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Robust low-energy Andreev bound states in semiconductor-superconductor structures:
Importance of partial separation of component Majorana bound states
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Robust topologically trivial low-energy Andreev bound states (ABSs) induced by position-dependent effective
potentials have recently come under renewed focus in light of a remarkable set of experiments observing robust
quantized zero-bias conductance plateaus in semiconductor-superconductor heterostructures. We show that (1)
the partial spatial separation of the wave functions of the component Majorana bound states (MBSs) is crucial
for the creation and stability of topologically trivial near-zero-energy Andreev bound states, (2) the signs of the
spin polarizations of the component MBSs can be either the same or opposite, depending on the profile of the
inducing potential, and (3) the spin polarizations do not play a fundamental role in generating vastly different
coupling strengths to local probes and/or ensuring the robustness of the near-zero-energy ABS. Consequently, in
contrast to recent theoretical claims (A. Vuik et al., arXiv:1806.02801) we find that a robust, quantized zero-bias
conductance plateau of height ∼2e2/h measured in the topologically trivial regime necessarily requires partially
separated ABSs (ps-ABSs), independent of the relative signs of the spin polarizations. In addition, we show that
(4) well-defined energy-splitting oscillations involve MBSs characterized by exponential tails pointing toward
each other, and that (5) ps-ABSs generated by the tunnel barrier itself produce zero-bias conductance peaks
with a characteristic width that increases strongly with the applied magnetic field. Finally, we propose (6) a
quantitative scheme for analyzing the stability of Majorana modes based on probability distributions of splitting
susceptibilities and show that a ps-ABS mode can be remarkably robust when judged based on its signature in a
charge tunneling experiment, but, in essence, is topologically unprotected.
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I. INTRODUCTION

Semiconductor nanowires with proximity-induced super-
conductivity, strong Rashba spin-orbit coupling, and magnetic
field applied parallel to the wire were predicted theoretically
[1–7] to support a pair of topologically protected Majorana
zero modes (MZMs) [8–12] localized at the opposite ends of
the wire. Owing to the interest stemming from its potential
use as a platform for topological quantum computation (TQC)
[9,10], this system has been the beneficiary of tremendous
experimental progress in the past few years [13–24]. One
of the most recent important developments has been the
observation of quantized zero-bias conductance plateaus in
local charge tunneling experiments [24], with the height of
the plateau, which develops as a function of changing external
parameters, such as Zeeman field and tunnel barrier height,
equal to the theoretically predicted height (2e2/h) required by
topological MZMs [25–28]. Numerous previous theoretical
works on proximitized semiconductor nanowires with Rashba
spin-orbit coupling and applied Zeeman field have shown the
formation of zero-bias conductance peaks (ZBCPs) even in
the absence of topological MZMs, due to disorder [29–34],
nonuniform system parameters [35–44], weak antilocalization
[45], and coupling to a quantum dot [46,47]. However, most of
these peaks of nontopological origin do not typically result in
a 2e2/h-quantized conductance plateau, with the height of the
plateau remaining unchanged against variations of the control

parameters, such as Zeeman field and tunnel barrier height,
in spite of some of the peaks exhibiting fairly robust pinning
near zero energy. Consequently, in the recent experiments
[24] the observation of zero-bias conductance peaks of height
2e2/h that generate quantized conductance plateaus with the
variation of the control parameters, a feature typically asso-
ciated with the existence of isolated topological MZMs, has
been used as key evidence for the presence of non-Abelian,
topologically protected MZMs localized at the opposite ends
of the experimental system.

On the other hand, in a recent theoretical work [48] it has
been shown that quantized conductance plateaus of height
2e2/h (which are robust over large ranges of Zeeman field
and tunnel barrier potential) are possible in a topologically
trivial system due to the presence of low-energy Andreev
bound states (ABSs) whose component Majorana bound
states (MBSs) are somewhat shifted in space: the so-called
partially separated ABSs (ps-ABS) introduced in Ref. [49].
The ps-ABSs are topologically trivial, being characterized
by energy splittings due to the overlap of the component
MBSs that are sensitively dependent on local quantities, such
as the local values of the spin-orbit coupling and the slope
of the quantum dot potential. Moreover, the separation of
the component MBSs cannot be controlled externally [49],
if the ps-ABSs are generated “accidentally” by some in-
homogeneity present in the system, and would be hard to
control even when the ps-ABS is intentionally produced (e.g.,
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one would have to control the slope of an effective poten-
tial that has a complicated, hard-to-determine relation to an
applied gate voltage). Consequently, ps-ABSs do not pro-
vide a natural platform for building a topologically protected
qubit [50].

Despite the topologically trivial nature of ps-ABSs, the
emergence of quantized zero-bias conductance plateaus from
local tunneling off ps-ABSs can be naturally understood based
on the real-space properties of the component MBSs. Essen-
tially, due to the partial spatial separation of the component
MBSs, when one couples locally to the end of a wire, one
couples strongly to only one of the constituent MBSs of
a ps-ABS, while the other component remains practically
“invisible.” Since ps-ABSs can be produced rather generically
by local potentials induced by, e.g., tunnel gates in a quantum
dot associated with the uncovered segment of a nanowire, the
observation of quantized conductance plateaus in local charge
tunneling experiments cannot be taken as clinching evidence
for topological MZMs. In a recent work [51] it is argued
that a semiconductor-superconductor (SM-SC) heterostruc-
ture with smooth confinement potential at the end, similar
to the system studied in Ref. [35], can support robust near-
zero-energy ABSs consisting of fully overlapping component
MBSs. In this scenario, the so-called quasi-Majoranas (i.e.,
the MBS components of the low-energy ABS) experience
different effective barrier potentials to the external lead in
the presence of a sufficiently strong Zeeman field as a result
of being associated with different spin-split subbands (i.e.,
having different spin polarizations). Thus, the overlapping
quasi-Majoranas produce a quantized conductance plateau
of height 2e2/h if the coupling to the external lead of one
component is strongly suppressed with respect to that of
the component with opposite spin polarization. In this work
we examine in detail this mechanism that has been pro-
posed for explaining the emergence of quantized plateaus in
topologically trivial systems by studying systematically the
real space and spin properties of the component Majorana
wave functions associated with low-energy ABSs emerging in
nonhomogeneous systems, including ABSs capable of gener-
ating robust zero-bias conductance plateaus in a local charge
tunneling experiment.

To examine these questions, we first identify two basic
mechanisms for the emergence of low-energy ABSs that are
associated with variations of the effective potential due to,
e.g., tunnel gates in the quantum dot region and/or a position-
dependent work function difference between the semiconduc-
tor and the superconductor. Based on extensive numerical cal-
culations, we show that in both cases the partial spatial separa-
tion of the wave functions of the component Majorana bound
states is crucial for the emergence of robust topologically
trivial near-zero-energy Andreev bound states at values of the
magnetic field less than the critical value corresponding to the
topological phase transition. This partial spatial separation of
the component Majorana wave functions can be induced by
monotonic potentials with finite average slope (which can lead
to the partial separation of the intrinsic subgap ABSs and their
collapse to near-zero energy), as well as by nonmonotonic
valley or hill potentials (see Sec. II). We emphasize that
the partial-separation mechanisms discussed in this work can
be active in (effectively) single-band systems (i.e., systems

with well-separated, uncoupled confinement-induced bands,
where the low-energy physics is controlled by the topmost
occupied band), as well as multiband systems (i.e., systems
characterized by multiband occupancy and strong interband
coupling). In addition, multiband systems can support an
alternative mechanism that pins trivial ABS states near zero
energy, the so-called interband coupling mechanism [52]. In
this case, band repulsion resulting from the coupling of two or
more confinement-induced low-energy bands can pin the ABS
near zero energy over a significant range of control parameters
(e.g., Zeeman field), even though its Majorana components
are not separated spatially [52]. By contrast, the mechanisms
investigated in this work rely critically on the partial spatial
separation of the component MBSs.

We find that the signs of the spin polarizations of the
component MBSs comprising a low-energy ABS can be equal
or opposite to each other, depending on the profile of the
potential that induces them. For example, in the case of
smooth confinement potentials the spin polarizations of the
two MBSs are different (see, e.g., Fig. 2), while for nonmono-
tonic valley-like or hill-like potentials they are the same (see
Figs. 6–8). We also find that, in general, the spin polarizations
of the component MBSs do not play a fundamental role in
generating vastly different coupling strengths to local probes
and/or ensuring the robustness of the near-zero-energy ABS
(see Sec. III B, e.g., Fig. 14, Figs. 16–18, or Figs. 20–22).
Furthermore, the component MBSs of a low-energy ABS may
couple differently to a local probe because of the difference in
the characteristic wave numbers. However, in the absence of
a partial spatial separation of the wave functions, the energy
of the corresponding ABS remains comparable to the bulk
gap (see, e.g., Figs. 10 and 12) and does not produce a
zero-bias conductance peak in local charge tunneling. Thus,
we conclude that the emergence of robust, quantized, zero-
bias conductance plateaus of height ∼2e2/h in local charge
tunneling experiments in the topologically trivial regime of
SM-SC nanowire heterostructures necessarily requires ps-
ABSs whose component MBSs are spatially separated by
smooth confinement potential and/or potential hills, indepen-
dent of the relative signs of the spin polarizations. We also
show that low-energy states characterized by well-defined
energy-splitting oscillations involve MBSs having exponential
tails that point toward each other [see Figs. 8 and 5(c) and
Figs. 20–22]. To experimentally demonstrate energy-splitting
oscillations in short wires [for values of the magnetic field
above the critical field corresponding to the topological quan-
tum phase transition (TQPT)] one has to ensure hard con-
finement and the absence of (unwanted) quantum dots at the
ends of the wire, which may suppress the splitting oscillations.
Finally, we show that the ps-ABSs induced by soft confine-
ment have a strong characteristic signature in charge tunneling
experiments: the width of the ZBCP increases monotonically
with the applied Zeeman field as a result of the effective tunnel
barrier being field dependent (see Fig. 25).

The remainder of this paper is organized as follows. In
Sec. II we introduce the basic types of ps-ABSs and we sum-
marize their main real-space and spin properties. Section III
focuses on the role of the spatial separation of the component
MBSs in driving the collapse of ps-ABSs toward zero energy.
In particular, we show that the ps-ABSs generated by soft
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confinement are adiabatically connected to the intrinsic ABSs
that emerge generically in clean wires with finite chemical
potential. We also investigate the spin structure of ps-ABSs
showing that the spin does not play a fundamental role in their
collapse to zero energy. Some specific charge tunneling signa-
tures of ps-ABSs are discussed in Sec. IV. The robustness of
ps-ABSs in the presence of disorder is investigated in Sec. V.
We conclude in Sec. VI with a summary of the main results
and with our conclusions.

II. BASIC TYPES OF POTENTIAL-INDUCED
LOW-ENERGY ANDREEV BOUND STATES

It is commonly believed that Andreev bound states (ABSs)
emerging in hybrid semiconductor-superconductor devices
can have near-zero energy in the topologically trivial regime
as long as the confinement potential is sufficiently smooth
[35]. By contrast, in this section we show that there are
two different basic mechanisms responsible for the emer-
gence of topologically trivial low-energy ABSs in effectively
single-band systems with inhomogeneous potential. These
mechanisms are associated with (α) shore potential regions
with finite average slope and (β) “nearly dry” potential
wells/“almost submerged” potential hills, where the “water
level” is given by the chemical potential. The smooth con-
finement potential is a particular case of the “shore potential”
scenario.

Before we discuss the specific theoretical models for the
SM-SC nanowire heterostructures with position-dependent
effective potential, let us first identify the relevant character-
istic length scales. Consider a hybrid system with position-
dependent effective potential V (x), chemical potential μ, and
(half) Zeeman splitting �; we define the high/low “water
levels” x(i)

± as the solutions of the equation

V (x±) ± � = μ. (1)

The characteristic “shore width” associated with scenario
(α) is L∗(�) = |x+(�) − x−(�)|. Of course, the magnitude
of L∗ is determined by the Zeeman splitting and by the
average slope of the potential over the (�-dependent) shore
region. In the case of a potential well (hill) there are two
x− (x+) solutions (with no solution for the opposite spin-split
subband) and the corresponding characteristic length scale is
L∗(�) = x(2)

− − x(1)
− [L∗(�) = x(2)

+ − x(1)
+ ]. Low-energy ABS

modes collapse toward zero energy when L∗ becomes com-
parable with a certain characteristic length scale of the ABS
Majorana components, as shown below. Note that obtaining a
large enough value of L∗ does not involve any “smoothness”
requirement.

In this work we focus on the single-band approximation,
which is valid when the occupation is low and the interband
spacing is large compared to other energy scales in the
problem. In this approximation the occupied bands can be
treated as being independent (i.e., not coupled to one another)
and the low-energy physics of the hybrid SM-SC system
can be captured using a single-band model. Specifically, we
consider the simple effective tight-binding model given by the

Bogoliubov–de Gennes (BdG) Hamiltonian

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ +
∑
i,σ

(Vi − μ)c†
iσ ciσ + �

∑
i

c†
i σxci

+ i
α

2

∑
〈i, j〉

(c†
i σyc j + H.c.) + �

∑
i

(c†
i↑ci↓ + H.c.), (2)

where 〈i, j〉 are nearest-neighbor sites in a one-dimensional
lattice, c†

i = (c†
i↑, c†

i↓) is the electron creation operator on site
i, and σν (with ν = x, y, z) are Pauli matrices. The model
parameters are the nearest-neighbor hopping t , the chemi-
cal potential μ, the (half) Zeeman splitting �, the Rashba
spin-orbit coupling α, and the proximity-induced pairing �.
We assume the presence of a position-dependent effective
potential Vi = V (ia − i0a), where a is the lattice constant and
i0 indexes the origin of the coordinate axis x = 0. The values
of the model parameters used in the numerical calculations
are t = 7.62 meV, α = 3 meV, and � = 0.25 meV, unless
specified otherwise. We study numerically the dependence of
the low-energy states on the Zeeman field for different values
of the chemical potential and different effective potential pro-
files. Note that, for a value of the lattice constant a = 10 nm,
the model parameters correspond to an effective mass m =
0.05m0 and a Rashba coefficient αR = 300 meV Å. The effec-
tive mass is larger than the typical values of the effective mass
in semiconductor nanowires (e.g., m = 0.023m0 in InAs) to
mimic the effect of proximity-induced energy renormalization
[53]. Also note that we consider Zeeman splittings � up to
2–3 meV, which correspond to magnetic fields on the order
of 1.5–2.5 T for a wire with a Landé g factor g ≈ 20. We
emphasize that the topologically trivial features that represent
the focus of our work typically emerge at significantly lower
fields.

A. Finite-width potential shores

We first consider the emergence of low-energy ABSs
within scenario (α), i.e., potential shores with finite (average)
slope. For concreteness, we first assume that the system is
characterized by a linear confining potential at the left end
and a hard-wall confinement at the right end of the wire.
Specifically, we have

V (x) =
⎧⎨
⎩

−κx if x < 0,

0 if 0 � x � L,

∞ if x > L,

(3)

where L is the length of a (long) wire segment characterized
by constant effective potential and κ is the slope of the
confining potential at the left end of the system.

Figure 1 shows two examples of low-energy ABS modes
emerging in the topologically trivial regime in a system with
smooth confinement potential given by Eq. (3) corresponding
to two different values of the slope κ . By comparing Figs. 1(a)
and 1(b) it is clear that the crossover Zeeman field �∗

c < �c

associated with the collapse to zero energy of the ABS mode
increases with the slope κ of the confining potential. In the
trivial regime, the second-lowest-energy mode corresponds
to an intrinsic subgap ABS localized near the right end of
the wire, which is characterized by a hard-wall confining
potential. It is also important to note that for � > �c the
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FIG. 1. Dependence of the low-energy spectrum on the applied
Zeeman field for a system with effective potential given by Eq. (3)
and chemical potential μ = 2 meV. The slope of the potential at the
left end of the wire is (a) κ = 9 meV/μm and (b) κ = 36 meV/μm.
The bulk gap has a minimum at �c ≈ μ = 2 meV, the critical field
associated with the TQPT. Note that the lowest-energy ABS mode
localized near the left end of the wire collapses to zero energy at
values of the Zeeman field � < �c (i.e., in the topologically trivial
regime). The second-lowest-energy mode corresponds to an intrinsic
ABS localized near the right end of the wire. The states marked by
“I” and “II” are shown in Figs. 2–4.

Majorana energy-splitting oscillations in Fig. 1(b) are larger
than those in Fig. 1(a) as a result of the effective length of the
wire being shorter for large κ (i.e., harder confinement, see
also Figs. 2 and 3).

A generic eigenstate of the BdG Hamiltonian (2) can be
expressed as a sum of two Majorana modes. Consider a low-
energy solution φε corresponding to a positive energy ε 
 �

with a wave function (in the spinor representation) φε (i) =
(ui↑, ui↓, vi↑, vi↓)T . Particle-hole symmetry ensures the ex-
istence of a negative-energy solution of the BdG equation
described by the wave function φ−ε (i) = (v∗

i↑, v∗
i↓, u∗

i↑, u∗
i↓)T .

Using these solutions, we construct the linear combinations

ψA(i) = 1√
2

[φε (i) + φ−ε (i)], (4)

ψB(i) = i√
2

[φε (i) − φ−ε (i)]. (5)

These states have a spinor structure of the form ψα (i) =
(̃uαi↑, ũαi↓, ũ∗

αi↑, ũ∗
αi↓)T , where α = A, B and uA,i,σ = uiσ +

v∗
iσ , while uB,i,σ = i(uiσ − v∗

iσ ), which manifestly satisfies the
Majorana condition. We note that the Majorana representation
of the eigenstates of the BdG Hamiltonian φ±ε = 1√

2
(ψA ±

iψB) is generic, but ψA and ψB are not eigenstates of H , except
for ε = 0, and we have 〈ψα|H |ψα〉 = 0 and 〈ψA|H |ψB〉 = iε.
Note that using the Majorana basis allows a simple physical
interpretation of low-energy ps-ABSs as (partially) overlap-
ping Majorana modes emerging at the ends of a (typically
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FIG. 2. (a) Potential profile corresponding to Eq. (3) with κ =
9 meV/μm (shaded black line). The dashed blue lines correspond
to V±(x) = V (x) ± �, where � = 1.5 meV is the Zeeman field. The
chemical potential μ = 2 meV (red line) intersects the V∓ profiles at
points x− and x+, respectively, given by Eq. (1). (b) Majorana wave
functions [given by Eqs. (4) and (5)] associated with the near-zero-
energy ABS marked “I” in Fig. 1(a). (c) Spin density of the Majorana
modes shown in (b). Note that the main peaks of the MBS wave
functions are localized near the x− and x+ points, respectively. The
corresponding x components of the spin density have opposite signs,
revealing the fact that two Majoranas are associated with different
spin-split subbands.

short) segment of the wire where the topological condition is
locally satisfied (i.e., within shore potential regions, nearly dry
potential well bottoms, and almost submerged potential hill
tops). In addition, using the Majorana basis and the concept of
ps-ABS has practical relevance, as it interpolates continuously
between a purely local ABS (consisting of two completely
overlapping MBSs) and a pair of well-separated MBSs ca-
pable of supporting topological quantum computation. In this
language, the critical problem is to determine the necessary
separation and realize it in controllable devices.

The wave functions ψA and ψB corresponding to the near-
zero-energy ABS marked I in Fig. 1(a) are represented in
Fig. 2(b) as the red and yellow lines, respectively. We also
define the (ν component) of the spin density as

〈Sν〉(i) = 1

2

∑
s,s′

ũ∗
is[σν]ss′ ũis′ . (6)

Note that 〈Sν〉, which represents the particle component of the
total spin density, can be probed using spin-resolved tunneling
spectroscopy. In Fig. 2(c), we show that the Majorana compo-
nents of a low-energy ABS induced by a finite-width potential
shore belong to different spin-split subbands, as demonstrated
by the opposite signs of the spin density in Fig. 2(c) [see also
Fig. 3(c)]. It is also important to note that in this case the
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FIG. 3. (a) Potential profile corresponding to Eq. (3) with κ =
36 meV/μm (shaded black line) and the associated V± profiles
(dashed blue lines). (b) Majorana wave functions ψA (red) and ψB

(yellow) [given by Eqs. (4) and (5)] associated with the near-zero-
energy ABS marked I in Fig. 1(b). The orange area corresponds to
the overlap of the two-component MBSs. (c) Spin density of the
Majorana modes shown in (b).

exponential tails of the Majorana wave functions point in the
same direction (toward decreasing potential).

In general, we find that the component MBSs are char-
acterized by two length scales: the width δM of the main
peak and the characteristic length scale of the (exponentially
decaying) envelope ξM . The condition for the collapse of
the energy of the subgap ABS mode to near-zero energy is
that the separation L∗ = |x+ − x−| of the component MBSs,
which is controlled by the width of the potential shore, should
be larger than the width of the main MBS peak. Physically,
one can view the potential shore as a “locally topological”
segment that supports two (partially overlapping) MBSs at
its ends. The collapse toward zero energy is associated with
this “topological”segment being longer than δM . In terms of
Zeeman splitting, the condition becomes � > �∗

c , where the
crossover Zeeman field is given by the condition L∗(�∗

c ) =
|x+ − x−| ∼ δM .

A direct consequence of these observations is that the
crossover field �∗

c increases with the (average) slope of the
potential within the “shore” region. Also, for a given value
of the Zeeman field, the separation of the component MBSs,
which is given by L∗, decreases with the average slope. These
properties are illustrated by the comparison between Figs. 1(a)
and 1(b), which correspond to κ = 9 and 36 meV/μm, re-
spectively, and by the comparison between the states marked
I in these panels, which are shown in Figs. 2 and 3, respec-
tively. Note also that the energy of the potential-induced ABS
“sticks” to zero (as long as L∗ > δM) despite the substantial

(a)

(b)

Position ( m)
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V
(x

) (
m
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)

4
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8

|
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.u

.)

V
V

S x
(a

.u
.)

FIG. 4. (a) Same as Fig. 3(a). (b) Majorana components of the
intrinsic ABS marked II in Fig. 1. The ABS is localized at the right
end of the system, which has hard-wall confinement, and does not
depend on the details of the soft confinement potential at the left end.
(c) Spin density of the Majorana modes shown in (b).

overlap of the “yellow MBS” with the tail of the “red MBS”
[orange areas in Figs. 2(b) and 3(b)].

It has been shown previously [54] that clean superconduct-
ing spin-orbit-coupled nanowires are generically character-
ized by finite-energy in-gap Andreev bound states emerging
below the topological quantum phase transition in systems
with finite values of the chemical potential. We dub these
low-energy states emerging in uniform systems (with hard
confinement) as intrinsic Andreev bond states (i-ABS). The
Majorana components of the i-ABS localized at the right end
of a wire with effective potential described by Eq. (3) are
shown in Fig. 4(b). Unlike the component MBSs associated
with the ps-ABS localized at the left end of the wire (which
has smooth confinement), these Majorana modes are not sepa-
rated. Consequently, the lowest-energy ABS modes illustrated
in Figs. 2 and 3 can be interpreted as extrinsic ABS modes
characterized by Majorana components partially separated
(spatially) by the position-dependent effective potential in the
presence of a finite Zeeman field.

B. Almost submerged potential hills and nearly
dry potential wells

As an example of low-energy ABSs generated within
scenario (β) (i.e., by “nearly dry” potential wells or “almost
submerged” potential hills, with the “water level” provided
by the chemical potential) we first consider the low-energy
modes of a system with position-dependent steplike potential
defined by

V (x) =
{

V0 if |x| < dv,

0 if |x| > dv.
(7)
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When V0 > 0, Eq. (7) describes a potential hill, while V0 < 0
corresponds to a rectangular potential well. Note that for val-
ues of the chemical potential near the top of the hill (or the bot-
tom of the well), μ ∼ V0, and a Zeeman field � > |μ − V0|,
Eq. (1) has solutions x(2)

+ = −x(1)
+ = dv (x(2)

− = −x(1)
− = dv).

We also consider a “smooth” Gaussian hill/well defined by

V (x) = V ′
0 exp

(
−x2

δ2
v

)
. (8)

The purpose of studying this case is twofold: (i) to show
that the smoothness of the potential plays no particular role
in generating low-energy ABSs and (ii) to emphasize the
difference between scenario (α), which is often discussed
in the context of a Gaussian potential barrier, and scenario
(β). Basically, the difference stems from the position of the
chemical potential relative to the top of the potential hill. If
μ ∼ V ′

0 and the potential hill is away from the end of the wire
(i.e., it has nonzero occupancy on both sides), we are within
the almost submerged potential hill scenario. By contrast,
if μ 
 V ′

0 (with μ,V ′
0 > 0) we have a (smooth) potential

barrier that generates low-energy ABSs within scenario (α)
(see Sec. II A). In addition, we compare the low-energy ABS
generated by a potential hill (V ′

0 > 0) and the ABS induced by
a potential well (V ′

0 < 0), both described by Eq. (8).
Figure 5 shows the low-energy spectra of a system with an

almost submerged potential hill defined by Eq. (7) [Fig. 5(a)]
and Eq. (8) [Fig. 5(b)], as well as nearly dry potential well
described by Eq. (8) [Fig. 5(c)]. The lowest-energy ABS mode
localized near the potential hill/well (red line) collapses to
zero energy at values of the Zeeman field � < �c (i.e., in the
topologically trivial regime). The in-gap modes that collapse
to zero energy at the TQPT (�c = 2 meV) are associated with
intrinsic Andreev bound states (i-ABSs) localized at the right
end of the wire [see Figs. 5(a) and 5(b), blue in-gap lines],
which emerge generically in systems with finite (positive)
chemical potential and sharp confinement [54]. On the other
hand, the low-energy in-gap modes in Figs. 5(b) and 5(c) with
minima near � ≈ 0.9 and 1 meV, respectively, correspond
to additional ABSs localized at the potential hill/well (see
the discussion of Figs. 7 and 8 below). Finally, we note a
significant difference between the ABS mode induced by a
(smooth) potential hill [Fig. 5(b)], which is characterized by a
very small energy splitting, and the ABS mode induced by a
potential well [Fig. 5(c)], which exhibits large energy-splitting
oscillations. Furthermore, unlike the oscillations characteriz-
ing overlapping MBSs in short wires, the amplitude of these
oscillations decreases with increasing Zeeman splitting.

In Fig. 6 we show the Majorana components of a low-
energy ABS induced by an almost submerged potential hill,
with both MBSs belonging to the same spin-split subband,
as demonstrated by the sign of the spin density in Fig. 6(c).
Note that each component MBS wave function is character-
ized by two “exponential tails” (with different characteristic
length scale ξ

(1)
M > ξ

(2)
M ), the dominant one pointing toward

lower potential. Hence, in the case of potential hills, the (dom-
inant) “tails” of the two Majorana component wave functions
point in opposite directions. This conclusion is strengthened
by the example shown in Fig. 7(b). In both cases, the orienta-
tion of the (main) tails results in a strong suppression of the

FIG. 5. (a) Dependence of the low-energy spectrum on the ap-
plied Zeeman field for a system with chemical potential μ = 2 meV
and effective steplike potential given by Eq. (7) with V0 = 2.1 meV
and dv = 0.25 μm. (b) Same as in (a) for a Gaussian potential hill
given by Eq. (8) with V ′

0 = 3.2 meV and δv = 0.23 μm. (c) Low-
energy spectrum for a Gaussian potential well given by Eq. (8)
with V ′

0 = −3.2 meV and δv = 0.23 μm; the chemical potential is
μ = −2 meV. The bulk gap has a minimum at �c = |μ| = 2 meV,
the critical field associated with the TQPT. Note that the lowest-
energy ABS mode localized near the potential hill/well (red line)
collapses to zero energy at values of the Zeeman field � < �c (i.e.,
in the topologically trivial regime). Also note that the potential well
[(c)] induces large energy-splitting oscillations, in contrast to the
potential hill [(a) and (b)]. The states marked by I and II are shown
in Figs. 6–8.

energy splitting. In general, the energy-splitting oscillations of
the lowest-energy ABS mode [see Fig. 5(a)] are small, as long
as L∗ = x(2)

+ − x(1)
+ > ξ

(2)
M , i.e., as long as the separation of

the component MBSs is large compared to the characteristic
length scale of the (minor) tail. Note that, by contrast, in the
case of a potential well (see Fig. 8), the (major) exponential
tails of the component MBSs point toward each other and
overlap significantly (for a given Majorana separation L∗),
generating significantly larger energy splitting oscillations
[see Fig. 5(c)], which are comparable to those occurring in a
short wire of length L∗. In this context, it is worth pointing out
that the observation of energy-splitting oscillations in finite
wires (which was proposed as the “smoking gun” evidence
for the presence of MZMs [55]) requires the presence of
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FIG. 6. (a) Potential profile corresponding to Eq. (7) with V0 =
2.1 meV and dv = 0.25 μm (shaded black line). The dashed blue
lines correspond to V±(x) = V (x) ± �, where � = 1.5 meV is the
Zeeman field. The chemical potential μ = 2 meV (red line) intersects
the V+ profile at x(1)

+ = −dv and x(2)
+ = dv. (b) Majorana wave func-

tions [given by Eqs. (4) and (5)] associated with the near-zero-energy
ABS marked I in Fig. 5(a). (c) Spin density of the Majorana modes
shown in (b). Note that the main peaks of the MBS wave functions
are localized near x(1)

+ and x(2)
+ . The corresponding x components

of the spin density have the same sign, revealing the fact that two
Majoranas are associated with the same spin-split subband.

Majorana modes with exponential tails pointing toward each
other, which, of course, is always the case in ideal (uniform)
systems with hard confinement. Note that in systems with
nonhomogeneous effective potential near the ends of the wire
(e.g., quantum dots in the uncovered, barrier regions), the
exponential tails pointing toward the opposite end of the
system may be strongly suppressed, making the observation
of energy-splitting oscillations difficult. Therefore, ensuring
hard enough confinement should be an important concern in
this type of experiment.

The results shown in Fig. 7 indicate that the key features
of the low-energy ABS generated by an almost submerged
potential hill (i.e., the component Majoranas are associated
with the same spin-split subband and have exponential tails
pointing away from each other) do not depend on the smooth-
ness of the potential. Importantly, in this case the slightly
raised top of the effective potential suppresses the secondary
exponential tails that characterize the component MBS wave
functions generated by a flat-top potential hill (see Fig. 6).
Consequently, the overlap of the component MBSs (and the
associated energy splitting) becomes negligible when L∗ >

δM , i.e., when the separation of the two MBSs is larger than
the width of the main MBS peak. While the “spin-up” subband
generates two well-separated MBSs [see Figs. 7(b) and 7(c)]
responsible for the near-zero-energy mode I in Fig. 5(b), the
“spin-down” subband generates two overlapping MBSs that
give rise to a gapped ABS mode [see mode II in Fig. 5(b)],
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FIG. 7. (a) Potential profile corresponding to Eq. (8) with V ′
0 =

3.2 meV and δv = 0.25 μm (shaded black line). The dashed blue
lines correspond to V±(x) = V (x) ± �, where � = 1.5 meV is the
Zeeman field. The chemical potential μ = 2 meV (red line) inter-
sects the V+ profile at x(1)

+ ≈ −0.25 μm and x(2)
+ ≈ 0.25 μm. (b) Ma-

jorana wave functions associated with the near-zero-energy ABS
marked I in Fig. 5(b). (c) Spin density of the Majorana modes shown
in (b) revealing that two Majoranas are associated with the same
spin-split subband. (d) Majorana components of the ABS marked II
in Fig. 5(b). (e) Spin density of the Majorana modes shown in (d).
Note that the separation of the two-component MBSs is less than the
the width of the main MBS peak. Consequently, the two MBSs have
a significant overlap [orange area in (d)] and acquire a finite gap [see
Fig. 5(b)].

as shown in Fig. 7(d). Note that in the regime μ < V ′
0 − � the

four Majorana modes shown in Fig. 7 generate two type-(α)
ABSs localized on the opposite slopes of the potential hill.
More generally, scenarios (α) and (β) should be viewed as
the basic single-band mechanisms for the emergence of low-
energy ABSs in nonhomogeneous SM-SC hybrid structures.
A generic low-energy ABS results from a combination of
these basic mechanisms, with relative weights that depend on
the details of the position-dependent effective potential and
the value of the chemical potential.

Finally, in Fig. 8 we show a ps-ABS generated by a
potential well. The spin-down subband generates two partially
separated MBSs [see Figs. 8(b) and 8(c)] responsible for
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FIG. 8. (a) Potential profile corresponding to Eq. (8) with V ′
0 =

−3.2 meV and δv = 0.25 μm (shaded black line). The dashed blue
lines correspond to V±(x) = V (x) ± �, where � = 1.5 meV is the
Zeeman field. The chemical potential μ = −2 meV (red line) inter-
sects the V− profile at x(1)

+ ≈ −0.25 μm and x(2)
+ ≈ 0.25 μm. (b) Ma-

jorana wave functions associated with the near-zero-energy ABS
marked I in Fig. 5(c). (c) Spin density of the Majorana modes shown
in (b) revealing that two Majoranas are associated with the same
spin-split subband. (d) Majorana components of the ABS marked II
in Fig. 5(c). (e) Spin density of the Majorana modes shown in (d).

the lowest-energy mode I in Fig. 5(c), while the spin-up
subband generates two overlapping MBSs [see Figs. 8(d)
and 8(e)] that give rise to a gapped ABS mode [see mode
II in Fig. 5(c)]. The main difference, as compared to the
potential hill case shown in Fig. 7, is the orientation of the
exponential tails of the MBS wave functions toward each
other. This results in the overlap of the tails and generates
significant energy-splitting oscillations, as shown in Fig. 5(c).
Note that key element here is the the orientation of the tails
toward each other, rather than away from each other (which
is the case for potential hills) or along the same direction
(for ps-ABSs induced by finite-width potential shores). In
particular, the type-α ps-ABSs are characterized by relatively
small energy splittings (see, e.g., Fig. 1), despite significant
wave-function overlap (see Figs. 2 and 3). In Sec. III B 2 we
show explicitly that the suppression of the energy splitting
associated with MBSs having the exponential tails pointing

along the same direction [i.e., type-(α) ps-ABSs] is not due
to the MBSs having opposite spin polarizations (see Fig. 18).
Furthermore, in Sec. III B 3 we show that the energy-splitting
oscillations associated with MBSs having exponential tails
pointing toward each other [i.e., type-(β ) ABSs induced by
potential wells] are independent on the relative sign of the spin
polarizations (see Figs. 20–22).

We conclude this section with a brief summary of the
basic physics responsible for the low-energy phenomenol-
ogy in nonhomogeneous hybrid structures. In essence, in
nonhomogeneous systems the “Majorana condition” can be
satisfied locally within (using the language introduced above)
shore potential regions, nearly dry potential well bottoms, and
almost submerged potential hill tops. Consequently, partially
overlapping Majorana bound states are generated near the
ends of these finite (and typically short) topological regions.
A pair of such MBSs constitute a (partially separated) low-
energy Andreev bound state (ps-ABS). In the subsequent
sections, we show explicitly that the partial separation of the
component MBSs is the key physical property responsible for
the collapse of the ps-ABS energy toward zero, as well as
for the difference in the coupling of the component MBSs to
external leads and, more generally, to local probes.

III. SPATIAL SEPARATION AND THE COLLAPSE OF
ANDREEV MODES TO ZERO ENERGY

In Ref. [51] it was claimed that ABS states with near-
zero energy can have fully overlapping MBS components, as
long as these states have an approximately opposite spin. By
contrast, in this section we show that obtaining a robust near-
zero-energy ABS mode in the topologically trivial regime of
SM-SC heterostructures requires that the component MBSs
be partially separated in real space. If we focus on ABSs
generated by finite-width potential shores, the component
ABSs have to be separated by a distance larger than δM , the
characteristic width of the main peak of the Majorana wave
function. Note that, within this scenario, the exponential tails
of the Majorana wave functions point in the same direction
and, consequently, the two MBSs can have a substantial
overlap. Also note that we do not disagree with the technical
results presented in Ref. [51], but point out the key role
of the spatial MBS separation in generating the collapse of
topologically-trivial ABS modes toward zero energy [e.g., the
condition L∗ > δM for type-(α) ps-ABSs].

Based on the analysis of the MBS wave functions, we also
argue that the spatial separation of the component MBSs,
together with details regarding the wave-function profiles,
are key generic factors that determine the signature of a
low-energy ABS in an experiment based on local probes
(e.g., charge tunneling into the end of the wire). By contrast,
the association of the component MBSs with different spin-
split subbands, or the fact that their spectral structure may
involve different momentum components (i.e., different Fermi
momenta), are rather specific properties (particularly relevant
for a system with smooth confinement) that should not be seen
as the ultimate “cause” of the collapse to zero energy of the
ABS mode or of the local probes coupling very differently
to the component MBSs. Below, we discuss a few examples
that support this picture. Based on our analysis, we conclude
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FIG. 9. Generic profile of the confining potential used in Sec. III
(gray-shaded line) and position-dependent proximity-induced pair-
ing (cyan shading).

that the low-energy ABS modes induced by nonhomogeneous
potentials can be viewed most naturally as partially separated
Andreev bound states (ps-ABSs).

The generic profile of the confining potential used in the
numerical calculations discussed below is shown in Fig. 9.
The left end of the wire has soft confinement given by

V (x) = Vmax ×
⎧⎨
⎩

1 if x < Lv,

exp
[ − (x−Lv )2

δ2
v

]
if Lv < x < L,

1 if x > L,

(9)

where Lv defines a “flat-top” region and δv is a parameter
that controls the smoothness of the potential, with δv → 0
corresponding to the hard-wall limit. We also consider the
situation in which the end of the wire (i.e., the barrier region)
is not proximitized by having a position-dependent induced
pair potential, as shown in Fig. 9. Unless specified otherwise,
we will take Lv = 0, L� = 0, and L = 3.5 μm.

A. From i-ABSs to ps-ABSs in systems with smooth confinement

In this section we establish that the near-zero-energy ABS
modes emerging in the trivial phase in systems with smooth
confinement are adiabatically connected to the intrinsic ABSs
that are generically present in a clean, homogeneous wire
(with hard confinement at the ends). At finite Zeeman field,
the smooth confinement partially separates the component
MBSs of the Andreev mode, which results in its collapse to
zero energy.

Consider a clean wire with finite chemical potential.
Generically, it supports subgap i-ABSs localized at the ends
of the wire [54] (green line in Fig. 10). Upon softening
the confinement at one end of the wire (see Fig. 9), the
corresponding subgap mode collapses toward zero energy
(red line in Fig. 10). In Fig. 11 we show that the collapse
toward zero energy of the ABS mode localized at the left
end of the wire is correlated with a Zeeman field-dependent
spatial separation of the component MBSs. The positions of
the main peaks of the MBS wave functions are determined by
the solutions x± of Eq. (1) and the corresponding separation
is L∗(�) = x+(�) − x−(�). The condition for well-separated
component MBSs [within scenario (α)] is L∗ > δM , i.e., the
separation should exceed the characteristic width of the main
peak of the Majorana wave function. Note that within this
scenario two well-separated component MBSs (whose “ex-
ponential tails” point in the same direction) can still have
a substantial overlap (orange areas in Fig. 11). This makes
them extremely susceptible to local perturbations (hence com-

0 0.5 1 1.5 2 2.5 3 3.5
0.4
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FIG. 10. Dependence of the low-energy spectrum on the applied
Zeeman field for a system with effective potential given by Eq. (9)
and chemical potential μ = 3 meV. The potential parameters are
Vmax = 7 meV and δv = 0.1 μm. The green lines correspond to the
i-ABS localized at the right end of the wire, while the lowest-energy
mode (red lines) is associated with the ps-ABS localized at the left
end (for � < 3 meV) or the MZMs localized at the opposite ends of
the system (above the TQPT).

pletely unprotected). By contrast, a ps-ABS generated by an
almost submerged potential hill (see, for example, Fig. 7), is
significantly better protected against local perturbations (for
any comparable value of the separation L∗).

By contrast, in Fig. 12 we show that the component MBSs
of a subgap i-ABS are not spatially separated (as described
above), which results in the i-ABS having a nonzero energy
comparable to the bulk quasiparticle gap. Note, however, that

Position ( m)

|
(x

)|2
(a

.u
.)

(a)

(b)

(c)

(d)

= 0.5 meV
E = 0.18 meV

= 1.0 meV
E = 0.07 meV

= 1.5 meV
E = 0.01 meV

= 2.0 meV
E = 1.42 eV

FIG. 11. Majorana wave functions [given by Eqs. (4) and (5)]
associated with the lowest-energy ABS mode corresponding to the
red line in Fig. 10 for different values of the Zeeman field � <

�c = 3 meV. Note that the ABS energy decreases with increasing
separation between the component MBSs and approaches zero (i.e.,
E 
 � = 0.25 meV) when the separation is larger that the charac-
teristic width of the main peak of the Majorana wave function.
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FIG. 12. Majorana wave functions associated with the i-ABS
mode corresponding to the green line in Fig. 10 for different values
of the Zeeman field. Note that the component MBSs do not separate
and the energy remains comparable to the bulk quasiparticle gap.

the two-component Majorana wave functions are not identical
when � > 0 because they have different spectral composition
(i.e., different characteristic wave vectors). Also note that the
confining potential at the right end of the wire is a finite
step function (see Fig. 9), rather than an infinite wall, which
allows the wave functions to partially penetrate into the barrier
region. This penetration is different for the two-component
MBSs, being deeper for the MBS with larger characteristic
wave vector (i.e., the “red” Majorana). Consequently, the
component MBSs could, in principle, couple very differently
to a local probe, similar to the MBSs at the left end of the wire.
However, in the presence of a sharp potential (more precisely,
a potential characterized by a vanishing “shore width”) the
energy of the in-gap ABS remains comparable to the bulk
quasiparticle gap, being unable to produce a near-zero-bias
conductance peak in local charge tunneling experiments.

The adiabatic connection between the ps-ABS mode that
emerges in the presence of smooth confinement and the i-
ABS occurring generically in clean proximitized wires with
finite chemical potential is illustrated in Fig. 13. Note that,
for a given value of the Zeeman field, the separation of the
component MBSs increases monotonically with δv (i.e., with
decreasing the average slope). Hence, the crossover field �∗

c
associated with the collapse to zero energy of the ps-ABS
mode decreases with δv.

B. Role of spin

In this section we show that, in general, the spin structure
of the component MBSs does not play a fundamental role
in (i) generating vastly different coupling strengths of the

FIG. 13. The collapse to zero energy of the i-ABS mode (δv =
0) in the presence of smooth confinement (δv �= 0). The green line
coincides with the corresponding mode in Fig. 10. The parameter
δv describing the smoothness of the confining potential is given in
microns.

component MBSs to local probes and (ii) ensuring the robust-
ness of the near-zero-energy ABS mode. The common picture
regarding the role of spin is based on the implicit assumption
that the low-energy ABS is generated within scenario (α) by
the tunnel barrier itself. However, explicit position-dependent
Schrödinger-Poisson calculations have demonstrated [56] that
the potential profile in a proximitized nanowire can have in-
homogeneities generated by other sources and can be located
away from the barrier region. Below, we show that, in general,
it is the spatial profile of the Majorana wave functions (rather
that its spin structure) that determines the properties of a
low-energy ABS.

1. Asymmetric channel potential

We consider the asymmetric “channel” potential shown in
Fig. 14(a) consisting of a sharp barrier (of unspecified height)
at the left end of the wire and a constant positive slope within
a 1-μm segment. This potential profile effectively defines a
quantum dot at the left end of the wire. At finite Zeeman field,
a ps-ABS is generated within scenario (α), having spatially
separated component MBSs associated with opposite spin-
split subbands, as shown in see Figs. 14(b) and 14(c).

The low-energy spectrum of a system with asymmetric
“channel” potential [as shown in Fig. 14(a)] is given in
Fig. 15. Note that the critical field associated with the TQPT is
�c ≈ |μ| = 2 meV. A near-zero-energy ABS mode induced
by the position-dependent potential emerges at the left end
of the wire for � < �c. The state marked by a small circle
is shown in Fig. 14. While in the “standard” case (see, for
example, Figs. 9–11) the spin-down (i.e., “red”) Majorana
couples strongly to a local probe placed at the left end of
the wire and the spin-up (i.e., “yellow”) Majorana couples
weakly, it is important to note that in this situation the cou-
pling strengths are reversed. The typical explanation for the
different coupling strengths corresponding to the two modes
is that the two MBSs experience different effective barriers
(with the red Majorana experiencing a lower barrier). While
the height of the effective barrier would always be relevant
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FIG. 14. (a) Asymmetric channel potential profile (shaded black
line) and the associated V± profiles (dashed blue lines) corresponding
to � = 1 meV. (b) Majorana wave functions ψA (red) and ψB (yel-
low) [given by Eqs. (4) and (5)] associated with the near-zero-energy
ABS marked by a small circle in Fig. 15. (c) Spin density of the
Majorana modes shown in (b).

for propagating modes, the MBSs are localized modes and
the decisive factor that controls their coupling to a local probe
is the spatial profile of the wave function, as can be easily
seen by comparing Figs. 11 and 14. We emphasize that in both
situations the V− left barrier is lower than the V+ barrier. Note
also that, in contrast with the “standard” smooth-confinement
situation [51], completely suppressing the left (sharp) barrier
does not destroy the ps-ABS. Furthermore, a left probe will
still couple strongly to the yellow (spin-up) Majorana and
weakly to the red (spin-down) MBS.

FIG. 15. Dependence of the low-energy spectrum on the applied
Zeeman field for a system with a quantum dot defined by the
asymmetric channel potential shown in Fig. 14(a) and chemical
potential μ = −2 meV. The wave functions of the component MBSs
of the state marked by the small circle are shown in Fig. 14.

FIG. 16. Dependence of the low-energy spectrum on the applied
Zeeman field for a two-band system with (a) hard confinement and
(b) soft confinement at the left end of the wire. Note that the soft
confinement induces a near-zero-energy mode [red line in (b)] that
extends on both sides of the crossover point �∗ ≈ 0.65 meV. The
nature of different subgap modes becomes clear by examining the
corresponding wave functions (see Fig. 18). Model parameters: inter-
band gap �ε = 0.6 meV, chemical potential μ = 0.3 meV, longitu-
dinal spin-orbit coupling α = 1 meV, transverse spin-orbit coupling
α′ = 0.5 meV, barrier smoothness δv = 0.25 μm, and barrier height
Vmax = 2 meV [see Eq. (9)].

2. Low-energy modes in two-band systems

In this section we study a two-band model by consider-
ing two “copies” of the single-band Hamiltonian given by
Eq. (2). The two bands are separated by an interband gap
�ε = 0.6 meV and are coupled by a transverse Rashba term
H12 = i α′

2

∑
j (c

†
jσxc j + H.c.). We tune the chemical potential

midway between the two bands, μ = 0.3 meV. In the absence
of a transverse Rashba term (α′ = 0), the system is charac-
terized by a TQPT separating a gapped topologically trivial
phase from a topological phase characterized by the presence
of two Majorana modes at each end of the wire. These modes
are protected by an additional chiral symmetry [57,58] and
are associated with the spin-down subbands. In the presence
of a finite transverse Rashba term, this in-gap mode acquires a
finite gap, as shown in Fig. 16. In Fig. 16(a) we show the
low-energy spectrum of a (coupled) two-band system with
hard confinement, while Fig. 16(b) corresponds to a system
with soft confinement at one of the ends [given by Eq. (9) with
δv = 0.25 μm]. Note that the wire with hard confinement at
both ends is gapped both below and above the crossover field
�∗ ≈ 0.65 meV corresponding to the minimum of the bulk
quasiparticle gap. By contrast, the soft confinement induces
the collapse of the ABS mode to zero energy [red line in
Fig. 16(b)]. The effect of soft confinement on the in-gap ABS
mode is illustrated in Fig. 17 for a fixed value of the Zeeman
field. Note that the energy of the ABS mode collapses toward
zero for δv > 0.18 μm.
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FIG. 17. The collapse toward zero-energy of the ABS mode
localized near the left end of the wire as function of the barrier
smoothness δv in a two-band system with the same parameters as
in Fig. 16. The blue line gives the energy of the ABS in a system
with hard confinement, δv = 0 (provided for comparison).

To clarify the physics behind the emergence of the near-
zero-energy mode, we calculate the Majorana wave functions
for the component MBSs associated with different in-gap
modes shown in Fig. 16, as well as the corresponding spin
densities. The results are given in Fig. 18. In Fig. 18(a)
we show the Majorana wave functions of the finite-energy
ABS modes emerging in a two-band system with hard con-
finement and Zeeman field � > �c [see the in-gap modes
from Fig. 16(a)]. Note that (i) the component MBSs are not
separated spatially and (ii) they consist of a mixture of spin-up
and spin-down contributions. A similar ABS is localized at
the right end of the wire (not shown). In Fig. 18(b) we show
the Majorana wave functions of the near-zero-energy ABS
mode emerging in a two-band system with soft confinement
and Zeeman field � < �c [see the red lines in Fig. 16(b)].
Note that the component MBSs have the same structure as
those generated in a single-band system under scenario (α).
In particular, the two MBSs are spatially separated and are
(predominantly) associated with different spin-split subbands.
Finally, in Fig. 18(c) we show the Majorana wave functions of
the near-zero-energy ABS mode emerging in a two-band sys-
tem with soft confinement and Zeeman field � > �c [see the
red lines in Fig. 16(b)]. The two-component MBSs are well
separated, but, in contrast to Fig. 18(b), both are associated
with spin-down subbands.

The key role of the spatial separation of the component
MBSs in the collapse to zero energy of the ABS mode in
the regime � > �c (i.e., when the MBSs belong to the same
type of spin-split subband) is revealed by the dependence
of the wave functions on the barrier smoothness shown in
Fig. 19. Similar to scenario (α), which is valid within the
single-band approximation, the low-energy ABS collapses to
zero energy when the separation of the component MBSs
exceeds the characteristic width of the main Majorana peak.
This example explicitly demonstrates that the spin structure of
the component MBSs is irrelevant in determining the collapse
to zero energy of the low-energy ABS mode. By contrast,
the spatial structure of the MBS wave functions is critical,
particularly the (partial) separation of the two MBS wave
functions. We note that in multiband systems (topologically
trivial) low-energy ABSs that “stick” near zero energy can
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FIG. 18. Majorana wave functions and the corresponding spin
densities for different in-gap ABS modes characterizing the two-
band system from Fig. 16. (a) ABS mode localized at the left end
of the wire in a system with hard confinement (δv = 0) and Zeeman
field � = 1 meV [see Fig. 16(a)]. Note that the two MBSs are
not separated and consist of spin-up and spin-down contributions.
(b) ABS mode localized at the left end of the wire in a system
with soft confinement (δv = 0.25 μm) and Zeeman field � < �∗

c [see
Fig. 16(a), red line]. (b) ABS mode localized at the left end of the
wire in a system with soft confinement (δv = 0.25 μm) and Zeeman
field � > �∗

c [see Fig. 16(a), red line].

also be generated through the so-called interband coupling
mechanism [52], in addition to the partial separation mecha-
nism described here. In essence, band repulsion resulting from
strong interband coupling can pin the lowest-energy state near
zero energy over a significant range of control parameters. The
resulting near-zero-energy ABSs are characterized by MBS
components that are not spatially separated [52]. In general,
in multiband systems the interband coupling mechanism and
the partial separation mechanism are expected to act in con-
junction, with relative weights that depend on the details of
the system and the values of the control parameters.
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FIG. 19. Evolution of the Majorana wave function associated
with the lowest-energy mode of a two-band system with smooth
confinement and Zeeman field � > �∗

c . The corresponding energies
are given in Fig. 17. Note that the ABS mode collapses toward zero
energy when the separation of the component MBSs exceeds the
characteristic width of the main Majorana peak.

3. Twisted Zeeman field

To strengthen our conclusion regarding the irrelevance of
the spin degree of freedom in the emergence of near-zero-
energy ABS modes, we now consider the rather artificial but
conceptually clean case of a proximitized system with smooth
confinement and a “twisted” Zeeman field. More specifically,
we assume a position-dependent Zeeman field given by

�(x) = � × tanh

(
L − 2x

2δ�

)
, (10)

where δ� = 50 nm defines a narrow transition region between
the left half of the wire (characterized by a Zeeman field
+�) and its right half (which experiences a Zeeman field
−�). The system has soft confinement at both ends given by
Gaussian barriers with Vmax = 8 meV and δv = 0.3 μm. For
comparison, we also consider a system with uniform Zeeman
field and soft confinement either at one end, or at both ends.

The dependence of the low-energy spectrum on the
strength of the applied Zeeman field for these three scenarios
is shown in Fig. 20. In Fig. 20(a) we show the spectrum of a
system with uniform Zeeman field and soft confinement at the
left end of the wire (the system having hard-wall confinement
at the right end). This is an example of a system that supports
an i-ABS at the right end of the wire (finite-energy in-gap

FIG. 20. Dependence of the low-energy spectrum on the strength
of the applied Zeeman field for (a) system with uniform Zeeman field
and soft confinement at one end of the wire, (b) system with uniform
Zeeman field and soft confinement at both ends, and (c) system
with twisted Zeeman field and soft confinement at both ends. The
chemical potential is μ = 2 meV and the confinement potential is
characterized by Vmax = 8 meV and δv = 0.3 μm.

mode for � < 2 meV) and a potential-induced ps-ABS at the
left end (red line), similar to the situation discussed in the
context of Figs. 1–4. Note that, after collapsing at zero energy,
the ps-ABS mode does not show visible energy-splitting
oscillations. In Fig. 20(b) we show the spectrum of a system
with uniform Zeeman field and soft confinement at both ends
of the wire. The effective length of the wire is shorter than
in Fig. 20(a). Note that for � < �c there are two near-zero-
energy modes, while the characteristic i-ABS line [visible in
Fig. 20(a) close to the bulk gap edge] is absent. The second-
lowest mode (blue line) exhibits significant energy-splitting
oscillations. Finally, in Fig. 20(c) we show the spectrum of a
system with a twisted Zeeman field given by Eq. (10) and soft
confinement at both ends of the wire. Note that the spectrum is
qualitatively indistinguishable from that shown in Fig. 20(b).
In particular, there are two near-zero-energy modes, with the
second-lowest mode (blue line) exhibiting significant energy-
splitting oscillations.

For a system with a uniform Zeeman field, the smooth con-
finement potential at the ends of the wire separates spatially
the component MBSs of the corresponding in-gap ABSs, with
the spin-down Majoranas being closer to the ends and the
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FIG. 21. Top panels: Majorana wave functions ψA and ψB [given
by Eqs. (4) and (5)] associated with the lowest-energy mode (n = 1)
in Fig. 20(b) for a uniform Zeeman field � = 1.2 meV and the corre-
sponding spin density. We have used the same shading (red) for both
Majoranas to suggest their association with the same (spin-down)
spin-split subband. Bottom panels: Majorana wave functions associ-
ated with the second lowest-energy mode (n = 2) in Fig. 20(b) for
� = 1.2 meV and the corresponding spin density.

spin-up Majoranas being pushed toward the center of the wire.
The well-separated spin-down MBSs (red shading in Fig. 21)
form the lowest-energy fermionic mode (n = 1), while the
partially overlapping spin-up MBSs (yellow) combine into the
second-lowest-energy mode (n = 2). Note that there is also
a significant overlap between the spin-down MBSs (Fig. 21,
top panels) and the corresponding spin-up Majoranas (Fig. 21,
bottom panels), but this does not result in energy splitting,
as shown by the spectrum in Fig. 20(a) (or, more clearly, by
increasing the length of the wire, which does not affect the
overlap between corresponding red and yellow Majoranas,
yet generates a spectrum without visible energy-splitting os-
cillations). By contrast, the overlap between the exponential
tails of the spin-up (yellow) Majoranas (which point toward
each other) results in the energy-splitting oscillations that
characterize the mode n = 2 in Fig. 20(b). This mechanism
is similar to that responsible for the Majorana energy-splitting
oscillations in clean, finite wires above the finite-size remnant
of the TQPT. We emphasize that, in contrast to this behavior,
partially overlapping MBSs characterized by exponential tails
pointing in the same direction have a suppressed energy
splitting and no well-defined oscillations. This is the case
for both MBSs with opposite spin character [e.g., generated
according to scenario (α)] and MBSs having the same spin
character (see Sec. III B 2).
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FIG. 22. Top panels: Majorana wave functions associated with
the lowest-energy mode (n = 1) in Fig. 20(c) for a twisted Zeeman
field with � = 1.2 meV and the corresponding spin density. We
have used different shading (red and yellow) for the two Majoranas
to suggest their association with different (spin-down and spin-up,
respectively) spin-split subbands. Bottom panels: Majorana wave
functions associated with the second-lowest-energy mode (n = 2) in
Fig. 20(c) for � = 1.2 meV and the corresponding spin density.

We now ask the key question of whether the energy-
splitting oscillations characterizing mode n = 2 are the result
of the spatial profile of the overlapping MBSs (specifically, the
fact that the exponential tails are pointing toward each other,
rather than pointing in the same direction or away from each
other), or the result of the two MBSs being associated with
the same spin-split subband (i.e., having the same sign of the
spin density). To address this question, we analyze the spatial
profiles of the Majorana wave functions associated with the
lowest two (trivial) modes in Fig. 20(c), i.e., the modes charac-
terizing a system with twisted Zeeman field and � < �c. The
results are presented in Fig. 22. Note that the spatial profiles
of the MBSs are virtually identical to those in Fig. 21, while
the spin character of the MBSs localized in the right half of
the wire is reversed. We conclude that the presence/absence
of energy-splitting oscillations is determined by the real-space
properties of the MBS wave functions and not by their spin
structure.

In conclusion, there is direct correlation between increas-
ing the separation of the component MBSs of a ps-ABS
and the collapse of its energy toward zero. This property is
clearly illustrated by the results shown in Figs. 11, 17, and
19. In addition, our results show that the spin structure of
the corresponding MBSs play no role in this collapse, hence
in the emergence of robust near-zero-energy ps-ABSs (see,
for example, the results in Figs. 18, 21, and 22). We note
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that fully overlapping MBSs have, in general, finite energies
comparable to the induced gap, as illustrated by the intrinsic
ABS modes shown in Fig. 12. This statement applies to hybrid
systems with well-separated bands, which are the object of
this study, but not to coupled multiband systems, where trivial
ABSs can emerge due to interband mixing [52].

IV. CHARGE TUNNELING SIGNATURES

An experimentally relevant aspect that we want to address
is the relationship between the properties of the component
MBSs and the signatures of a low-energy ABS in a local
charge tunneling measurement. We consider the case of a wire
with a position-dependent potential and a short uncovered
region at the left end (see Fig. 9). The total length of the
wire is L = 2 μm, while the length of the uncovered region
is L� = 0.3 μm. The potential at the (left) end of the wire has
the form

V (x) = V0

2

[
tanh

(
x0 − x

δv

)
+ 1

]
, (11)

with x0 = 0.25 μm and δv = 0.2 μm. We also assume a
narrow barrier between the left end of the SM wire and
the normal lead, which is modeled as a weak link. This
way the transparency of the barrier can be controlled (in
part) independently of the position-dependent potential. We
calculate the differential conductance using the Blonders-
Tinkham-Klawijk (BTK) formalism [59] for a wire [described
by Hamiltonian (2) with a potential given by Eq. (11)] coupled
to a normal lead (described by a tight-binding model with
nearest-neighbor hopping) [60,61].

We investigate two different cases: (i) a system with
smooth confining potential corresponding to V0 = 2.3 meV in
Eq. (11) and (ii) a system with an asymmetric potential well
described by Eq. (11) with V0 = −2.3 meV. The dependence
of the corresponding low-energy spectra on the applied Zee-
man field is shown in Fig. 23. The ps-ABS mode in Fig. 23(a)
is generated by a “standard” smooth confinement mechanism.
By contrast, the low-energy mode in Fig. 23(b) is an example
of ABS generated by a “mixed” mechanism in an asymmetric
quantum well that is about half-filled/empty. Note that the
energy of both ABS modes at � = 0 is significantly lower than
the induced gap (� = 0.25 meV). This is a clear signature of
the ABS being (partially) localized outside the proximitized
segment of the wire.

As shown in Fig. 24(a), in the system with soft confinement
the low-energy ABS consists of two well-separated MBSs that
will couple very differently to a local probe at the left end of
the wire. Basically, one will only couple to the red Majorana,
while the yellow Majorana will remain virtually invisible. By
contrast, in the system with a potential well [Fig. 24(b)] the
component Majorana bound state localized further away from
the left end (i.e., the yellow MBS) has a tail that points toward
the end of the wire, which ensures a reasonably good coupling
to the local probe.

The dependence of the differential conductance on the
applied Zeeman field and the bias voltage (energy) is shown
in Fig. 25. The low-energy conductance peak for the system
with smooth confinement [Fig. 25(a)] is quantized to 2e2/h
even before the ps-ABS mode collapses to zero energy. This is

FIG. 23. (a) Dependence of the low-energy spectrum on the
applied Zeeman field for a system with effective potential given by
Eq. (11) with V0 = 2.3 meV and chemical potential μ = 1 meV. (b)
Low-energy spectrum for a system with a quantum well defined by
Eq. (11) with V0 = −2.3 μm. The chemical potential is μ = −1 μm.

consistent with the profiles of the component MBSs shown in
Fig. 24(a), which suggest that only the red Majorana couples
(measurably) to the local probe at the end of the wire. The
width of the conductance peak increases strongly with the
applied Zeeman field. Note that for � < 0.7 meV the width
of the conductance peak is comparable to finite grid used
in the plot (and the peak becomes barely visible despite its
height being 2e2/h at zero temperature). Of course, any finite
temperature would result in the complete disappearance of the
conductance peak at low fields. The strong dependence on
the Zeeman field is a characteristic of ps-ABSs induced by
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FIG. 24. (a) Majorana wave functions associated with the near-
zero-energy ABS mode from Fig. 23(a) corresponding to � =
0.75 meV. The two-component MBSs have (preponderantly) oppo-
site spin character. (b) Majorana wave functions associated with the
near-zero-energy ABS mode from Fig. 23(b) corresponding to � =
0.5 meV. The yellow MBS is associated with the spin-up subband,
while the red Majorana has mixed spin character.
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FIG. 25. (a) Zero-temperature differential conductance as func-
tion of energy and Zeeman field for a system with smooth barrier.
The system parameters are the same as in Fig. 23(a). The zero-bias
conductance peak is quantized at 2e2/h, but its width increases
strongly with the Zeeman field. There is no signature associated
with the TQPT at �c ≈ 1 meV. (b) Zero-temperature differential
conductance as function of energy and Zeeman field for a system
with a potential well. The system parameters are the same as in
Fig. 23(b). The width of the low-energy peaks is weakly dependent
on the Zeeman field, the height is not quantized for � < �c (also see
Fig. 26).

the barrier potential itself since the height of the “effective
barrier” experienced by the strongly coupled (red) MBS de-
creases linearly with �. By contrast, the low-energy conduc-
tance peak for the system with a potential well [Fig. 25(b)]
is not quantized for � < �c (see also Fig. 26). This is a
consequence of both component MBSs having measurable
coupling to the local probe. Note that having a relatively
robust low-energy mode that sticks to zero energy over a large
range of Zeeman fields does not guarantee the quantization
of the corresponding conductance peak to a height 2e2/h. On
the other hand, the width of the conductance peak is weakly
dependent on the Zeeman field because the transparency of the
barrier is controlled by the weak link, rather than the position-
dependent potential. Note also that the visible minimum gap
at � ≈ 0.6 meV (see Fig. 25, lower panel) has nothing to do
with the bulk gap “closing and reopening” at the TQPT. In
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FIG. 26. Height of the lowest-energy conductance peaks shown
in Fig. 25(b) as function of the Zeeman field. Note that the zero-
temperature differential conductance peak is not quantized below the
critical field �c ≈ 1 meV.

fact, this feature is associated with a finite-energy ABS [see
Fig. 23(b)] localized near the end of the wire.

Finally, we note that, unlike propagating modes the cou-
pling of bound states to the normal leads is not simply
determined by the potential barrier (e.g., its height and width),
but depends critically on the “location” of the bound state,
i.e., the spatial properties of its wave function. For example,
a bound state localized far from the tunnel barrier will be
weakly coupled to the lead (and practically “invisible” in a
tunneling conductance measurement) regardless of the tunnel
barrier height. This key property provides a simple explana-
tion of the results shown in Figs. 25 and 26. For example,
the specific shape of the MBS wave functions shown in
Fig. 24(b) ensures that both MBSs couple (significantly) to the
lead and, consequently, the corresponding nearly-zero-energy
conductance peak is not quantized in the topologically trivial
regime (see Fig. 26). Furthermore, the example shown in
Fig. 14 corresponds to a spin-up (yellow) MBS that couples
more strongly to a (left) lead than the spin-down (red) MBS,
despite the fact that the spin-up effective potential barrier is
higher than the spin-down barrier. This shows clearly that the
coupling to the leads is ultimately controlled by the spatial
properties of the component MBSs (including their spatial
separation) and not by their spin structure.

V. STABILITY OF PS-ABS MODES IN THE PRESENCE
OF DISORDER

The near-zero-energy ABSs emerging in the topologically
trivial regime through the partial separation mechanism dis-
cussed here are not topologically protected. Partial separation
of the component MBSs implies partial overlap, hence finite
sensitivity to local perturbations. The natural questions are
how robust are these near-zero-energy states in the presence
of local perturbations, e.g., various types of disorder, and
what is the best way to describe the effect of such per-
turbations? However, before addressing these questions, we
would like to clarify a few aspects regarding the terminology
used to describe the low-energy modes in semiconductor-
superconductor hybrid systems, in particular the relation
between ps-ABSs (or quasi-Majoranas) and Majorana zero
modes (MZMs). We propose the following operational dis-
tinction. Consider the characteristic length scale L∗(�) de-
fined in Sec. II corresponding to some typical value of the
Zeeman field associated with the presence of (near-) zero-
energy modes. According to our analysis, L∗(�) determines
the separation of the Majorana modes. Let us first assume a
long wire with L � ξM , where L is the length of the wire and
ξM is the characteristic Majorana length scale. If L∗ ∼ ξM , the
low-energy state is a ps-ABS, while L∗ � ξM corresponds to
well-separated, “genuine” MZMs. For short wires (L � ξM),
L∗ � L/2 corresponds to a ps-ABS localized near one end of
the wire, while L∗ ∼ L implies the presence of “precursor”
MZMs localized at the opposite ends of the system. A few
remarks are warranted. First, we note that the rationale for the
distinction proposed above in the case of short wires is based
on the following observation: in uniform enough systems, the
near-zero-energy modes are MBSs localized near the ends of
the wire (which can be viewed as “precursor” MZMs), while
inhomogeneities can generate a pair of MBSs localized near

155429-16



ROBUST LOW-ENERGY ANDREEV BOUND STATES IN … PHYSICAL REVIEW B 100, 155429 (2019)

one end (hence, a ps-ABS). Second, in long wires the MZMs
are not necessarily localized at the ends of the system, but at
the ends of a segment of length L∗ � L that can be viewed
as topologically nontrivial. Note that in the case of potential
shores, which support type-(α) MBSs, one can consider a
“thermodynamic limit” corresponding to L → ∞ and �V =
const, where �V is the difference between the maximum
and the minimum of the effective potential throughout the
wire. This limit corresponds to a vanishing average slope of
the effective potential, i.e., a nearly uniform infinite system.
In this limit, the system supports a pair of type-(α) MBSs
associated with different spin subbands that are separated by
a distance ∼L → ∞. Finally, we emphasize that a ps-ABS
(L∗ ∼ ξM) can be continuously connected to a “genuine”
MZM (L∗ � ξM) by continuously varying the system parame-
ters. In practice, the relevant questions are whether or not this
“transition” can be performed in a controllable manner and
how protected are the (near-) zero-energy modes?

Consider a system with an effective potential described
by Eq. (3) with a slope κ = 20 meV/μm and length L =
3 μm. We fix the chemical potential at μ = 5 meV, which
corresponds to a critical Zeeman field �c ≈ 5 meV. In the
absence of disorder, the system supports a low-energy ps-ABS
mode at Zeeman fields much lower than the critical value,
as shown in the upper panel of Fig. 27. The wave functions
of the Majorana components of the ABS for Zeman fields
� = 1.5 and 2.5 meV [black dots in Fig. 27(a)] are shown in

FIG. 27. (a) Dependence of the low-energy spectrum on the
applied Zeeman field for a clean system with chemical potential
μ = 5 meV and effective potential given by Eq. (3) with κ =
20 meV/μm and L = 3 μm. The lowest-energy mode (red lines)
corresponds to a ps-ABS; the wave functions of the states marked by
black dots are shown in Fig. 28. (b) Same as in (a) for a disordered
system with potential and pairing disorder described by Eq. (12) with
δV = 0.5 meV and δ� = −0.25 meV. The corresponding disorder
profiles are shown in Figs. 29(a) and 29(b), respectively. Note that
in the presence of disorder the low-energy ps-ABS mode acquires an
energy splitting on the order of 20 μeV.
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FIG. 28. Top and bottom panels: Majorana wave functions cor-
responding to the ps-ABSs marked by black dots in Fig. 27(a).
Note that the separation of the MBS components increases with
the Zeeman field. Middle panels: spin densities of the Majorana
components along the x and z directions. We note that 〈Sy〉 = 0.

Fig. 28, as well as the spin polarizations along the x and z axes
for the ps-ABS at � = 1.5 meV. First, note the characteristic
spatial separation of the component MBSs, which increases
with increasing Zeeman field. Second, let us note that the
corresponding spin polarizations are nonzero along both x
and z directions, while 〈Sy〉 = 0. While the spin densities
〈Sx〉 corresponding to the two MBSs have opposite signs
almost everywhere, reflecting the association of the two MBSs
with different spin subbands, this correlation between spin
density and spin subbands is less manifest in the case of
〈Sz〉. Consequently, any statement regarding (α)-type MBSs
components having almost “opposite spin” should be under-
stood as referring primarily to 〈Sx〉 or, more precisely, the
association of the two MBSs with different spin subbands.

To investigate the effect of disorder, we supplement the
BdG Hamiltonian with a disorder-induced term of the form
Hdis = ∑

i �
†
i Hdis(i)�i, where �

†
i = (c†

i↑, c†
i↓, ci↑, ci↓) is a

Nambu operator acting on site i and the (first quantized)
Hamiltonian Hdis is given by

Hdis(x) = δVUV (x) τz + δ�x U�x (x) σxτz + δ�y U�y (x) σy

+ δ�z U�z (x) σzτz + δ�U�(x) σyτy. (12)

Here, σα and τα (with α = x, y, z) are Pauli matrices asso-
ciated with the spin and particle-hole degrees of freedom,
respectively, U�(x) are dimensionless disorder profiles cor-
responding to random effective potentials (� = V ), Zeeman
fields (� = �α), and pairing potentials (� = �), while δ�

are the corresponding disorder amplitudes. In this study, we
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FIG. 29. Disorder profiles corresponding to (a) δU = 40 nm and
(b) δU = 20 nm. The function U (x) has constant but random values
−1 � U (x) � 1 within each segment δU of a 3.6-μm long wire.

focus on a class of disorder profiles U (x) having constant but
random values −1 � U (x) � 1 within segments of length δU .
Two specific disorder realizations corresponding to δU = 40
and 20 nm are shown in Figs. 29(a) and 29(b), respectively.

Consider now the system characterized by the (clean)
low-energy spectrum shown in Fig. 27(a), which supports a
near-zero-energy ps-ABS mode (see Fig. 28), in the presence
of disorder. For concreteness, we assume that the system has
potential disorder characterized by a disorder profile UV cor-
responding to Fig. 29(a) and an amplitude δV = 0.5 meV and
pairing disorder with a profile U� corresponding to Fig. 29(b)
and an amplitude δ� = −0.25 meV. Note that the disorder
amplitudes are on the order of the induced SC pairing, more
specifically, δV = 2� and δ� = −�. The corresponding low-
energy spectrum is shown in Fig. 27(b). The most significant
effect of disorder is the splitting of the ps-ABS mode by an
energy on the order of 20 μeV.

What does this simple example teach us about the robust-
ness of the ps-ABS modes? On the one hand, if robustness
is judged based on the signature of the ps-ABS mode in a
charge tunneling experiment, we can conclude that the low-
energy mode is remarkably robust. Indeed, considering the
finite-energy resolution of a differential conductance mea-
surement (typically on the order of 10–20 μeV), the system
will still exhibit a robust zero-bias conductance peak that
sticks to zero energy above a certain value of the Zeeman
field. Moreover, since the Majorana wave functions of the
ps-ABS are only weakly perturbed (as we checked explicitly),
the two-component MBS will couple asymmetrically to the
external lead and the ZBCP will still be quantized (2e2/h)
at low enough temperatures (as in the clean case). Conse-
quently, from this perspective, ps-ABSs are robust enough
and, basically, indistinguishable from bona fide MZMs. In
the language of non-Hermitian topology, one can even view
them as topologically nontrivial [62]. On the other hand,
from the perspective of topological quantum computation, the
ps-ABS (as defined above) is not topologically protected and
not suitable as a platform for a topological qubit. To quanti-
tatively describe the effect of disorder, let us project the total
Hamiltonian onto the subspace define by the lowest-energy
mode. In the Majorana basis (ψA, ψB) defined by Eqs. (4) and

(5) we have

HM =
(

0 −iε
iε 0

)
, (13)

where ε = ε0 + δε is the energy splitting in the presence of
disorder. Here, ε0 = i〈ψA|H |ψB〉, with H given by Eq. (2), is
the energy splitting of the ps-ABS mode in a clean system
and δε = i〈ψA|Hdis|ψB〉, with Hdis given by Eq. (12), is the
additional splitting due to the presence of disorder. For weak
enough disorder, the Majorana wave functions are weakly
perturbed and we have

δε ≈
∑
�

χ� δ� +
∑
�,�′

χ
(2)
��′ δ�δ�′ + · · · , (14)

where the splitting susceptibilities can be calculated using the
unperturbed Majorana wave functions, e.g.,

χ� = i〈ψA|Hdis|ψB〉/δ�|(δV,...,δ�)=(0,...,0), (15)

with (ψA, ψB) being the Majorana wave functions of the clean
system. Note that χ�, with � = V, . . . ,�, depends on the
control parameters (e.g., the Zeeman field), as well as the
disorder realization U�. To better characterize the effect of
a certain type of disorder on the ps-ABS mode, it is useful
to calculate the probability distribution of the corresponding
splitting susceptibility. As an example, we consider disor-
der profiles U (x) having constant but random values −1 �
U (x) � 1 within segments of length δU (see Fig. 29). The
corresponding splitting susceptibilities for potential (V ), spin
(�α), and pairing (�) disorder are shown in Fig. 30. Note
that χ�y = 0 and was not included. The probability distri-
bution shown in Fig. 30 was obtained using 2000 randomly
generated disorder profiles U (x), as well as their “flipped”
correspondents −U (x). A convenient parameter that describes
a probability distribution is the “average” susceptibility

χ� =
∫

|χ�|P�(χ�) dχ�, (16)

where P� is the corresponding probability density. Exam-
ining the results shown in Fig. 30, we notice that the the
“average” splitting susceptibilities at � = 2.5 meV are signif-
icantly smaller than the corresponding susceptibilities at � =
1.5 meV. This is consistent with the increase of the spatial
separation of the component MBSs (and the corresponding
reduction of the Majorana wave-function overlap) shown in
Fig. 28. We also notice the dependence on the characteristic
length scale of the disorder profile. For example, the ps-
ABS mode is significantly more sensitive to pairing disorder
with δU = 20 nm as compared to pairing disorder with δU =
40 nm. We emphasize that this conclusion may not hold for
specific disorder realizations. However, this example shows
that any stability analysis of ps-ABSs or, for that matter,
bona fide MZMs, should include (i) the identification of the
dominant type (or types) of disorder, (ii) the characterization
of the disorder profiles (e.g., the characteristic length scale
δU ), and (iii) the calculation of the probability distribution
of the relevant splitting susceptibilities. Such an analysis will
provide bounds for the disorder strength δ� consistent with a
certain acceptable energy splitting of the (near-) zero-energy
mode.
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FIG. 30. Probability distributions of the splitting susceptibilities
defined by Eq. (15) for the ps-ABS modes shown in Fig. 28 in the
presence of different types of disorder with profiles similar to those
shown in Fig. 29. The results were obtained using 2000 randomly
generated disorder profiles U (x), as well as their “flipped” corre-
spondents −U (x). The “average” susceptibilities χ� are determined
using Eq. (16).

VI. SUMMARY AND CONCLUSIONS

We have studied the real-space and spin properties of
low-energy Andreev bound states (ABSs) that emerge in
semiconductor-superconductor (SM-SC) hybrid structures in
the presence of potential inhomogeneities, identifying the key
properties that control the collapse of these modes toward zero
energy in the topologically trivial phase and determine their
signatures in local charge tunneling measurements. We have
established two basic scenarios for the emergence of topo-
logically trivial low-energy ABSs corresponding to the partial
separation of the component Majorana bounds states (MBSs)
of these ABSs in the presence of a finite Zeeman field � and
(i) a monotonic effective potential (i.e., a potential “shore”)
or (ii) a potential hill/well. In order to provide an intuitive,
easy-to-remember analogy, we dubbed these two types of
trivial low-energy modes ABSs generated by (α) finite-width
shore potentials and (β) nearly dry potential wells/almost
submerged potential hills, respectively. In this analogy, the
“water level” at zero magnetic field is determined by the
chemical potential μ, while at finite magnetic field we have
a high (low) “water level” corresponding to μ plus (minus)
half of the Zeeman splitting. Within scenario (α), the shore
width L∗(�) corresponds to the distance between the high and
low water levels, while within scenario (β) the characteristic
length scale L∗(�) is given by the width of the partially “wet
bottom” of the potential well (or the partially “dry top” of

the potential hill). We have shown that the component MBSs
associated with an (α)-type ABS belong to different spin-split
subbands and are characterized by exponential tails pointing
in the same direction, while the component MBSs associated
with a (β)-type ABS belong to the same spin-split subband
and are characterized by exponential tails pointing in opposite
directions.

We have determined that the characteristic length scale
L∗(�) associated with the effective potential controls the sep-
aration of the component MBSs, which, in turn, determines
the collapse of the ABS toward zero energy. Specifically, the
collapse condition within scenario (α) is that the separation
L∗ of the component MBSs be larger than the characteristic
width of the main peak of the MBS wave function. Note that,
in general, the two partially separated MBSs (with exponential
tails pointing in the same direction) have a significant overlap,
but this does not lead to large energy splitting in the absence of
(additional) local perturbations. A similar collapse condition
holds for ABSs generated within scenario (β) by almost
submerged potential hills (when the secondary exponential
tails are suppressed and the main tails point away from each
other), while ABSs generated by nearly dry potential wells
are characterized by large energy-splitting oscillations due
to the overlap of the exponential tails (which point toward
each other), unless the MBS separation is larger than the
characteristic length associated with the exponential decay of
the wave function.

We have shown that the sticking to zero energy of a trivial
ABS is controlled by the real-space profiles of the component
MBSs (in particular by the partial separation condition), and
is independent of the spin structure of the component MBSs.
In particular, we have considered a two-band model that
exhibits the collapse to zero energy of an ABS consisting of
component MBSs associated with the same spin subbands that
become spatially separated in the presence of soft confine-
ment. We also considered a “twisted” Zeeman field scenario in
which two-component MBSs with exponential tails pointing
toward each other lead to significant energy-splitting oscilla-
tions, in spite of being associated with opposite spin subbands.

Our main conclusion is that the understanding of topo-
logically trivial ABSs emerging in systems with position-
dependent effective potentials should not be based exclusively
on generalizations of the soft confinement scenario, which
represents a particular case of finite-width shore potential.
In general, the low-energy ABSs can be induced by poten-
tial inhomogeneities other than the tunnel barrier potential
itself. This has implications regarding both the structure of
the component MBSs (including their real-space and spin
configurations) and the measurable signatures of these states
in experiments involving local probes. For example, the com-
ponent MBSs of an ABS induced by the soft confinement
produced by a barrier potential will couple very differently to
a local probe placed at the end of the wire, which results in a
quantized conduction peak in a charge tunneling experiment.
However, in this case the effective barrier height is not only
spin dependent, but also strongly dependent on the applied
Zeeman field. A clear signature of this dependence is a strong
increase of the width of the zero-bias conductance peak with
the applied Zeeman field. On the other hand, a weak depen-
dence of the peak width on the applied Zeeman field signals

155429-19



TUDOR D. STANESCU AND SUMANTA TEWARI PHYSICAL REVIEW B 100, 155429 (2019)

that the nonhomogeneity responsible for the formation of the
low-energy ABS is different from the tunnel barrier itself.

Another observable consequence of our analysis is that
the emergence of well-defined energy-splitting oscillations
is associated with MBSs having exponential tails pointing
toward each other. These can be either MBSs localized at
the ends of a short wire (with hard confinement) for � > �c,
or MBSs emerging locally in a nearly dry potential well
in the regime � < �c. By contrast, ABSs produced by soft
confinement or by almost submerged potential hills are not
characterized by clearly defined energy-splitting oscillations.
Note that the presence of quantum dots at the ends of a
short wire can alter the real-space properties of the nearby
MBSs and suppress the energy-splitting oscillations expected
to emerge in the “topological” regime � > �c. Therefore, in
any experiment designed to probe the splitting oscillations it
is crucial to ensure “hard confinement.”

We have also analyzed the stability of ps-ABSs in the
presence of disorder. We find that a ps-ABS mode can be
remarkably robust when judged based on its signature in a
charge tunneling experiment (i.e., in an open system), but,

in essence, it is topologically unprotected. More importantly,
we have proposed a quantitative scheme for analyzing the
stability of Majorana modes based on calculating the prob-
ability distributions of splitting susceptibilities. Finally, we
emphasize that the situations analyzed in this work illustrate
the basic types of trivial low-energy ABSs that can emerge in
systems with inhomogeneous effective potential, i.e., (α)- and
(β)-type ps-ABSs. In general, a trivial ps-ABS may involve a
combination of the two basic scenarios. Furthermore, we have
focused here on the independent band approximation, when
the low-energy physics can be well captured by single-band
models. More generally, in multiband systems, interband cou-
plings leading to band repulsion may also lead to the pinning
of ABS modes to zero energy. Within this qualitatively dif-
ferent mechanism (the so-called interband pairing mechanism
[52]), the partial separation of the component MBSs does not
take central stage.
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