supercon-
ductor phase difference φ = π is plotted as a function of the ratio
of the chemical potential and the order parameter μ/�0. The states
will cross at φ = π as μ/�0 → ∞. (b) The variation in the Andreev
bound state energy gap for a fixed ratio of chemical potential to order
parameter μ/�0 at the superconductor phase difference φ = π as a
function of the nanowire length L. These oscillations arise from the
interference of the normally reflected quasiparticles at the two N/S
interfaces.

mation regime (μ/�0 → ∞) the bound states cross (δπ → 0)
at φ = π . When �0 is kept constant and μ is varied, the gap
varies as (μ/�0)−1 for μ > �0. In Appendix C we verify
this dependence analytically by taking a scattering theory
approach. Figure 15(b) plots the variation of the gap at φ = π

with the nanowire length. These oscillations result from the
interference of the waves reflected at the two S/N interfaces.

APPENDIX C: THE ANDREEV BOUND STATE
QUANTIZATION CONDITION OUTSIDE THE ANDREEV

APPROXIMATION REGIME

In this Appendix we derive an expression for the Andreev
bound state energy in a SNS junction, when the phase differ-
ence between the two superconductors is tuned to π . We show
this to be nonzero for a finite μ/� while approaching zero in
the limit μ/� → ∞, where μ is the chemical potential of the
entire device and � is the induced superconducting gap.

1. Setting up the problem

We follow the notation from Kulik [61]. Consider first
the transport of an electron across an N/S interface. It is
well known that for a clean interface, an incident electron is
perfectly Andreev reflected as a hole. However, there is also a
component of the order �/μ which is reflected as a normal
electron. This is mentioned in Kulik’s work and can also
be derived from first-principles scattering theory at the N/S
interface. We usually encounter cases when perfect Andreev
reflection is assumed with no normal reflection [60,62–64],
but this is only true to the zeroth order in �/μ.

This normal reflection component will modify the Andreev
bound state quantization condition [55,61]

γ 2ei(k0−k1 )d eiχ = 1, (C1)

where 1
γ

= E
�

+ i
√

1 − E2

�2 , k0 and k1 are the electron and
hole wave vectors, and χ = χ2 − χ1 is the phase differ-
ence between the superconducting order parameter across the
junction.

Consider an SNS junction with a normal region length
d extended over |z| < d/2, and superconducting contacts
defined over |z| > d/2. Writing the two-component wave
functions

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aeik0z

(
1
0

)
+ Beik1z

(
0
1

)
+ B′ �

μ
e−ik0z

(
1
0

)
|z| < d/2,

Ceiλ+(z−d/2)

(
eiχ2

γ

)
+ C′ �

μ
e−iλ−(z−d/2)

(
eiχ2

γ ∗

)
z > d/2,

Deiλ−(z+d/2)

(
γ

e−iχ1

)
+ D′ �

μ
e−iλ+(z+d/2)

(
γ ∗

e−iχ1

)
z < −d/2.

(C2)

The terms proportional to B′, C′, and D′ are ignored when
perfect Andreev reflection is assumed. We have included a
�/μ coefficient to emphasize a first order expansion beyond
the perfect Andreev reflection scenario.
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Equating the coefficients at z = ±d/2, we get

Aeik0d/2 + B′ �
μ

e−ik0d/2 = Ceiχ2 + C′ �
μ

eiχ2 , (C3)

Beik1d/2 = Cγ + C′ �
μ

γ ∗, (C4)

Ae−ik0d/2 + B′ �
μ

eik0d/2 = Dγ + D′ �
μ

γ ∗, (C5)

Be−ik1d/2 = De−iχ1 + D′ �
μ

e−iχ1 . (C6)

Solving for C and D (to be compared with Eq. 2.13 from
Ref. [61]), we get

C = Aeik0d/2e−iχ2

(
1 + B′

A

�

μ
e−ik0d − C′

A

�

μ
eiχ2 e−ik0d/2

)

= Beik1d/2

γ

(
1 − C′γ ∗

B

�

μ
e−ik1d/2

)
, (C7)

D = Ae−ik0d/2

γ

(
1 + B′

A

�

μ
eik0d − D′

A

�

μ
γ ∗eik0d/2

)

= Be−ik1d/2eiχ1γ

(
1 − D′

B

�

μ
eik1d/2e−iχ1

)
. (C8)

We now divide the above equations and keep terms to first
order in �/μ,

γ 2ei(k0−k1 )d eiχ

= 1 + �

μ

(
2i

B′

A
sin k0d + D′

B
eik1d/2e−iχ1

+ C′

A
e−ik0d/2eiχ2 − C′γ ∗

B
e−ik1d/2 − D′γ ∗

A
eik0d/2

)
.

(C9)

We will now focus on the qualitative behavior of the
solutions of the above equation. In order to do so, we simplify
the above equation into a more tractable form:

γ 2ei(k0−k1 )d eiχ = 1 + �

μ
ε + i

�

μ
η, (C10)

where the exact form of ε and η can be derived from Eq. (C9).

2. Expression for the energy at χ = π

Let us tune the phase difference χ = π . Defining φ =
cos−1(E/�), we can write γ = e−iφ . Using this relation, the
quantization condition can be simplified to

ei[(k0−k1 )d−2φ+π] = 1 + �

μ
ε + i

�

μ
η. (C11)

Equating the real and imaginary parts,

cos [(k0 − k1)d − 2φ + π ] = 1 + �

μ
ε, (C12)

sin [(k0 − k1)d − 2φ + π ] = �

μ
η. (C13)

Since �/μ � 1, under the small angle approximation
Eq. (C13) can be simplified to

(k0 − k1)d − 2 cos−1(E/�) + π = �

μ
η. (C14)

For E/� � 1,

(k0 − k1)d + E/� ≈ �

μ
η (C15)

from the relation (cos−1(x) ≈ π
2 − x).

This can be further simplified using (
h̄2k2

0/1

2m = μ ± E ),

kF d

μ
E + E/� ≈ �

μ
η, (C16)

E ≈ �2η

μ + kF d�
≈ η�

�

μ

(
1 − kF d�

μ

)
. (C17)

This is a finite energy for nonzero η and goes to zero in the
limit �/μ → 0.

3. Comparison with numerics

Ignoring the term in the brackets from the final expression
for E , we can simplify it to E ≈ �2

μ
. We decided to observe

the power-law dependence of the gap using the numerical
simulations. We considered two cases:

(1) Fix μ and vary �: we expect to see a behavior

E ∼ O[(μ/�)−2]. (C18)

FIG. 16. The dependence of the ABS energy at χ = π as a
function of μ/� is investigated. δπ is the gap in the ABS spectrum
at χ = π , and is thus twice the absolute value of the ABS energy.
(a) μ kept constant and the � is varied. We have μ/� on the x axis
(in log scale) showing the expected 1/x2 scaling behavior. (b) μ is
varied and � is kept constant. The expected 1/x scaling is observed
for μ > �.
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(2) Fix � and vary μ: we expect to see a behavior

E ∼ O[(μ/�)−1]. (C19)

Figure 16 confirms this dependence of the ABS energy on
μ/� for the aforementioned cases.

APPENDIX D: PHASE RELAXATION LENGTH
ESTIMATION

The dephasing in the nanowire can be parametrized by the
phase relaxation length lϕ , which is a length scale over which
the phase of the quasiparticles randomize. As explained in
Sec. IV C, phase-breaking processes are included via a self-
energy for the lattice background s = D × Gr ; D = D0I. In
this Appendix we estimate lϕ as a function of the dephasing
strength D0.

1. Estimation from phase coherence lifetime

The phase relaxation length can be computed from the
phase coherence lifetime τϕ ,

lϕ =
{
vF τϕ (ballistic),
(Dτϕ )1/2 (diffusive),

(D1)

where vF is the Fermi velocity, and D is the diffusion constant.
The anti-Hermitian part of the lattice background self-energy

FIG. 17. Phase relaxation length lϕ , computed from Eq. (D1)
(ballistic case) for a dephasing strength (a) D0 = 0.001 eV2 and
(b) D0 = 0.0005 eV2. The estimated lϕ ∼ 150 nm, and lϕ ∼ 300 nm
for (a) and (b), respectively. The monotonic decrease in lϕ is due to
the reduction in Fermi velocity with an applied field. The simulations
were performed for L = 160 nm, μ = 30�0.

limits the phase-coherent lifetime of the quasiparticles, and
sets an energy scale for the problem. The phase coherence
lifetime can thus be estimated as

h

τϕ (E )
= �s,d (E ), (D2)

where �s,d is a diagonal element of the broadening function
[�s = i(s − †

s )] corresponding to the lattice background.
Note that �s, and hence the lϕ so estimated from Eq. (D1)
is a function of energy. The phase relaxation length is then
reported as an average over the energy grid, lϕ = 〈lϕ (E )〉E ,
and is plotted as a function of the axial flux in Fig. 17. Under
the assumption of ballistic transport, we estimate an upper
bound on the phase relaxation length lϕ <∼ 150 nm for D0 =
0.001 eV2, and for D0 = 5 × 10−4 eV2, lϕ <∼ 300 nm. The

Fermi velocity decreases with field, and hence we observe a
gradual monotonic degradation in the phase relaxation length.

2. Estimation from statistical properties of UCF

For a nanowire length comparable to lϕ , the normal-state
conductance fluctuates with an amplitude of the order of e2/h
in the presence of a magnetic field. These aperiodic univer-
sal conductance fluctuations (UCF) measured in a magnetic

FIG. 18. (a) Magnetoconductance fluctuations δG in units of
2e2/h for a dephasing strength D0 = 1 × 10−4 eV2, D0 = 5 ×
10−4 eV2, and 1 × 10−3 eV2. The fluctuations arise from field
induced electron phase shifts, and hence reduce with dephasing.
(b) Autocorrelation of δG for the various dephasing coupling
strengths. Each curve has been normalized to its respective maxi-
mum. The black dotted horizontal line indicates the half-maximum
of F . The correlation field Bc corresponds to this half-maximum of
F , and is denoted by a vertical line for each curve.
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TABLE II. Phase coherence length as a function of dephasing
strengths D0.

D0 (eV2) rms(G) (2e2/h) Bc (T ) lϕ (nm)

1 × 10−4 0.038 0.56 247
5 × 10−4 0.0048 0.88 157
1 × 10−3 0.00098 1.32 105

field perpendicular to the nanowire axis can be analyzed to
extract information on phase coherent transport. The UCF
originates from electron phase shifts resulting from the pen-
etration of magnetic flux through closed electron trajectories.
The conductance shows strong fluctuations for low dephasing
strengths, while they are smeared out at higher coupling
strengths.

The magnetoconductance fluctuation is denoted by δG,

δG = G − 〈G〉B, (D3)

where the average 〈·〉 is taken over the magnetic field B. The
average fluctuation amplitude about the mean conductance is
quantified by the root-mean-square rms(δG)B = √

var(δG)B.
The rms(δG)B decreases monotonically with D0. The phase
relaxation length lϕ can be estimated from the analysis of
the autocorrelation function F of δG. The half-width half-
maximum (HWHM) of F corresponds to the correlation field

Bc, which is a measure of a field range over which the phases
of the interference path become uncorrelated:

F (�B) = 〈δG(B + �B)δG〉B, (D4)

F (Bc) = 1
2 F (0). (D5)

Assuming the phase relaxation length (lϕ ) to be greater
than the nanowire diameter d , we can extract lϕ directly from
the correlation field [29,30,70]

lϕ = γ
h

e

1

Bcd
, (D6)

where γ is a dimensionless prefactor depending on the trans-
port regime. We work in the the dirty metal limit with γ =
0.95 [30].

This simulation involves normal-state low-bias transport in
presence of a magnetic field oriented in a direction perpen-
dicular to the nanowire axis. The nanowire length L = 200
nm and diameter d = 30 nm. To model diffusive transport,
an on-site random potential in the range W ∈ [−1.5t, 1.5t] is
introduced at each point in the nanowire, where t is the tight-
binding hopping parameter. This corresponds to a mean-free
path λmf ≈ 18 nm. The magnetoconductance fluctuations are
plotted in Fig. 18(a) The normalized autocorrelation F/F (0)
of δG is shown in Fig. 18(b), and the extracted parameters are
listed in Table II.
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