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Moiré-pattern fluctuations and electron-phason coupling in twisted bilayer graphene
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In twisted bilayer graphene, long-wavelength lattice fluctuations on the scale of the moiré period are dominated
by phason modes, i.e., acoustic branches of the incommensurate lattice resulting from coherent superpositions of
optical phonons. In the limit of small twist angles, these modes describe the sliding motion of stacking domain
walls separating regions of partial commensuration. The resulting soliton network is a soft elastic manifold,
whose reduced rigidity arises from the competition between intralayer (elastic) and interlayer (adhesion) forces
governing lattice relaxation. Shear deformations of the beating pattern dominate the electron-phason coupling
to the leading order in t⊥/t , the ratio between interlayer and intralayer hopping parameters. This coupling lifts
the layer degeneracy of the Dirac cones at the corners of the moiré Brillouin zone, which could explain the
observed fourfold (instead of eightfold) Landau level degeneracy. Electron-phason scattering gives rise to a
linear-in-temperature contribution to the resistivity that increases with decreasing twist angle due to the reduction
of the stiffness of the soliton network. This contribution alone, however, seems to be insufficient to explain the
huge enhancement of the resistivity of the normal state close to the magic angle.
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I. INTRODUCTION

Two graphene layers rotated with respect to each other
an incommensurate angle θ form a quasiperiodic structure
known as moiré pattern [1]. At a magic angle θ ∼ 1◦, quantum
interference of electrons in the associated superlattice poten-
tial gives rise to narrow low-energy bands [2], setting the stage
for strongly correlated phenomena [3,4]. In addition to what
appears to be Mott insulating states at half-filling of the lowest
flat bands [3] and the onset of superconductivity under dop-
ing [4] or hydrostatic pressure [5], new many-body insulating
states have been reported for different filling factors, some of
them with apparent topological character [6–8].

Qualitative differences in phenomenology from one device
to another suggest that we should envision the moiré pattern
not as a rigid potential landscape, but as a spatially inho-
mogeneous and (as I will argue here) most likely fluctuating
one. Structural inhomogeneities around the magic angle are
revealed by variations in the electronic densities of full-filled
(single-particle) insulating states, along with evidences from
quantum interference measurements of the formation of in-
sulating islands within the superconducting state [4,5]. For
smaller twist angles, spatial variations of the moiré period
have been directly visualized by transmission electron [9]
and scanning tunnel microscopies [10] as well as near-field
optical techniques [11], showing the formation of regions
of partial commensuration separated by stacking domain
walls [12,13]. These structural differences can induce/favor
different symmetry-broken states. The interaction with the
encapsulating boron nitride in transport devices can break
the sublattice symmetry (usually referred as C2T symmetry
in the literature [14,15]), opening a gap in the low-energy
bands, which acquire nonzero valley-Chern numbers. This
state could serve as a precursor for the formation of a
(quantum) anomalous Hall ferromagnet at odd fillings as the

bands become spin-valley polarized due to electron corre-
lations [6,16,17]. Mean-field calculations suggest that this
symmetry can also be spontaneously broken [18], which has
been invoked to explain some features in the magnetotransport
of the most homogeneous samples at one-quarter filling of
the hole band [7]. The electronic spectrum is also sensitive
to the dielectric environment due to electrostatic effects [19].
In open samples, suitable for local probes, tunneling spec-
troscopy has unveiled the emergence of charge ordering with
broken threefold symmetry as the Fermi level varies [20–22].

Another striking observation is the remarkably large, linear
in temperature (T ) resistance of the normal state [23,24].
Here, there appears to be a subtle difference between sam-
ples too: While in the devices of Cao et al. [23] a linear-
T resistivity is only apparent for fractional fillings (more
prominently at half-filling), suggesting a connection with the
correlated state at lower temperatures, the devices of Pol-
shyn et al. [24] show qualitatively the same behavior (albeit
nonmonotonic) for a broader range of carrier densities, with
increasing values of the resistivity as the twist angle decreases.
This latter behavior has been attributed to electron-phonon
scattering [25–27]. These studies focus on the original acous-
tic modes of graphene, but as noticed in Ref. [28], relative
displacements of the two layers have a stronger impact on the
moiré interference pattern and, potentially, on the electronic
structure. Here, I analyze the case with the account of inter-
layer interaction forces, which play a fundamental role in the
energetics of these modes.

The structure of the paper is as follows. I will discuss
first in Sec. II the emergence of collective modes, pha-
sons, associated with the broken translational symmetry of
the incommensurate lattice, or more accurately, the invari-
ance of the system under relative translations of the two
layers. These modes define two acoustic branches in the
spectrum of small oscillations, which is determined by the
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competition of the two relevant length scales in the problem:
the moiré period, and a length scale related to the curvature of
the adhesion potential that define the characteristic width of
stacking textures (solitons) connecting degenerate adhesion-
energy minima. Already for angles θ � 3◦, phonon softening
is very pronounced, marking the instability of the system
toward the formation of a soliton network. Phason dynamics
is then governed by the effective elasticity of these objects.
In Sec. III, I will analyze how phasons couple to electrons.
Transverse modes (i.e., shear and rotational deformations of
the interference pattern) have a stronger impact on the low-
energy spectrum and, in particular, can explain the reduced
Landau level degeneracy observed in magnetotransport [3–5].
Although the coupling considered here is intrinsically weak
(proportional to the ratio between interlayer and intralayer
hopping parameters), scattering by large (due to the reduced
rigidity of stacking solitons) phason fluctuations limits the
electron mobilities, leading to a linear-T resistivity that in-
creases with decreasing twist angle. However, this contribu-
tion seems to be insufficient to explain the dramatic increase
of the resistivity around the magic angle reported in the
experiments. I will finally discuss other possible scenarios
in Sec. IV. Details of the calculations are saved for the
Appendices.

II. PHASONS IN MOIRÉ-PATTERNED
BILAYER GRAPHENE

Let me first introduce the geometry of the moiré superlat-
tice. In the absence of lattice relaxation, atomic positions in
the bottom and top layers are spanned by primitive vectors
a1,2 and a′

1,2 = R(θ ) a1,2 of a triangular Bravais lattice, where
R(θ ) is a SO(2) matrix describing the relative rotation. For
concreteness, I am going to consider the situation depicted in
Fig. 1, in which carbon atoms sit on top of each other (AA
stacking) prior to the relative rotation. This choice is arbitrary
but ultimately inconsequential in the limit of small (generi-
cally incommensurate) twist angles, for in that case the system
explores all possible stacking configurations. For future refer-
ence, lateral positions will be referred to the rotation axis; the
coordinate system is such that the x and y axes lie along the
twofold symmetry axes highlighted in Fig. 1(a). Positive twist
angles will correspond to anticlockwise rotations of the top
layer.

The moiré superlattice is defined by a beating pattern
resulting from the periodicity of the individual triangular lat-
tices, i.e., the Fourier components of the atomic density ρ(r)
are peaked at vectors G of the incommensurate reciprocal
lattice,

ρ(r) ≈
∑
{G}

ρG eiG·r =
∑
{G}

|ρG| e−iφG+iG·r, (1)

where in the last expression I have separated the Fourier
components in modulus and phase [note that φ−G = −φG, so
ρ(r) is real]. The set {G} corresponds to the lattice spanned
by primitive vectors G1,2 = b1,2 − b′

1,2, where b1,2 and b′
1,2 =

R(θ ) b1,2 are primitive vectors of the bottom and top recipro-
cal lattices, respectively [see Fig. 1(b)]. The moiré superlattice

FIG. 1. (a) Microscopic lattice (no relaxation) around a beating
pattern maximum (local AA stacking) for a twist angle of θ = 5◦.
Dashed lines highlight the hexagonal (D6) symmetry of the contin-
uum model, with a sixfold rotation axis along the common center and
twofold rotation axis within the plane. (b) Superimposed Brillouin
zones of top (in blue) and bottom (in red) layers. In commensurate
approximants, valleys Kτ,μ lie at the two inequivalent corners of
the moiré Brillouin zone κ̃η; hereafter, τ = ±1 labels the valley,
μ = ±1(t/b) labels the top (t) and bottom (b) layers, and η = τ × μ

labels the corresponding κ̃η point in type-I or sublattice-exchange
odd commensurate structures [15,29,30], which are dense in the limit
of small twist angles.

is just the dual to {G}, spanned by primitive vectors [31]

R1,2 = [1 − R−1(θ )]−1 a1,2. (2)

It is also convenient to introduce the function �(r) ≡ r −
R−1(θ ) r, which measures the distance between a given point
r in the top layer with respect to its original position in
the bottom layer before the twist (assuming yet no lattice
relaxation). Note that at the maxima (local AA stacking) of the
interference pattern � coincides with a Bravais lattice vector
of the bottom layer �(n R1 + m R2) = n a1 + m a2, with n,
m integers. The beating pattern maxima are separated by a
distance LM = |R1,2| = √

3a/(2 sin θ/2), defining the moiré
superlattice period.

So far, interlayer forces have not appeared in our discus-
sion. Lattice relaxation of structures with a nominal twist
angle (|ρG| 	= 0) could be generically described by a Landau-
type free-energy expansion in powers of the beating-pattern
density which, as inferred from the previous discussion, gives
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us an idea of the degree of overlap in the lateral position of the
atoms in both layers (and therefore of the interlayer coupling).
Minimization of this functional would lead to constraints of
the form

∑
i=1...n φGi = γ , with

∑
i=1...n Gi = 0, coming from

terms in the nth power of ρ(r). The reader should note that
such relaxed structures are only metastable states that, in real
devices, are likely to be stabilized by the unavoidable tensions
generated during the fabrication process. In fact, it is likely
that the samples present patches with different twist angles,
i.e., different period of the moiré patterning. Here, we are
concerned only about long-wavelength fluctuations (smooth
on the scale of the moiré period LM) around a local minimum.

The previous constraints defining the configuration of min-
imum energy leave a certain number N of the phases φGi

unspecified; in other words, variations of N phases generate
physically distinct but energetically equivalent quasiperiodic
structures and, thus, represent soft modes of the system. In
this case, the number of soft modes is N = 2, for {G} is
a two-dimensional Bravais lattice. Consider, for example, a
beating pattern truncated to the first six Fourier harmonics
(first star), which set the sixfold symmetry and the single
independent length scale of the moiré superlattice: ρ(r) ≈
ρ0 + ρ1

∑
i=1,2,3 cos(Gi · r − φGi ), with G3 ≡ −G1 − G2. A

generic cubic term in the phenomenological free-energy fix
one of the three phases. A convenient parametrization is then
of the form

φGi = ũ · Gi + γ

3
, (3)

where ũ is a two-dimensional vector describing the phason
modes of the incommensurate lattice [32]. Note that changes
in ũ translate rigidly the beating pattern, while an arbitrary
change in γ (which is not a soft mode) distorts the pattern. In
a totally incommensurate or floating state, i.e., when lattice
relaxation is ignored, ũ can be identified straightforwardly
with a relative displacement between layers u. Note that
in that case �(r) → r − R−1(θ )(r − u) = �(r) + R−1(θ ) u,
therefore, the maxima of the beating pattern are translated a
distance [33]

ũ = [1 − R(θ )]−1 u =
(

1

2
+ 1

2
cot

θ

2
ẑ×
)

u. (4)

More generically, phason modes correspond to coherent
superpositions of optical phonons with momenta separated by
a superlattice vector G. When lattice relaxation is taken into
account, these coherent superpositions describe more complex
atomic rearrangements than a simple relative displacement
of the two layers. The coordinate ũ can be identified then
with the sliding motion of domain walls separating regions
of partial commensuration (alternating AB and energetically
equivalent BA Bernal stackings, where atoms of different
sublattices lie on top of each other).

A. Soliton network

The problem of lattice relaxation can be addressed in
the framework of a two-dimensional version of the Frenkel-
Kontorova mode [34–36]. Neglecting entropic terms in the
free energy, the problem reduces to solve the following equa-
tion for u(r), understood now as a field in the continuum
describing smooth (in the scale of the interatomic distance

a ≈ 1.42 Å) relative displacements of the layers:

λ + μ

2
∇(∇ · u) + μ

2
∇2u = ∂

∂u
Vad[r, u(r)]. (5)

Here, μ ≈ 3λ ≈ 9 eV/Å2 are the Lamé coefficients of
graphene [37]; I am disregarding corrugations provided that
the bending energy is inconsequential on length scales longer
than

√
κ/(λ + 2μ) ∼ a, where κ ≈ 1 eV is the bending rigid-

ity.
The right-hand side of Eq. (5) describes variations in con-

figurational space (stackings) of the adhesion potential (here
with units of energy density) between layers. The notation em-
phasizes the different periodicities in real and configurational
spaces: while the dependence on r is modulated on the scale of
the moiré pattern, i.e., it admits a Fourier expansion in {G}, the
dependence on stacking configurations changes on the atomic
unit cell. A first-star expansion of the latter compatible with
sixfold symmetry reduces to

Vad[u(r)] = V
3∑

i=1

{
1

2
+ cos [bi · (u + �0)]

}
, (6)

where �0 is the displacement of the top layer with respect
to the bottom layer in Bernal (AB) stacking, which sets the
reference in energies. The phenomenological parameter V ≈
90 meV/nm2 measures the energy difference between Bernal
and AA stackings [38]. The adhesion-energy landscape de-
duced from this model is shown in Fig. 2(a). In this approxi-
mation, the modulation in real space follows from Eq. (6) just
by noting that when layers are rotated, the separation between
unit cells depends on the position r via the substitution �0 →
�(r), and bi · �(r) = Gi · r from the previous definitions.

In addition to the periodicity of the moiré pattern, there
is another length scale encrypted in Eq. (5) related to the
curvature of the adhesion potential

� =
√

μ

2 ∂2Vad
∂u2 |AB

= a

π

√
μ

2V
≈ 3.2 nm. (7)

This length scale characterizes the spatial extension of stack-
ing textures connecting equivalent minima (AB and BA stack-
ings). The competition between their cost in elastic energy and
the adhesion energy of large incommensurate areas governs
the degree of lattice relaxation. When LM and � are compara-
ble, lattice relaxation is negligible and the beating pattern is
well approximated by two floating layers. However, when LM

is larger than �, it is energetically cheaper for the system to
form regions of partial commensuration separated by domain
walls of characteristic width �, where the cost in elastic and
adhesion energies is concentrated.

The competition between these two length scales is re-
flected in the the spectrum of small oscillations around a
local minimum (see Appendix A). The harmonic expan-
sion of the adhesion potential around a floating state only
couples modes with momentum mismatch in the first star,
originally separated by a frequency of the order of ωM =
4πc/(

√
3LM ), where c = √

μ/ρ0 ≈ 14 Km/s is the sound
velocity of transverse phonons in graphene. When LM ∼ �,
the strength of these harmonics is negligible with respect
to ωM , and the spectrum resembles the acoustic phonons of
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FIG. 2. (a) Adhesion-energy landscape deduced from Eq. (6). Arrows represent stacking textures connecting degenerate minima (AB and
BA Bernal stackings). (b) Generic beating pattern [Eq. (1)] formed by two floating layers. When � is ostensibly smaller than LM , sharper
stacking textures are formed, corresponding to domain walls between regions of partial commensuration. The domain walls are represented
as dashed lines in the same colors as their representation in configurational space [(a)]. (c) Sine-Gordon shear soliton connecting AB- and
BA-stacking regions. Colored dots represent atomic positions as in Fig. 1. (d) Longitudinal phason distortion of the beating pattern with
wavelength λ = 3

√
3LM . (e) Transverse phason with the same wavelength.

single-layer graphene folded into the moiré Brillouin zone.
When LM is ostensibly larger than �, this simple model pre-
dicts a strong softening of the two acoustic branches, indicat-
ing that the floating state is unstable and lattice relaxation is no
longer negligible. Sharper stacking textures are formed [36],
giving rise to more harmonics in the expansion of the adhesion
potential that have to be included in a new calculation of the
spectrum of oscillations. Already in this regime, the simple
identification in Eq. (4) breaks down and the energetics of
phasons are no longer described by the elasticity of individual
layers.

The first step is to determine the stacking texture. In order
to construct approximated long-wavelength density profiles,
let me consider first one-dimensional solutions of Eq. (5)
of the form u(r) = u(�) û, where the spatial dependence
(along unit vector �̂) is not necessarily collinear with lattice
relaxation. A simple inspection of Eq. (6) (plugging the
one-dimensional ansatz and projecting over û and ẑ × û)
shows that only tensile (û ‖ �̂) or shear (û ⊥ �̂) solutions
exist in this approximation [39]. I am going to focus on the
latter, which are less energetic; this assumption agrees with
numerical calculations [36,38] (note also that the softening is
more pronounced for the transverse oscillation mode) and is
obviously favored by the orientation of the moiré superlattice
with respect to the graphene lattice in the limit of small twist
angles. As implied by the energy landscape in Fig. 2(a), the

relaxation is more likely to occur along an armchair direction.
Let me focus first on the case û3 ≈ ŷ, �̂3 ≈ x̂ (solitons marked
in red in the figure); the other two solutions with the same
energy follow from rotating the axes 120◦. The notation
emphasizes that Gi ≈ − 2π

L �̂i for small twist angles, with L =
|x̂ · R1,2| ≈ √

3LM/2.
In the asymptotic limit LM  �, we can neglect the mod-

ulation on the scale of the moiré (first argument in the adhe-
sion potential) and write μ u′′ = (V π/a) sin(2πu/a), whose
general solution is a train of domain walls separated a certain
fixed length. The latter should be determined from energetic
considerations [40], but in our heuristic construction we can
just identify this length scale with L. In this limit, the domain-
wall profile is well described by a sine-Gordon soliton

u3(x) ≈ 2a

π
arctan(e

x−x3
� ), (8)

as numerical calculations confirm [36]. The corresponding
stacking texture is represented in Fig. 2(c). Associated with
the domain wall, there is a tension σ = a

√
2μV /π charac-

terizing its energy cost. This energy does not depend on the
soliton center x3: while the separation between domain walls
is set by the moiré periodicity, rigid displacements of the
soliton solution does not cost energy.
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The density wave associated with the one-dimensional
train of domain walls is of the form

ρ1D(r) =
∞∑

n=0

|ρn| cos

[
2πn

L
(x − x3)

]

≈
∞∑

n=0

|ρn| cos[n(�̂3 · G3)(x − x3)], (9)

where the Fourier components |ρn| can be estimated from the
approximate profile in Eq. (8). The two-dimensional beating
pattern can be approximated then by the superposition of
three density waves like Eq. (9) with director vectors rotated
120◦. At rigid soliton crossings, the system explores all pos-
sible stacking configurations. Adhesion forces will relax the
structure, but some areas will remain pinned to saddle points
of the potential, including AA stackings, introducing a large
free-energy cost. Therefore, the configuration of minimum
energy is such that the number of soliton crossings is mini-
mized and, consequently, from the three phases related to the
soliton centers x1,2,3, only two are really independent. In the
parametrization of Eq. (3), the soliton centers are related to
the phason field as

xi ≈ �̂i · ũ − γ L

6π
. (10)

Minimizing the number of soliton crossings corresponds to
the condition x0 + x1 + x2 ≈ 0 (modulo L/3) or, equivalently,
γ must be an integer of 2π [41]. The resulting beating pattern
can be envisioned as a triangular lattice of AA-stacked regions
connected by sine-Gordon domain walls, as illustrated in
Fig. 2(b).

B. Generalized elasticity

Provided that � is smooth on the interatomic distance,
the free-energy cost of long-wavelength fluctuations of the
beating pattern can be described by a phenomenological
expansion in terms of derivatives of the phason field ∂iũ j

constrained only by the symmetries of the continuum model.
Since the superlattice vectors impose a preferential orientation
of the beating pattern (i.e., only translations and not rotations
are soft [42]), introducing a symmetric strain tensor is not
sensible for this problem. Instead, ∂iũ j can be arranged in
irreducible representations of D6 (see Fig. 1),

∂xũx + ∂yũy ∼ A1, (11a)

∂xũy − ∂yũx ∼ A2, (11b)[
∂xũx − ∂yũy

−∂xũy − ∂yũx

]
∼ E2, (11c)

representing compressional, rotational (or tilting), and shear
deformations of the soliton network, respectively. A generic
harmonic expansion reads as then

F[ũ(r)] = 1

2

∫
dr
[
λ̃(∇ · ũ)2 + μ̃

2
(∂iũ j + ∂ j ũi )

2

+ γ (∇ × ũ)2

]
, (12)

where the cost of compressional and shear deformations is
expressed in terms of new Lamé coefficients and γ is the tilt
modulus accounting for the cost of rotations with respect to
the moiré superlattice. The elastic constants can be estimated
from the approximated profile in Eq. (8) as (see Appendix A)

λ̃(θ ) ≈ (1 + ν)�V sin
(

θ
2

)
a(ν − 1)

, (13a)

μ̃(θ ) ≈ (3 − ν)�V sin
(

θ
2

)
a(1 − ν)

, (13b)

γ (θ ) ≈ 4�V sin
(

θ
2

)
a(1 − ν)

, (13c)

where ν ≈ 0.2 is graphene’s Poisson ratio.
The soliton network appears to have, within the limita-

tions of the present calculation, a negative Poisson’s ratio
(λ̃ < 0) [43]. This is not so surprising for a two-dimensional
incommensurate structure [44], and manifests the tendency of
the resulting beating pattern to preserve the sixfold symmetry
of the moiré superlattice. Here, I should emphasize that a
relative compression/expansion of the layers (like the uniaxial
heterostrain considered in Ref. [45]) introduces a shear defor-
mation of the beating pattern, and vice versa, relative shear
between layers (which is energetically cheaper) introduces
a longitudinal distortion. The latter can be interpreted as a
modulation of the moiré period or a nonuniform twist angle,
which is systematically observed in topographic images ac-
quired by scanning tunneling microscopy [20–22]. The lower
energy for longitudinal deformations is ultimately ascribed
to the fact that the soliton network connecting AA-stacked
regions must be understood as a system of strings under
tension, whose energy scales linearly (instead of quadratically,
like in a system of springs) with length. The tension of the
domain walls manifests the metastability of bilayers with a
nominal twist angle. These structures can be further stabilized
by entropic terms in the free energy, not included in the purely
mechanical model discussed here. Two-dimensional soliton
configurations carry a lot of entropy [40,46], which is also
associated with the fact that their energy scales linearly with
length. Consequently, thermal fluctuations can contribute to
renormalize the elastic constants [44,47]. The existence of
patches or domains with a nominal twist angle can also be
interpreted as the fact that the transition from commensurate
to incommensurate structures is first order and dominated by
entropy.

Longitudinal and transverse phason modes are represented
in Figs. 2(d) and 2(e), respectively. Their frequencies deduced
from the harmonic expansion in Eq. (12) read as

ω(L)
q =

√
λ̃ + 2μ̃

ρ̃
|q| ≈

√
5 − 3ν

4(1 − ν)
c|q|, (14a)

ω(T )
q =

√
μ̃ + γ

ρ̃
|q| ≈

√
7 − ν

4(1 − ν)
c|q|, (14b)
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where I have introduced in the mass density of the soliton
network (see Appendix A)

ρ̃(θ ) ≈ ρ

√
8V

π2μ
sin

(
θ

2

)
. (15)

The inertia of the soliton system is reduced because the
formation of sharper (on the scale of LM) stacking textures
implies that, effectively, a smaller fraction of the atoms within
the moiré cell takes part of the sliding motion of one layer
with respect to the other. This compensates the reductions of
the elastic constants, so the dispersion of the phason modes
does not change much with respect to the acoustic phonons
of individual graphene layers, in agreement with numerical
calculations [48]. This does not imply, as we have seen, that
interlayer adhesion forces are negligible, or that the elasticity
of individual layers can describe the energetics of phason
modes.

III. ELECTRON-PHASON COUPLING

In order to evaluate the effect of phason fluctuations on
the electronic spectrum and transport properties, I am going
to consider the continuum model usually discussed in the
literature [1,2]:

Ĥ(τ ) =
(

Ĥ(τ,t )
D T̂ (τ )(r)

[T̂ (τ )(r)]† Ĥ(τ,b)
D

)
. (16)

The Hamiltonian is written in block form, each of them acting
on a spinor wave function in a given valley sector (labeled by
τ = ±1) from top and bottom layers (upper and lower blocks,
respectively) describing electronic states around points Kτ,μ

in Fig. 1. The block-diagonal terms are Dirac Hamiltonians of
the form

Ĥ(τ,μ)
D = h̄vF �(τ,μ) · (k̂ − Kτ,μ), (17)

where k̂ = −i∂ is the crystalline-momentum operator in real-
space representation, h̄vF = 3ta/2, with t ≈ 2.8 eV being
the intralayer hopping parameter, and �(τ,μ) is a vector of
Pauli matrices defined in the spinor (sublattice) space. Since
crystalline momentum is expressed in a common frame of
reference (defined by C2x and C2y axes in Fig. 1) the Pauli
matrices have to be properly rotated,

�(τ,μ) = (τ e
iμθ�̂z

2 σ̂x e− iμθ�̂z
2 , e

iμθ�̂z
2 σ̂y e− iμθ�̂z

2
)
, (18)

where �̂z = τ σ̂z/2 is the generator of spinor rotations (see
Appendix B) and μ = ±1 for top/bottom layer blocks. In-
terlayer tunneling processes are described by the off-diagonal
blocks, given by

T̂ (τ )(r) = t⊥
[
T̂ (τ )

0 + T̂ (τ )
1 e−iτG1·(r−ũ) + T̂ (τ )

2 eiτG2·(r−ũ)], (19)

where t⊥ ≈ 110 meV parametrizes the strength of the in-
terlayer hopping; matrices T̂ (τ )

i contain the pertinent phases
acquired by the wave function when electrons hop between
different sublattices:

T̂ (τ )
0 =

(
1 1
1 1

)
, (20a)

T̂ (τ )
1 =

(
1 eiτ 2π

3

e−iτ 2π
3 1

)
, (20b)

T̂ (τ )
2 =

(
1 e−iτ 2π

3

eiτ 2π
3 1

)
. (20c)

In addition to time-reversal and superlattice-translation
symmetries, along with valley conservation imposed by con-
struction, the continuum model is also invariant under D6

point-group operations [14,15] and infinitesimal rigid trans-
lations of one layer with respect to the other: a uniform
phason field ũ parametrizing the center of the beating pattern
can be absorbed in a unitary rotation of the wave function
(specifically, it can be absorbed as a phase in the Bloch states
defined in different copies of the moiré Brillouin zone), so
the miniband spectrum remains invariant. Note also that the
model is derived assuming no lattice relaxation (the main
steps are reproduced in Appendix B following Ref. [49]).
Its effect can be incorporated by means of (i) strain fields
within the Dirac-Hamiltonian blocks and (ii) more harmonics
in T̂ (r) along with smaller amplitudes for interlayer hop-
pings between the same sublattice, reflecting the shrinking of
AA-stacked areas. Although these terms have an important
effect on the electronic spectrum [36,50,51], I am going to
neglect them in my estimation of the electron-phason cou-
pling; the observation is that, regardless of the changes in
the Hamiltonian, the invariance under relative translations
of the two layers imposes the parametric dependence on ũ
already contained in Eq. (19). Thus, we can obtain the leading
contribution in t⊥ by expanding Eq. (19) (and its Hermitic
conjugate) up to linear order in the smooth (on the scale of the
moiré period) nonuniform phason field, just like in the case of
a charge-density wave [52]:

δT̂ (τ )(r) ≈ i τ t⊥ũ(r) · [G1 T̂ (τ )
1 e−iτG1·r − G2 T̂ (τ )

2 eiτG2·r].
(21)

Introducing Fourier series for the phason field, decompos-
ing the Fourier components in longitudinal and transverse
components, and promoting the latter to boson operators in
conventional fashion, provided that π = ρ̃ ˙̃u is the canoni-
cal momentum density conjugate to soliton displacements, I
arrive at the following general expression for the electron-
phason coupling in second quantization:

Ĥe-ph = −
∑

τ,k′,k,q

τ t⊥

{√
h̄

2Aρ̃ω
(L)
q

Â
(L)
q

[
q · G1

|q|
(
�

(τ,t )
k′−τG1

)†
T̂ (τ )

1 �
(τ,b)
k − q · G2

|q|
(
�

(τ,t )
k′+τG2

)†
T̂ (τ )

2 �
(τ,b)
k

]

+
√

h̄

2Aρ̃ω
(T )
q

Â
(T )
q

[
(q × G1)z

|q|
(
�

(τ,t )
k′−τG1

)†
T̂ (τ )

1 �
(τ,b)
k − (q × G2)z

|q|
(
�

(τ,t )
k′+τG2

)†
T̂ (τ )

2 �
(τ,b)
k

]}
δk′,k+q + H.c., (22)
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where A is the area of the system, Â
(ν)
q = aν

q + (aν
−q)†,

and �
(τ,μ)
k = (cτ,μ

A,k, cτ,μ

B,k )T ; operators (cτ,μ

α,k )†/cτ,μ

α,k
create/annihilate Bloch states with crystalline momentum k
around valley τ in sublattice α of layer μ, while (aν

q)†/aν
q

creates/annihilates longitudinal (ν = L) and transverse
(ν = T ) phasons with momentum q.

A similar coupling was considered in Ref. [53] to estimate
the contribution from phonon umklapp scattering in graphene
on boron nitride. In fact, Eq. (22) captures both normal and
umklapp scattering processes when the reconstruction of the
electronic spectrum is taken into account and the resulting
minibands are represented in a reduced-zone scheme, with
crystal momentum k restricted to the first moiré Brillouin
zone. For low carrier concentration, umklapp processes are
mediated by phonons with momenta of the order of Gi and,
therefore, their contribution to the resistivity scales as � ∝
e−h̄ωGi /kBT /T . In what follows, I am going to restrict the
analysis to quasielastic scattering processes within the Fermi
circles around the mini Dirac points of the spectrum.

A. Low-energy Hamiltonian

Before tackling the calculation of the resistivity, let me
discuss first the impact of phason fluctuations on the low-
energy sector of the electronic spectrum. In a commensurate
approximant, valleys Kτ,μ are folded onto corners κ̃η of the
moiré Brillouin zone; Fig. 1 illustrates the case for type-I
(in the nomenclature of Ref. [15], sublattice-exchange odd in
Ref. [29]) commensurate structures, which are dense in the
limit of small angles [30]. A k · p expansion around these
points reads as

Ĥ(τ,μ) = h̄v∗
F (τ σ̂x, σ̂y) · p + Ĥ(τ,μ)

e-ph , (23)

where p is the crystalline momentum around κ̃η. This Hamil-
tonian acts on a new spinor basis for each valley sector τ ,
each entry corresponding to envelope wave functions mostly
localized on a given sublattice of layer μ; the hybridization
with other sublattices/layers is measured by the parameter
α ≡ t⊥/(h̄vF |κ̃η|). The new Fermi velocity can be estimated
in perturbation theory [2] as v∗

F /vF = (1 − 3α2)/(1 + 6α2);
α2 = 1

3 defines the first magic angle in this approximation.
The second term in Eq. (23) represents the electron-phason

coupling projected onto the lowest-energy bands. The most
general phenomenological expansion allowed by symmetry
reads as

Ĥ(τ,t/b)
e-ph = gA1∇ · ũ ± gA2 (∇ × ũ)z + g(s)

E2
[(∂xũx − ∂yũy)σ̂x

− τ (∂xũy + ∂yũx )σ̂y]

± g(a)
E2

[τ (∂xũx − ∂yũy)σ̂y + (∂xũy + ∂yũx )σ̂x], (24)

where the upper/lower sign applies to top/bottom layer sec-
tors. Note that the electron-phason coupling can only depend
on derivatives of the phason field due to the invariance of the
electronic spectrum with respect to infinitesimal translations
of the moiré pattern. The combinations in Eq. (11) can be
paired with electronic operators transforming under the same
irreducible representation of D6 to form invariants under the
point-group and time-reversal operations; details can be found

in Appendix B. The coupling constants gi are phenomenolog-
ical parameters with units of energy.

The first and third terms in Eq. (24) resemble the scalar
and vector electron-phonon couplings in graphene and are
expected to be subleading in layer hybridization gA1 , g(s)

E2
∼

O(α2); consequently, the electron-phason coupling is domi-
nated by transverse modes. The other two couplings act with
opposite signs on valleys Kτ,± coming from different layers.
In particular, tilting the soliton network (∇ × ũ 	= 0) with
respect to the preferential direction imposed by the moiré
superlattice lifts the degeneracy of these points, as illustrated
in Fig. 3(a); the coupling parametrized by g(a)

Es
includes the

effect of distortions of the beating pattern that break the three-
fold rotational symmetry, displacing the positions of the Dirac
crossings in k space. These couplings reproduce the effect
of relative strain between layers in the band structure [45]
and, as noted before, could explain the reduced Landau level
degeneracy reported in magnetotransport.

Figure 3(b) shows the numerical evaluation (blue dots) of
the matrix elements of the coupling with transverse phason
modes in the second line of Eq. (22):

〈ζ ′, τ, k′|Ĥep|ζ , τ, k〉 =
√

h̄

2Aρ̃ω
(T )
q

�
ζ,ζ ′
T,τ (q, k, k′)δk′,k+q.

(25)

Here,|ζ , τ, k〉 represents electronic states from valley τ in
miniband ζ with crystalline momentum k restricted to the first
moiré Brillouin zone, which are obtained by diagonalizing the
Hamiltonian in Eq. (16); the resulting matrix is truncated to
a finite number of momentum values in each layer coming
from different copies of the moiré zone, ranging from 7 for
the largest twist angle (θ = 5◦) to 61 for the smallest (θ =
1.5◦). The results are normalized by the incident momentum
(measured with respect to the corresponding mini Dirac point)
along the x axis corresponding to a filling of n = 1011 cm−2

in the lowest-energy electron band and fitted (red curves) to
the phenomenological expression derived from Eq. (24):

�
μ,ζ
T,τ (q, p, p′) = −μ gA2 |q| cos

(
θp′ − θp

2

)

−μτζ g(a)
E2

|q| cos

(
2θq + θp′ + θp

2

)

+ τζ g(s)
E2

|q| sin

(
2θq + θp′ + θp

2

)
, (26)

from which I estimate the coupling constants shown in
Fig. 3(c) for different twist angles. The calculation is restricted
to intraband (ζ = ζ ′), quasielastic processes, for which |q| =
|p′ − p| = 2|p| sin(

θp′−θp

2 ). Note that in these last expressions
momenta are measured with respect to κ̃η, with η = μ ×
τ as prescribed by the folding scheme in Fig. 1, and θk
parametrizes the direction of momentum k, namely, k =
|k|(cos θk, sin θk ). In particular, the calculations of Fig. 3 cor-
respond to τ = +1 and μ = +1; the values of the couplings
do not change appreciably when the calculation is performed
for different incident momenta or band/valley numbers within
the low-energy Dirac cones. The accuracy of the fitting curves
is very good down to angles of the order of θ = 1.2◦.
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FIG. 3. (a) Schematic representation of the splitting of the Dirac minibands under a local tilting distortion of the moiré pattern (coupling
parametrized by gA2 ); dashed lines correspond to valley τ = +1, straight lines to valley τ = −1, blue color to top layer μ = +1 (t ), and red
color to bottom layer μ = −1 (b). (b) Electron-phason matrix elements in valley τ = +1 within the conduction band ζ = +1 around κ+ point
as a function of the scattering angle. The incident momentum p = p êx corresponds to a filling of n = 1011 cm−2 in the Dirac model, i.e.,
pa = 0.0056. Blue dots correspond to the numerical evaluation in the continuum model for the electronic bands, red curves correspond to
the phenomenological fitting in Eq. (26). (c) Electron-phason couplings within the low-energy Dirac bands as a function of the twist angle
extracted from the fittings.

The layer-symmetric coupling g(s)
E2

is only appreciable for
the smallest angles, as expected. The layer-asymmetric cou-
plings are nonmonotonic with twist angle. This behavior is
reproduced by the k · p perturbative expansion presented in
Appendix B, which predicts a stronger coupling with tilting
deformations of the beating pattern; second-order perturbation
theory gives

gA2 ≈ 3 α t⊥
1 + 6α2

(
v∗

F

vF

)
. (27)

The coupling grows first as the layer hybridization of the
electronic wave function α/(1 + 6α2) increases, but around
θ � 3o it starts to decrease following the same trend as the
Fermi velocity.

B. Phason-limited electronic transport

Electron scattering by strong phason fluctuations is ex-
pected to contribute to the T -dependent resistivity of twisted
bilayer graphene at small incommensurate angles. I am going
to consider a semiclassical treatment in the framework of
Boltzmann transport theory, which implicitly assumes that
kF �  1, where kF is the momentum of carriers within the
Fermi surface and � is the phason-limited mean-free path. The
electron-phason coupling enters explicitly in the collision in-
tegral via a scattering probability rate, which can be computed
from Fermi’s golden rule as W f

i = 2π h̄−1|〈 f |Ĥep|i〉|2δ(E f −
Ei ); the initial state reads as |i〉 = |ζ , τ, k〉 ⊗ |n(ν)

q 〉, where
|n(ν)

q 〉 represents a state with n(ν)
q phasons in branch ν. Note

that, although the electron-phason coupling projected onto
the low-energy bands results from coherent superpositions
of electronic states in the two layers, at this point we are
neglecting interband coherences in the calculation of the resis-
tivity, which could alter the results as the system approaches
the neutrality point [54,55]. I am also going to assume that

the phason ensemble thermalize much faster than electrons,
so n(ν)

q reduces to a equilibrium Bose-Einstein distribution
function. Phason emission/absorption processes scatter the
initial state into | f 〉 = |ζ ′, τ, k′〉 ⊗ |n(ν)

q ± 1〉 at a rate

Wζ ′,k′
ζ ,k = 2π

h̄

∑
ν=L,T

∑
q

h̄
∣∣�ζ,ζ ′

ν,τ (q, k, k′)
∣∣2

2Aρ̃ω
(ν)
q

δk′,k+q

× [n(ν)
q δ
(
εζ ′,τ,k′ − εζ,τ,k − h̄ω(ν)

q

)
+ (n(ν)

q + 1
)
δ
(
εζ ′,τ,k′ − εζ,τ,k + h̄ω(ν)

q

)]
. (28)

In order to obtain analytical formulas, I am going to restrict
the analysis to intraband, quasielastic processes within the
Dirac cones, dominated by the gA2 coupling with transverse
phason modes according to the estimates presented in the
previous subsection. The resistivity can be obtained from a
variational method [56] applied to the linearized Boltzmann
equation describing the evolution of deviations of the elec-
tronic distribution function from equilibrium. The calculation
is analogous to the case of the phonon-limited resistivity in
graphene [57] and I am not going to reproduce the details here.
The final result reads as

� = h̄

e2

(
2kF gA2

)2
ρ̃(v∗

F )2kBT
I

(
T

TBG

)
, (29)

where I (x) is a dimensionless function defined by

I (x) =
∫ 1

0
dy y4

√
1 − y2

ey/x

(ey/x − 1)2
. (30)

The temperature scale TBG, akin to the Bloch-Grüneisen
temperature in the problem of electron-phonon scattering, is
related to the maximum momentum transfer (2kF ) between
electronic states in a quasielastic scattering event,

kBTBG = h̄ω
(T )
2kF

. (31)
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FIG. 4. T -dependent resistivity (in logarithmic scale) deduced
from Eq. (29) (black curve, corresponding to twist angle θ = 1.1◦).
Dashed blue and dotted red curves show the contribution from
the scalar (ḡs) and vectorial (ḡv) couplings with in-plane (layer-
symmetric) phonons [57]. The inset shows the dependence of d�/dT
with twist angle in the high-T regime.

At temperatures much lower than TBG, the resistivity is
dominated by small-angle scattering events and scales as
� ∼ (T/TBG)4. In the high-temperature regime T  TBG, the
resistivity grows linearly with T as

� ≈ π
(
gA2

)2
kBT

16e2 h̄(v∗
F )2(μ̃ + γ )

. (32)

Given the dispersion relation in Eq. (14b) and the relation
between the Fermi momentum and the carrier concentration
in the low-energy Dirac model, kF = √

πn/2, the crossover
takes place at temperatures of the order of TBG ≈ 12

√
n K,

with n measured in units of 1011 cm−2. Figure 4 (black curve)
shows the dependence on temperature for fixed values of
the carrier density (n = 1011 cm−2) and the dimensionless
electron-phason coupling ḡA2 ≡ agA2/h̄v∗

F = 0.1.

IV. DISCUSSION

A linear-T resistivity is expected in general if electron
transport is limited by scattering off boson fluctuations above
a certain temperature scale, the latter defined by phase-space
constraints in these scattering events. In particular, for the
coupling with either phasons or layer-symmetric phonons
(corresponding to acoustic in-phase vibrations of both layers,
for which the crossover temperature is of the same order as
TBG defined above), the slope of the resistivity with tempera-
ture can be written as

d�i

dT
≈ R0(ḡi )

2 kB

16a2Ki
, (33)

where R0 = π h̄/e2 is the quantum of resistance, Ki is the suit-
able elastic modulus (μ̃ + γ for transverse phasons, λ + 2μ

and μ for longitudinal and transverse phonons, respectively),
and the dimensionless parameter ḡi measures the strength
of the coupling within the mini Dirac bands in units of the
bandwidth parameter h̄v∗

F /a. In the case of phasons, we have
ḡA2 ∼ t⊥/t , where the exact fraction depends on the grade
of layer hybridization in the wave function and, therefore, is
expected to be sensitive to the effect of lattice relaxation on the

electronic spectrum, which is not taken into account in the es-
timates of Sec. III. Regarding layer-symmetric phonons, since
the vector potential couples directly to the electron velocity
operator, interference of the electronic wave function leads to
the same cancellation as in the Fermi velocity, giving ḡv ≈
β ≡ −∂ ln t/∂ ln a ∼ 2–3. In the case of the scalar coupling,
the same cancellation takes place due to the reconstruction of
the electronic spectrum, which enters through the electrostatic
screening of the deformation potential [56]; in a Thomas-
Fermi treatment [57], the dimensionless coupling reduces to

ḡs ≈ aD

8e2ke
∼ 1, (34)

where D ≈ 20–30 eV and ke = 1/4πε0 are the bare deforma-
tion potential [58] and Coulomb constants, respectively.

The conclusions of this analysis are the following: (i) The
effective couplings (normalized by the bandwidth) within the
reconstructed Dirac cones should not depend strongly on the
twist angle with the exception of, maybe, the coupling with
phason modes due to its sensitivity to layer hybridization. (ii)
Despite the weaker coupling with phasons, these modes can
dominate the resistivity at small twist angles due to the re-
duced stiffness of the stacking domain-wall system. The inset
of Fig. 4 shows the dependence of the slope of the resistivity
as a function of the twist angle prescribed by the scaling of
the elastic constants in Eqs. (13) (i.e., neglecting changes in
the effective couplings). The resistivity increases as the twist
angle decreases due to the reduction of the rigidity of the
soliton network, but the slope is at least two orders of mag-
nitude smaller than those reported in the experiments [25,26].
This points to a different mechanism, possibly related to
strong electron correlations around the magic angle. Recently,
González and Stauber have argued that perfect nesting for
fillings close to the emergent van Hove singularity at the band
edge gives rise to a marginal Fermi-liquid scaling of the quasi-
particle lifetime [59]. Partially related to this observation, a
recent model for the linear-T resistivity in the normal state
of cuprate superconductors invoking umklapp scattering [60]
starts from the assumption of a Fermi surface reconstruction to
maximize commensurate nesting; this could be induced by a
spin-wave instability that, also in the present case [61,62], can
compete with the superconducting order. Other indications are
the fact that the low-temperature crossover is systematically
smaller than TBG, as pointed out in Ref. [26], and the absence
of saturation of the resistivity around the Fermi temperature
(only when higher-energy bands start to be populated the
resistivity drops), which may indicate that electronic quasi-
particles are not well defined.

The conclusions presented here are based on Boltzmann
transport theory, which does not include mesoscopic effects
ascribed to the intrinsically disordered nature of the devices.
In particular, in the comparison with the contribution from
conventional phonons, I have neglected the effect of disorder
on the beating pattern, which could pin the soliton network
and open a gap in the phason spectrum. The reduction of the
effective rigidity of the soliton network implies that phason
fluctuations are enhanced and, consequently, the moiré pat-
tern is also more sensitive to perturbations induced by the
substrate. The simplest perturbation to the harmonic theory
in Eq. (12) is a weak (in the sense of Larkin [63]) disorder
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potential of the form

Vdis = −
∫

dr f (r) · ũ(r). (35)

Here, f (r) represent forces acting independently on the stack-
ing solitons. This potential breaks the translational invariance
of the incommensurate lattice and pins the soliton system.
Positional order in the moiré superlattice is lost at distances
of the order of

Lc ≈ 6(λ̃ + 2μ̃)

πσ f
, (36)

where σ 2
f ≡ f 2 represents the dispersion in the distribution

of forces. In the case of encapsulated samples, for example,
we can estimate this parameter as σ f ∼ VBN/LBN, where
VBN ≈ 0.1 eV/nm2 characterizes the adhesion energy be-
tween graphene and boron nitride [64], and LBN ≈ 14 nm is
the characteristic size of the moiré due to the lattice mismatch,
about 1.8%. According to Eqs. (13) and (36), around the
magic angle θ ∼ 1◦ positional order in the corresponding
moiré superlattice is lost at distances Lc ∼ 26 nm, about twice
the size of the moiré period; Lc collapses to LM at angles
θ ∼ 0.7◦.

Equation (36) must be interpreted as a collective pinning
length [65,66] below which the soliton network responds
elastically or, more accurately, the harmonic expansion in
Eq. (12) holds. What happens beyond that length it is difficult
to say due to the evident shortcomings of the model in
Eq. (35), which, for example, neglects the quasiperiodicity of
the beating pattern and, possibly, of the interaction with boron
nitride if the latter is aligned with the sample. The difficulty
arises from the fact that realistic disorder potentials vary
on length scales much shorter than the moiré period. These
considerations will be taken into account in a future study.
Nevertheless, it is worth emphasizing that, although these
are only tentative estimates, it is precisely the low stiffness
of the soliton network defining the beating pattern at small
twist angle what makes the system so sensitive to structural
disorder, explaining the widespread presence of twist angle
disorder in the samples.

Finally, another possible mechanism for the softening
of the soliton network is the presence of strong nematic
fluctuations of electronic origin, as suggested by tunneling
spectroscopy [20–22]. This observation is particularly rele-
vant for the nematicity around the charge neutrality point,
which seems to be more pronounced at stacking domain
walls [21,22]. The phenomenological Hamiltonian presented
in Eq. (24) provides a good description of the coupling with
phason fluctuations close to neutrality. The symmetry analysis
presented in Appendix B can be used to construct phenomeno-
logical theories describing the coupling of nematic order
parameters with lattice degrees of freedom. The interplay
between electrons, phasons, and nematic fluctuations is also of
potential relevance to understand the T -dependent resistivity
observed in twisted bilayer graphene. On the experimental
front, it would be interesting to have a systematic study of
the anisotropy in transport as a function of carrier density and
in the absence and presence of applied tensions (although this
could be affected by other mesoscopic effects). It would be

also very useful to compare the resistivity of devices under
different hydrostatic pressure (which have been shown to dis-
play a similar phenomenology than magic angle bilayers [5])
in order to determine the dominant role of phasons in transport
since the application of pressure can pin the soliton network
and suppress this contribution to the resistivity.

In conclusion, long-wavelength fluctuations of a moiré
beating pattern in the limit of small twist angles are dom-
inated by phason modes. Their contribution to resistivity
grows linearly with T , with increasing slope as the twist
angle decreases due to the reduction of the stiffness of the
soliton network. This contribution alone, however, seems to
be insufficient to explain the fast growth of the resistivity
when the magic angle is approached, pointing to a different
mechanism that might involve the presence of strong nematic
fluctuations or a Fermi surface reconstruction linked to the
correlated phenomena at lower temperatures.

Note added. Recently, I came across Ref. [67] which
presents a full calculation of the spectrum of oscillation with
the account of lattice relaxation, following the same recipe
as in Appendix A. This work highlights the role of stacking
domain walls, reaching the same conclusions as in Sec. II,
in particular, the scaling of the elastic constants of the moiré
superlattice in Eqs. (13).
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APPENDIX A: MECHANICAL MODEL

Lattice relaxation is described by an elastic free energy of
the form

F = Fel + Fad. (A1)

The first terms account for in-plane elastic distortions of
graphene layers,

Fel =
∑
μ=t,b

∫
dr
[
λ

2
(∇u(μ) )2 + μ

4

(
∂iu

(μ)
j + ∂ ju

(μ)
i

)2]
, (A2)

where u(μ) describes displacements of unit cells in layer μ

with respect to their equilibrium positions in the absence of
interlayer forces. It is convenient to introduce the relative dis-
placement u = u(t ) − u(b) and total displacement v = u(t ) +
u(b). In the simplest approximation, the adhesion energy,
second term in Eq. (A1), is a functional of the former field
only,

Fad =
∫

dr Vad[r, u(r)], (A3)

where Vad is the adhesion potential introduced in the main
text. Equation (5) comes from minimizing the free energy of
variations with respect to u. Dynamical equations are derived
from the total Lagrangian L = K − F , where the kinetic en-
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ergy reads as

K = ρ

4

∫
dr [v̇2 + u̇2]. (A4)

Here, ρ = 7.6 × 10−7 kg/m2 is the mass density of individual
graphene layers.

The first field v represents in-phase displacements of
both layers and can be identified with the original acoustic
phonons [57]. From this point on, I am going to focus on
the dynamics of relative displacements u. Let me consider de-
viations from a metastable configuration δu(t, r) = u(t, r) −
u(0)(r), where u(0)(r) is a solution of Eq. (5). Plugging this
ansatz into the previous equations gives

Fel[u(0)] + Fel[δu] + Fmix[δu, u(0)] + Fad[δu, u(0)], (A5)

where the first and second terms are just Eq. (A2) evaluated
with the metastable solution and the corresponding deviation,
while the third term mixes both:

Fmix[δu, u(0)] =
∫

dr
[
λ

2
∂iu

(0)
i ∂ jδu j

+ μ

4

(
∂iu

(0)
j + ∂ ju

(0)
i

)
(∂i δu j + ∂ jδui )

]
. (A6)

The last term comes from the adhesion energy; expanding up
to quadratic order gives

Fad[δu, u(0)] ≈
∫

dr
{
Vad[r, u(0)] + δui

∂Vad

∂ui

∣∣∣∣
u(0)

+ 1

2
δuiδu j

∂2Vad

∂ui∂u j

∣∣∣∣
u(0)

}
. (A7)

Hereafter, repeated latin indices are summed up. Integration
by parts (dropping boundary terms) leads to

F ≈ F0 + U [δu] +
∫

dr δui

[
∂Vad

∂ui
|u(0)

− λ

2
∂i∂ ju

(0)
j − μ

2
∂ j
(
∂iu

(0)
j + ∂ ju

(0)
i

)]
. (A8)

The last term is 0 just from Eq. (5). The first term represents
the free energy of the equilibrium solution

F0 =
∫

dr
{

λ

4
(∇u(0) )2 + μ

8

(
∂iu

(0)
j + ∂ ju

(0)
i

)2
+Vad[r, u(0)(r)]

}
, (A9)

while U [δu] describes the spectrum of harmonic oscillations

U [δu] = 1

2

∫
dr
{

λ

2
(∇δu)2 + μ

4
(∂iδu j + ∂ jδui )

2

+ δuiδu j
∂2Vad

∂ui∂u j
|u(0)

}
. (A10)

The Euler-Lagrange equations describing oscillations
around the metastable state reads as

−ρ δüi + λ + μ

2
∂i∂ jδu j + μ

2
∂ j∂ jδui = δu j

∂2Vad

∂ui∂u j

∣∣∣∣
u(0)

.

(A11)

FIG. 5. Spectrum of oscillations of two floating layers. When �

and LM are comparable (for example, curves in green for θ = 5◦), the
spectrum resembles the acoustic phonon branches of graphene folded
onto the moiré Brillouin zone (in dashed black for reference). For
smaller angles, the strong softening of the phonon modes around the
zone center marks the instability of the system toward the formation
of sharper stacking textures.

By introducing Fourier series,

δui(t, r) = 1√
A

∑
q

∫
dω

2π
ui(ω, q) eiq·r−iωt , (A12)

the problem reduces to solve the following secular equation:

ρ ω2ui(ω, q) = [μ|q|2δi j + (λ + μ)qiq j]u j (ω, q)

+
∑

G

Ki j (G)u j (ω, q − G), (A13)

where I have introduced

Ki j (G) = 4√
3L2

M

∫
moiré

dr e−iG·r ∂2Vad

∂ui∂u j

∣∣∣∣
u(0)

. (A14)

1. Floating layers

For large twist angles such that LM and � [defined in
Eq. (7)] are comparable, we can neglect lattice relaxation
u(0) ≈ 0, and consider oscillations around two floating layers.
The average free energy per moiré cell is just F̄0 = 3V/2. The
adhesion potential reduces to

Vad[r, 0] = V
3∑

i=1

[
1

2
+ cos (Gi · r)

]
. (A15)

In this approximation, all the harmonics Ki j (G) are 0 except
for the ones in the first star (α = 1, 2, 3)

Ki j (±Gα ) = −V

2
(bα )i(bα ) j . (A16)

The spectra in Fig. 5 are the result of truncating the secular
equation to include the first 36 harmonics, giving a 37 × 37
matrix to diagonalize. The lowest-frequency branches are
strongly softened (blue curves) when the matrix elements in
Eq. (A16) start to be comparable with ωM = 4πc/(

√
3LM ).
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2. Soliton network

Let me assume now that the lattice relaxes and the solution
is roughly described by the superposition of the three density
waves introduced in the main text,

u(0)(r) =
∑

α=1,2,3

uα (�), (A17)

where uα (�) ≈ u(�) ûα is a soliton train along �̂α = ẑ × ûα ,
u(�) is given by Eq. (8), and the unit vectors ûα lie along the
three armchair directions:

û1 =
(

−
√

3

2
,−1

2

)
, (A18a)

û2 =
(√

3

2
,−1

2

)
, (A18b)

û3 = (0, 1). (A18c)

To the leading order in �/LM , we can neglect soliton interac-
tions at the crossings and approximate

F̄0 ≈ 1√
3LM

∑
α

∫
d�

{
μ

2
(∂�uα )2 + 2V [0, uα (�)]

}

≈ 2
√

3 σ

LM
. (A19)

For a sine-Gordon soliton, the tension reduces to

σ =
∫

d�

{
μ

4
(∂�uα )2 + V [0, uα (�)]

}

= V
∫

d� sech2

(
� − xα

�

)
= 2�V = a

π

√
2μV . (A20)

As argued in the main text, the acoustic branches in this
limit can be identified with traveling-wave modes of the soli-
ton network parametrized by collective coordinates ũ. Specif-
ically, if u(0)(r − ũ) is the soliton-network solution centered
at ũ, then a smoothly distorted profile can be approximated by
the functional

u[ũ(r)] = u(0)[r − ũ(r)], (A21)

where the collective coordinate has been promoted to a field
ũ(r). Spatial derivatives can be approximated as

∂iu j ≈ ∂iu
(0)
j − ∂ku(0)

j ∂iũk, (A22)

and therefore we can identify ∂iδu j ≈ −∂ku(0)
j ∂iũk . Plugging

this result in the first line of Eq. (A10) gives

F[ũ(r)] ≈ 1

2

∫
dr
{

λ

2
∂ ju

(0)
i ∂l u

(0)
k (∂iũ j∂kũl )

+ μ

2

[
∂ku(0)

j ∂l u
(0)
j (∂iũk∂iũl )

+ ∂ku(0)
j ∂l u

(0)
i (∂iũk∂ j ũl )

]}
. (A23)

We can now estimate from this last result the coefficients
in the free-energy expansion of Eq. (12). Since the spatial
dependence of the phason field ũ(r) must be smooth on the
scale of the moiré superlattice, the derivatives of u(0) inside

the integral can be approximated by their average over a moiré
unit cell. We end up with

F[ũ(r)] ≈ Ci jkl

2

∫
dr ∂iũ j∂kũl , (A24)

where

Ci jkl = λ√
3L2

M

∫
dr ∂ ju

(0)
i ∂l u

(0)
k + μ√

3L2
M

×
∫

dr
{
∂ ju

(0)
k ∂l u

(0)
i + δik ∂ ju

(0)
m ∂l u

(0)
m

}
. (A25)

Note that the symmetry-adapted expansion in the main text
adopts the same form, where the tensor of elastic coefficients
reads as

Ci jkl = (γ + μ̃) δikδ jl + λ̃ δi jδkl + (μ̃ − γ )δ jkδil . (A26)

In order to evaluate the elastic constants, we can proceed as
before and plug the superposition of the three soliton waves
into Eq. (A25). Ignoring again the subleading contribution
from soliton crossings, I find

Ci jkl = I
∑

α

[μδik (ûα )m(ûα )m(�̂α ) j (�̂α )l

+ (λ + μ)(ûα )i(ûα )k (�̂α ) j (�̂α )l ], (A27)

where the prefactor reads as

I = 1√
3LM

∫
d�(∂�u)2 = 4V �√

3μLM

. (A28)

The tensors between parentheses are just

δik

∑
α

(ûα )m(ûα )m(�̂α ) j (�̂α )l = 3

2
δikδ jl , (A29a)

∑
α

(ûα )i(ûα )k (�̂α ) j (�̂α )l = 9

8
δikδ jl − 3

8
δi jδkl − 3

8
δ jkδil .

(A29b)

Comparing these expressions with Eq. (A26), I arrive at the
final formulas in Eqs. (13) of the main text.

The effective mass density of the soliton network can
be derived in the same manner by approximating the time
derivatives in Eq. (A4) as u̇i ≈ −∂ ju

(0)
i

˙̃u j . The mass tensor
of a soliton reads as then

Mi j = ρ

2

∫
d2r ∂iu

(0)
k ∂ ju

(0)
k , (A30)

where the integral is extended over a moiré unit cell. Proceed-
ing just as before, the final result reads as Mi j = Mδi j , where
M is the inertia of a stacking domain wall

M = 3a2ρLM

2π2�
. (A31)

Dividing this quantity by the area of the moiré unit cell AM =√
3L2

M/2 gives the mass density ρ̃ in Eq. (15). The dispersion
relations in Eqs. (14) follow from the corresponding Euler-
Lagrange equations, where the Fourier components of the
phason field can be decomposed in longitudinal and transverse
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components as usual:

ũ(q) = i q
|q| ũL(q) + i ẑ × q

|q| ũT (q). (A32)

These can be promoted to phason creation/annihilation op-
erators in conventional fashion via the identification (here
ν = L, T labels the branch)

ũν (q) −→
√

h̄

2 ρ̃ ω
(ν)
q

[
a(ν)

q + (a(ν)
−q

)†]
, (A33)

where phason operators satisfy the boson algebra
[aq1 , (aq2 )†] = δq1,q2 , following from the conjugacy relations
{ũi(r), π j (r′)} = δi j δ(r − r′), where π = ρ̃ ˙̃u.

APPENDIX B: ELECTRONIC MODEL

Let me start by writing a generic tight-binding Hamiltonian
for two graphene layers floating on top of each other: Ĥtb =
Ĥb + Ĥt + T̂ + T̂ †. The first two terms represent intralayer
hopping processes; up to first nearest neighbors, we have

Ĥμ = −t
∑

i

{∣∣R(μ)
i,A ,
〉〈

R(μ)
i,B

∣∣+ ∣∣R(μ)
i,A

〉〈
R(μ)

i,B − a(μ)
1

∣∣
+ ∣∣R(μ)

i,A

〉〈
R(μ)

i,B − a(μ)
2

∣∣}+ H.c. (B1)

The Hamiltonian is written in a monoelectronic basis of
Wannier π orbitals localized on sites A/B of unit cell i of layer
μ. We can introduce Bloch states as∣∣R(μ)

i,α

〉 = 1√
N

∑
kμ∈BZμ

e−ikμ·R(μ)
i,α |kμ, α〉, (B2)

with crystalline momenta kμ restricted to the first Brillouin
zone of layer μ (N is the number of unit cells on each layer
that I assume the same). The previous Hamiltonian reduces to

Ĥμ =
∑

kμ∈BZμ

∑
α,β=A,B

[Ĥkμ
]α,β |kμ, α〉〈kμ, β|, (B3)

where the matrix in sublattice space reads as

Ĥkμ
= −t

3∑
i=1

(
0 eikμ·δ(μ)

i

e−ikμ·δ(μ)
i 0

)
. (B4)

The sum is extended over the three vectors connecting A with
nearest B sites in layer μ; in my notation, δ

(μ)
1,2 = δ

(μ)
3 − a(μ)

1,2 ,

and δ
(μ)
3 = R(μ)

i,B − R(μ)
i,A connects the two sites within the unit

cell.
The terms T̂ (T̂ †) describe interlayer tunneling processes

T̂ =
∑
i, j

∑
α,β

T i j
αβ

∣∣R(t )
i,α

〉〈
R(b)

j,β

∣∣. (B5)

In a two-center, Slater-Koster–type approximation, T i j
αβ de-

pends only on the relative distance between Wannier centers,
so it must admit a Fourier expansion of the form

T i j
αβ = Ac

∫
dq

(2π )2 eiq·(R(t )
i,α−R(b)

j,β ) T (q), (B6)

where Ac is graphene’s unit-cell area. Introducing Bloch states
and plugging this last expression into Eq. (B5), we can rewrite

the latter as

T̂ =
∑
{b(b)}

∑
{b(t )}

∑
kt ,kb

∑
α,β

eib(t )·δ(t )
α −ib(b)·δ(b)

β T (kb + b(b) )

× δkb+b(b),kt +b(t ) |kt , α〉〈kb, β|, (B7)

where the first two sums are on reciprocal vectors of the top
and bottom lattices. In deriving this expression, I have made
use of the identities∑

i

ei(q−kt )·R(t )
i,α = N eib(t )·δ(t )

α δq,kt +b(t ) , (B8a)

∑
j

e−i(q−kb)·R(b)
j,β = N e−ib(b)·δ(b)

β δq,kb+b(b) , (B8b)

where δ(μ)
α is the position of site α within a reference unit cell

in layer μ, such that δ
(μ)
B − δ

(μ)
A = δ

(μ)
3 .

Equation (B7) describes scattering events satisfying the
general umklapp condition

kt + n′
1b′

1 + n′
2b′

2 = kb + n1b1 + n2b2, (B9)

where ni, n′
i are integers. Here, I have introduced the notation

of the main text, namely, bi and b′
i = R(θ )bi are the primitive

vectors of the reciprocal lattice of the bottom and top layers,
respectively; similarly, I write δ(b)

α ≡ δα , δ(t )
α = R(θ )δα + u

where, in addition to the relative rotation along a common
hexagon center, I consider a relative displacement u of the top
with respect to the bottom layer. Commensurate approximants
to the electronic structure simplify the condition in Eq. (B9)
such that ni = n′

i, i.e., kt = kb + G, where G is a vector of the
moiré superlattice; Eq. (B7) simplifies then to

T̂ ≈
∑
{b}

∑
kb,kt

∑
α,β

eib·(δα−δβ )+ib·(RT u) T (kb + b)

× δkt ,kb+(1−R)b|kt , α〉〈kb, β|. (B10)

The sum in {b} is also restricted in practice, provided that
T (q) is a rapidly decaying function of momentum; in partic-
ular, T (q) is strongly suppressed for values |q| > 1/d , where
d is the separation between layers [1,2].

For small twist angles, the electronic spectrum will be
dominated by the low-energy Dirac bands of decoupled
graphene layers lying around the two inequivalent corners
(valleys) of the respective Brillouin zones labeled by Kτ,μ in
Fig. 1; here, τ = ±1 labels the valleys, which is assumed to
be a good quantum number. In a continuum description [1,2],
band dispersion is simplified by expanding the phases in
Eq. (B4) for small momenta around Kτ,μ:

3∑
i=1

ei(Kτ,μ+pμ)·δ(μ)
i ≈ −τ p(x)

μ + ip(y)
μ , (B11)

where the x, y components are adapted to the high-
symmetry (zigzag and armchair, respectively) axes of individ-
ual graphene layers. As mentioned in the main text, it is con-
venient to expresses crystalline momenta in a common frame
of reference (defined in this case by the high-symmetry axes
highlighted in Fig. 1), so the spinor basis in the corresponding
sublattice space of each layer has to be rotated, leading to the
block-diagonal terms in Eq. (16).
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For the tunneling terms, we can, in the same spirit, neglect
small deviations from Kτ,μ in the argument of T (q). If we
include only one harmonic t⊥ ≡ T (|Kτ,μ|), the sum in {b} has
to be restricted to b = 0,−τ b1, τ b2, corresponding to the
three equivalent positions of a given valley within a single-
layer Brillouin zone. Equation (B10) simplifies to

T̂ ≈ t⊥
∑
p,τ

∑
α,β

{[
T̂ (τ )

0

]
α,β

|kt = kb, α〉〈kb = Kτ,b + p, β|

+ [T̂ (τ )
1

]
α,β

eiτG1·ũ|kt = kb − τ G1, α〉〈kb =Kτ,b + p, β|
+ [T̂ (τ )

2

]
α,β

e−iτG2·ũ|kt = kb + τ G2, α〉
× 〈kb = Kτ,b + p, β|}, (B12)

where I have used the relation in Eq. (4) along with the iden-
tity in Ref. [31], so that b · (RT u) = −G · ũ. Equation (B12)
transformed back to real space corresponds to Eq. (19), with
matrices T̂i given in Eqs. (20).

1. Symmetry-adapted electronic operators

In order to construct phenomenological couplings within
the low-energy sector of the spectrum, it is convenient to intro-
duce a basis of electronic operators adapted to the irreducible
representations (irreps) of the point-group symmetry D6 of the
continuum model. The internal Hilbert space of the continuum
model is spanned by spin, sublattice, layer, and valley degrees
of freedom. I am going to ignore the spin since relativistic
corrections are weak. Note that neither sublattice nor layer are
good quantum numbers since interlayer hopping terms mix
them, but we can still refer to them to label the transformation
properties of the Bloch wave function around κ̃η points. Valley
τ = ±1 and layer μ = ±1 indices label four Dirac crossings
reminiscent of the Dirac points of two decoupled graphene
layers, while sublattice indices span the associated subspace
of Dirac doublets at each crossing. Electronic operators can be
written in a basis of Pauli matrices acting on each subspace:
σ̂i for sublattice, τ̂i for valley, and μ̂i for layer. Since we
are interested in the coupling to long-wavelength phason
fluctuations on the scale of the moiré period, I am going to
restrict the analysis to diagonal operators in valley and layer
(or κ̃η-point) numbers with the pertinent identifications τ̂z →
τ , μ̂z → μ. I find convenient, however, to keep the matrix
notation here, because the transformation rules of electronic
operators are more easily identified from the Pauli-matrix
algebra.

For example, elementary rotations along the sixfold princi-
pal axis are implemented by unitary operators

C2z : τ̂xσ̂x, (B13a)

C3z : e
i2π
3 �̂z , (B13b)

where �̂z = 1
2 τ̂zσ̂z. Twofold rotations along x and y axes are

given by

C2x : μ̂xσ̂x, (B14a)

C2y : μ̂x τ̂x. (B14b)

The rest of point-group operations follow from matrix multi-
plication. Finally, time-reversal symmetry is implemented by

TABLE I. Classification of electronic valley- and layer-diagonal
operators according to irreducible representations (irreps) of D6 and
parity (±1, even/odd) under time-reversal symmetry.

Electronic operators (T ) Irrep E C2z 2 C3z 2 C6z 3 C2x 3 C2y

μ̂z τ̂zσ̂z (−) A1 1 1 1 1 1 1

μ̂z (+), τ̂zσ̂z (−) A2 1 1 1 1 −1 −1

τ̂z (−), μ̂zσ̂z (+) B1 1 −1 1 − 1 1 −1

σ̂z (+), μ̂z τ̂z (−) B2 1 −1 1 −1 −1 1

(τ̂z σ̂x

σ̂y
)(−), (−μ̂z σ̂y

μ̂z τ̂z σ̂x
)(−) E1 2 −2 −1 1 0 0

( σ̂x

τ̂z σ̂y
)(+) , (−μ̂z τ̂z σ̂y

μ̂z σ̂x
)(+) E2 2 2 −1 −1 0 0

the antiunitary operator

T : τ̂x K, (B15)

where K denotes complex conjugation.
All the possible combinations of valley- and layer-diagonal

operators can be classified according to the irreps of D6 and
time-reversal symmetry. The result is summarized in Table I,
along with the characters of D6. It is worth emphasizing that
there are two ways to lift the Dirac degeneracies without
breaking time-reversal symmetry: by breaking both C2z and
C2y symmetries (μ̂zσ̂z ∼ B1), i.e., by removing the physical
equivalence of both sublattices and layers (a staggered po-
tential of opposite sign in each layer), or by breaking C2z

and C2x symmetries (σ̂z ∼ B2), i.e., by removing only the
physical equivalence between sublattices (the same staggered
potential in both layers). Only the latter leads to bands with
nonzero valley-Chern number. The competition between these
two mass terms gives rise to the phase diagram discussed in
Ref. [16].

The phenomenological electron-phason Hamiltonian in
Eq. (24) consists of all the possible invariants formed from
combinations of the phason-field derivatives in Eqs. (11) with
the corresponding electronic operators transforming under the
same irrep. Here, I should note that the phason field trans-
forms as ũ = (ũx, ũy ) ∼ E1, while the relative displacement
between layers transforms as (−uy, ux ) ∼ E1 since, recall,
C2x,y rotations exchange the layers. The relation between these
two transformation rules can be understood from the twist
(second, dominant term) in Eq. (4) or, with the account of
lattice relaxation, the fact that solitons involve relative shear
between layers.

2. Perturbative calculation of the electron-phason
matrix element

The Hamiltonian of the continuum model can be diago-
nalized in a basis of Bloch states by restricting the values of
crystalline momentum to the first Brillouin zone of the moiré
reciprocal lattice and introducing new (band) quantum num-
bers associated with different copies separated by momenta in
{G}. In this process, we can absorb a uniform phason field as
a phase in the new electronic basis, so the spectrum remains
invariant under translations of the moiré pattern. It is useful to
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consider the positions of the valleys folded into the first moiré
Brillouin zone

K±,t = ±2G2 + G1

3
(≡ κ̃±), (B16a)

K±,b = ±2G1 + G2

3
(≡ κ̃∓). (B16b)

This folding scheme applies to type-I [15] or sublattice-
exchange odd [29] commensurate approximants, but once the

first sum in Eq. (B10) is restricted to one harmonic, this choice
is inconsequential [30].

Next, we consider the dispersion of low-energy electronic
states with momentum p around these points, in the previous
notation, kt = Kτ,t + p (defining the top layer sector μ =
+1), and kb = Kτ,b + p (corresponding to the bottom layer
sector μ = −1). For each moiré Brillouin zone in a given
layer I am going to truncate the number of copies in the

opposite layer to three, so each (decoupled) sector labeled by valley and layer numbers is described by an 8 × 8 matrix
Hamiltonian of the form

Ĥ(τ,μ)
8×8 = Ĥ(τ,μ)

p + Û (τ,μ). (B17)

The first term reads as (in block form)

Ĥ(τ,+1)
p =

⎛
⎜⎜⎝

h̄vF �(τ,+1) · p 0 0 0
0 h̄vF �(τ,−1) · p 0 0
0 0 h̄vF �(τ,−1) · p 0
0 0 0 h̄vF �(τ,−1) · p

⎞
⎟⎟⎠ (B18)

for the top-layer sector, and similarly for the bottom layer

Ĥ(τ,−1)
p =

⎛
⎜⎜⎝

h̄vF �(τ,+1) · p 0 0 0
0 h̄vF �(τ,+1) · p 0 0
0 0 h̄vF �(τ,+1) · p 0
0 0 0 h̄vF �(τ,−1) · p

⎞
⎟⎟⎠. (B19)

From this point on, I am going to neglect the rotation of the spinor basis, which restores the electron-hole symmetry of the
spectrum (the error scales with θ2); while these matrices read the same now, note that they are expressed in a different basis. The
second term in Eq. (B17) reads as

Û (τ,+1) =

⎛
⎜⎜⎜⎝

0 t⊥T̂ (τ )
0 t⊥T̂ (τ )

1 t⊥T̂ (τ )
2

t⊥T̂ (τ )
0 h̄vF �(τ ) · (Kτ,t − Kτ,b) 0 0

t⊥T̂ (τ )
1 0 h̄vF �(τ ) · (Kτ,t − Kτ,b + τG1) 0

t⊥T̂ (τ )
2 0 0 h̄vF �(τ ) · (Kτ,t − Kτ,b − τG2)

⎞
⎟⎟⎟⎠ (B20)

for the top-layer sector, and

Û (τ,−1) =

⎛
⎜⎜⎜⎜⎝

h̄vF �(τ ) · (Kτ,b − Kτ,t ) 0 0 t⊥T̂ (τ )
0

0 h̄vF �(τ ) · (Kτ,b − Kτ,t − τG1) 0 t⊥T̂ (τ )
1

0 0 h̄vF �(τ ) · (Kτ,b − Kτ,t + τG2) t⊥T̂ (τ )
2

t⊥T̂ (τ )
0 t⊥T̂ (τ )

1 t⊥T̂ (τ )
2 0

⎞
⎟⎟⎟⎟⎠ (B21)

for the bottom-layer sector. The low-energy subspace is defined by the zero-energy eigenstates of Û (τ,μ), specifically,

|ψA,τ,+1〉 = 1√
1 + 6α2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0

iτα

−iτα

iτα

−iτα e−iτ 2π
3

iτα

−iτα eiτ 2π
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |ψB,τ,+1〉 = 1√
1 + 6α2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

iτα

−iτα

iτα eiτ 2π
3

−iτα

iτα e−iτ 2π
3

−iτα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B22a)

|ψA,τ,−1〉 = 1√
1 + 6α2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iτα

iτα

−iτα

iτα e−iτ 2π
3

−iτα

iτα eiτ 2π
3

1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |ψB,τ,−1〉 = 1√
1 + 6α2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iτα

iτα

−iτα eiτ 2π
3

iτα

−iτα e−iτ 2π
3

iτα

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B22b)
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These states form a basis for the D6 irreps introduced in the previous subsection. The rest of eigenstates are separated by energies
Ei = ±h̄vF |κ̃|, ±h̄vF

√
1 + 6α2 |κ̃| (the last ones are twofold degenerate in this approximation).

Next, I am going to produce a k · p expansion of the Hamiltonian by projecting out the high-energy states in a Löwdin
perturbative scheme [68]. Let me introduce first the following projection operators:

P̂(τ,μ)
0 ≡

∑
α=A,B

|ψα,τ,μ〉〈ψα,τ,μ|, (B23a)

1̂ − P̂(τ,μ)
0 =

∑
i

P̂(τ,μ)
i , (B23b)

where i labels the high-energy eigenstates. Up to second order in perturbation theory, where any term in the Hamiltonian of
Eq. (B17) (generically written as V̂ (τ,μ)) is treated as a perturbation to Û (τ,μ), we have

Ĥ(τ,μ) ≈ P̂(τ,μ)
0 V̂ (τ,μ)P̂(τ,μ)

0 −
∑

i

P̂(τ,μ)
0 V̂ (τ,μ) P̂(τ,μ)

i

Ei
V̂ (τ,μ)P̂(τ,μ)

0 . (B24)

First-order perturbation theory in Ĥ(τ,μ)
p leads to the first term in Eq. (23) with a new Fermi velocity v∗

F reduced by a factor
(1 − 3α2)/(1 + 6α2), the result first obtained by Bistritzer and MacDonald in Ref. [2]. For the electron-phason coupling, we
should consider first its expression in the 8 × 8 Hilbert space; from Eq. (21), we have

V̂ (τ,+1)
e-ph = δT̂ (τ,+1) + H.c. = τ t⊥

⎛
⎜⎜⎜⎜⎝

0 0 i G1 · ũ T̂ (τ )
1 −i G2 · ũ T̂ (τ )

2

0 0 0 0

−i G1 · ũ T̂ (τ )
1 0 0 0

i G2 · ũ T̂ (τ )
2 0 0 0

⎞
⎟⎟⎟⎟⎠ (B25)

for the top-layer sector, and

V̂ (τ,−1)
e-ph = δT̂ (τ,−1) + H.c. = τ t⊥

⎛
⎜⎜⎝

0 0 0 0
0 0 0 i G1 · ũ T̂ (τ )

1
0 0 0 −i G2 · ũ T̂ (τ )

2
0 −i G1 · ũ T̂ (τ )

1 i G2 · ũ T̂ (τ )
2 0

⎞
⎟⎟⎠ (B26)

for the bottom layer. First-order perturbation theory gives 0,
as expected, since the invariance under translations of the
soliton network implies that there must be momentum transfer
between electronic states [69]. Treating both V̂ (τ,μ)

e-ph and Ĥ(τ,μ)
p

up to second order in perturbation theory gives

Ĥ(τ,μ)
e-ph (k, k′) ≈ −

∑
i

P̂(τ,μ)
0 V̂ (τ,μ)

e-ph

P̂(τ,μ)
i

Ei
Ĥ(τ,μ)

p P̂(τ,μ)
0 + H.c.

≈ −μτ
6 α t⊥(1 − 3α2)

(1 + 6α2)2
(p · ũ)σ̂z, (B27)

where p must be interpreted now as the average momentum
during an electron-phason scattering event p ≡ (k′ + k)/2,
with k, k′ labeling the initial and final states, respectively.

Equation (B27) may look odd at first glance, for it is
difficult to recognize the symmetry-allowed couplings in the
phenomenological expansion of Eq. (24) from this expres-
sion. Note, however, that Eq. (B27) is compatible with time-
reversal and D6 point-group symmetries and, in fact, the
combination of valley, sublattice and layer indices is such that
when projected over a band state, i.e., and eigenstate of the
first term in Eq. (23),

|ζ , τ, μ, k〉 = e− iτθk
2√
2

|ψA,τ,μ〉 + τζ
e

iτθk
2√
2

|ψB,τ,μ〉, (B28)

where ζ = ±1 labels the electron/hole bands, Eq. (B27)
produces the expected matrix element of gA2 coupling. Note

FIG. 6. Kinematics of quasielastic scattering events within a
Fermi circle centered at one of the corners of the moiré Brillouin
zone.
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first that for intraband processes we have

〈ζ , τ, μ, k′|Ĥ(τ,μ)
e-ph |ζ , τ, μ, k〉

≈ −iμ
3 α t⊥(1 − 3α2)

(1 + 6α2)2
sin

(
θk′ − θk

2

)
(k + k′) · ũ.

(B29)

When the phason field is decomposed in longitudinal and
transverse components, the former give rise to scalar products
of the form i(k + k′) · q̂, while for transverse modes we
have i(k + k′) · (ẑ × q̂); here, q̂ is a unit vector along the
transferred momentum q = k′ − k. For quasielastic processes
(|k′| = |k|) illustrated in Fig. 6, we have

(k + k′) · q̂ = 0, (B30a)

(k + k′) · (ẑ × q̂) = −2|k| cos

(
θk′ − θk

2

)
. (B30b)

Collecting all the pieces, I arrive at the following expression
for the matrix element of the coupling with transverse pha-
sons,

�
μ
T,τ (q, k, k′) = −μ

6 α t⊥
1 + 6α2

(
v∗

F

vF

)
|k| sin

(
θk′ − θk

2

)

× cos

(
θk′ − θk

2

)
, (B31)

where I have regrouped some factors in v∗
F /vF . This is indeed

the matrix element of the coupling with (∇ × ũ)z since for
quasielastic processes |q| = 2|k| sin( θk′−θk

2 ). We end up then
with the identification of the phenomenological parameter in
Eq. (27).
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