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Transverse profile and three-dimensional spin canting of a Majorana state in carbon nanotubes
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The full spatial 3D profile of Majorana bound states (MBS) in a nanowirelike setup featuring a semiconducting
carbon nanotube (CNT) as the central element is discussed. By atomic tight-binding calculations, we show
that the chiral nature of the CNT lattice is imprinted in the MBS wave function which has a helical structure,
anisotropic in the transverse direction. The local spin-canting angle displays a similar spiral pattern, varying
around the CNT circumference. We reconstruct the intricate 3D profile of the MBS wave function analytically,
using an effective low-energy Hamiltonian accounting both for the electronic spin and valley degrees of freedom
of the CNT. In our model, the four components of the Majorana spinor are related by the three symmetries of
our Bogoliubov-de Gennes Hamiltonian, reducing the number of independent components to one. A Fourier
transform analysis uncovers the presence of three contributions to the MBS, one from the �-point and one from
each of the Fermi points, with further complexity added by the presence of two valley states in each contribution.
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Over the past decade, Majorana fermions have been of
great interest in condensed-matter physics. Under special
conditions, they arise as quasiparticles in superconductors [1],
where they are zero energy eigenstates of the Bogoliubov-de
Gennes (BdG) Hamiltonian and of the particle-hole symmetry
operator. Theoretically, such quasiparticles were predicted to
appear in the elusive one-dimensional p-wave superconduc-
tors [2] but it is also possible to engineer s-wave systems
in such a way that they mimic p-wave superconductivity
[3]. The most popular setup is based on semiconducting
nanowires with large spin-orbit interaction and large g-factor
in contact with a superconductor, which induces supercon-
ducting proximity correlations in the wire [4,5]. Although
the experiments are by now very advanced [6], a definite
proof that the reported signatures [7–10] are really due to
the topologically nontrivial Majorana bound states (MBSs)
is still missing. Thus, recent proposals have suggested to
use local probes to infer exclusive properties of a MBS,
such as its nonlocality and its peculiar spin canting structure
[11–16], or the maximal electron-hole content of the Majorana
spinor [17,18]. However, to exclude spurious effects, local
experiments can be truly useful only if the spatial profile of the
MBS is known with sufficient accuracy. This is very difficult
to achieve for the case of the semiconducting nanowires, since
their diameter of a few tens of nanometers and their length of
several hundreds of nanometers do not allow for a microscopic
calculation of the MBS wave function. Typically, the spatial
profile is obtained with simple one-dimensional models [19].
The transverse profile has so far been obtained numerically
for effective models: of core-shell nanowires in cylindrical
[20,21] and prismatic [22,23], and of full nanowires in hexag-
onal [24] geometries.
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In this paper, we show that the spatial profile of MBSs can
be derived analytically with good accuracy in a setup which
uses a carbon nanotube (CNT) in proximity with an s-wave
superconductor. Similar to the nanowires, such CNTs can host
MBSs at their ends [25–29]. Due to their hollow character
and small diameter, CNTs of several micrometers can be
simulated numerically based on tight-binding models of car-
bon atoms on a rolled graphene lattice [30,31]. Such simula-
tions allow one to accurately evaluate the excitation spectrum
and local observables. Effective single-particle low energy
models can be derived which well reproduce microscopic
simulations [32].

In a recent paper [29], we used a four-band and an effective
one-band model to calculate the topological phase diagram
and the energy spectrum of proximitized semiconducting
CNTs in perpendicular magnetic field, see Fig. 1(a), with
parameters obtained from a fit to the numerical spectra [33].

In this paper, we use the same models to analytically obtain
the full 3D spatial profile of the Majorana wave function.
First, we exploit our knowledge of the three symmetries of the
effective BdG Hamiltonian to derive the relations between the
four components of the Majorana spinor [see Figs. 1(e) and
1(f)], thus reducing the number of independent components to
one. Second, we find that the presence of two angular momen-
tum contributions (valleys) and the spin degree of freedom
results in the formation of a composite, six-piece MBS whose
3D wave function has a distinctive spiral pattern with a C2

symmetry, impossible to factorize into separate transverse and
longitudinal profiles. Equally nonisotropic is the spin canting
angle, a quantity encoding the relative phase of the spin-up
and spin-down particle components of the Majorana wave
function. A comparison with the numerical results for the
MBS of a (12,4) CNT gives us confidence in the reliability
of the effective model. Our results show that while simple 1D
models can capture the important low-energy properties of the
BdG spectrum, they might miss crucial features present in the
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FIG. 1. Setup and bulk properties of a (12, 4) carbon nanotube
with proximity-induced superconductivity. (a) Schematic of the sys-
tem including the CNT which lies on top of an s-wave superconduc-
tor (SC) with a magnetic field applied perpendicular to the nanotube
axis. The nearest-neighbor hopping ti j,ss′ is spin-dependent due to
curvature. The superconducting substrate breaks the rotational sym-
metry of the nanotube with respect to the CNT axis, which induces
a valley-mixing term in the Hamiltonian. Moreover, it generates an
on-site superconducting pairing term �0. The numerical values of
the various parameters of the model can be found in Appendix A 1.
(b) The low energy spectrum of the CNT consists of 1D cuts across
the Dirac cones, with two valleys and two spin directions at each
energy. (c) The single-particle energy spectrum of a (12,4) nanotube
in the vicinity of the �-point for a magnetic field of B⊥ = 14T.
Color scale shows the expectation value of 〈sz〉 for the corresponding
energy state. A finite �0 induces in the k-space two superconducting
pairing terms �̃s(k) and �̃p(k) whose action is indicated by the
magenta and green lines, respectively. (d) The two superconducting
pairing terms �̃s(k) (interband), and �̃p(k) (intraband), as functions
of k. (e) The action of the particle-hole P , pseudo-time-reversal
T̃ and chiral C operations on the components of a Nambu spinor
in the real space. (f) The counterpart of these relations in the
reciprocal space. The fact that P relates uτ s(k) and v∗

τ s(k) follows
from Pγk = γ †

−k .

full 3D wave function. This can have profound implications
in various setups, where the shape and local spin composition
of an MBS are relevant [12,15,16].

The paper has the following structure. In Sec. I, we discuss
our microscopic model of the CNT, the symmetries of the
BdG Hamiltonian in our setup, and the resulting relations

between the components of the Majorana spinor. In Sec. II,
we show and discuss the numerical results of the spin canting
of the full 3D MBS. We proceed to reconstruct the MBS
analytically. First, we introduce in Sec. III the effective low-
energy model of the CNT, including the superconducting
correlations. We also derive the form of the Majorana state in
a continuum 1D approximation. In Sec. IV, we calculate the
3D Majorana solution and determine its full spatial profile.
Finally, we compare the numerical results from the real-space
tight-binding calculation with those of the analytical model.

I. MODEL AND ITS SYMMETRIES

Geometrically, a single wall CNT is equivalent to a rolled-
up strip taken from the two-dimensional honeycomb of car-
bon atoms that makes up a graphene sheet [34]. The band
structure of the CNT can be obtained from that of graphene
by imposing periodic boundary conditions in the transverse
direction, which quantize the transverse momentum, turning
the two-dimensional dispersion of graphene into a series of 1D
cuts, which are the CNTs one-dimensional subbands, shown
schematically in Fig. 1(b). Effective low-energy Hamiltonians
can be derived from the microscopic model [32]. Thus, like in
graphene, the low-energy band structure in nanotubes consists
of two distinct and time-conjugate valleys K and K ′ which
are indexed by the quantum number τ (τ = +1 for K valley
and τ = −1 for K ′ valley) [cf. Fig. 1(b)]. However, the simple
fact of being rolled up drastically modifies the band structure,
leading to effects that are not present in graphene. These
are a curvature-induced band gap and an enhanced spin-orbit
coupling [30–32,35]. The spin-orbit coupling in the nanotubes
results in an effective spin-orbit field directed along the tube
axis, with the sign of the field given by τ s, with s the spin
quantum number along the CNT. The CNT’s tiny diameter
reduces the number of relevant transverse modes to exactly
four in the low-energy regime, one for each spin and valley.
We consider nanotubes of the zigzag class [36,37], where the
Dirac points are only slightly shifted from k = 0. Therefore
the states near the � point play a dominant role in the low
energy physics. In order to open the gap at the � point, we
need to remove the Kramers degeneracy between the (τ, s)
and (−τ,−s) states. The spin degeneracy can be removed
by a transverse magnetic field, but only if the valleys are
also mixed. Fortuitously, this happens automatically when
the nanotube is in contact with the bulk superconductor, i.e.,
the source of the proximity effect. Its presence breaks the
rotational symmetry of the tube, introducing mixing between
the K and K ′ valley. The resulting spectrum in a normal
CNT is shown in Fig. 1(c). This effect will also be present
even above the critical temperature, when the substrate is
not superconducting. We model it in the same way as in
Ref. [29], as a larger electrostatic potential for atomic sites
in the neighborhood of the substrate.

As we will see, high magnetic fields are needed to induce
the formation of the MBS. A suitable substrate which would
withstand such fields is, e.g., NbSe2, where superconductivity
has been shown to survive up to 30 T [38].

The proximity to a superconducting substrate induces
Cooper pairing in the CNT. The excitation spectrum of the
system can be determined from the BdG Hamiltonian, where
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the superconducting correlations are treated in a mean-field
approximation. In our microscopic model, we assume an
isotropic on-site pairing term [39], see Fig. 1(a). In a more re-
alistic approach, the proximity effect arises from the Andreev
reflection processes and it is strongest at the substrate/CNT
interface. When we model this local proximity by assuming
an exponential decay of the pairing away from the interface,
our results, shown in Appendix D, do not differ qualitatively
from the case of isotropic pairing. The analytical construction
of an effective model with decaying proximity is, however,
strongly complicated, therefore, in the following, we shall
consider isotropic pairing. Using the Nambu spinor, we can
construct the microscopic BdG Hamiltonian of our system.
To anticipate the discussion in Sec. III, in the reciprocal space
we obtain both an interband (�̃s, with s-wave symmetry) and
an in-band (�̃p) pairing, with p-wave symmetry, required for
topological superconductivity. The two pairings are shown in
Fig. 1(d).

The CNT alone has a crystalline symmetry of rotation by π

around an axis perpendicular to the CNT [C′
2 axis in Fig. 1(a)].

In consequence, the CNT on a superconducting substrate is
a topological crystalline superconductor [40,41] with the C′

2
axis oriented as shown in Fig. 1(a). In our setup, however, the
C′

2 symmetry is broken by the magnetic field parallel to the
substrate and only the local symmetries remain.

The true time-reversal symmetry is broken by the mag-
netic field. Nevertheless, the inspection of the single-particle
Hamiltonian of our CNT setup in the real space used in our
previous work—cf. Eq. (1) of Ref. [29]—with the lattice hop-
pings given by Eq. (9) in Ref. [42], shows that all its dominant
terms are either spin independent and real or proportional to
the spin and purely imaginary. This implies that our system
possesses a local antiunitary symmetry, which involves a
spin flip and commutes with the Hamiltonian. Its action is
defined by T̃ ac†

s (�r) = −ia∗c†
−s(�r), where c†

s (�r) is the operator
creating an electron with spin s at position �r. Contrary to
the true time reversal, T̃ has bosonic nature, T̃ 2 = 1. In our
previous paper [29], we attributed T̃ ’s physical origin to the
C′

2 symmetry, but they are in fact unrelated—T̃ is local while
C′

2 is not. The T̃ is discussed further in the Appendix A 2.
The second local symmetry is the particle-hole symmetry

P , inherent in all BdG systems. With the P and T̃ symmetries
combined, the BdG Hamiltonian of the nanotube is also chiral
symmetric under C = T̃ P . When acting on the eigenstates of
the finite system, expressed in the Nambu space as �̂(�r) =∑

s[us(�r)cs(�r) + vs(�r)c†
s (�r)], these operators convert between

the us and vs components of the different states in the way
shown schematically in Fig. 1(e). (The T̃ relation has been
noticed in Ref. [15], although without attributing it to the
presence of a pseudo-time-reversal symmetry.) The comple-
mentary relations holding in the reciprocal space, calculated
in Sec. IV, are shown in Fig. 1(f). The presence of these three
symmetries has a profound impact on the Majorana state.

The wave function of the MBS is given by 〈�r | �M〉 =
�M (�r), where |�M〉 = γ̂M |0〉 and γ̂

†
M = γ̂M is the Majo-

rana creation operator. Here �r = (z, r⊥), where z and r⊥
denote the longitudinal and the transverse components, re-
spectively. The MBS is described by a spinor, �M (�r) =
(uM↑(�r), uM↓(�r), vM↑(�r), vM↓(�r))T , with uMs(�r) and vMs(�r)
the electron and hole components, respectively, and s

indicating the spin degree of freedom. As detailed below, it is
enough to find the uM↑(�r) components and use the symmetries
of the underlying BdG Hamiltonian to determine the rest.

The first relation is a consequence of the fundamental

property P�M (�r)
!= �M (�r) of a Majorana state. Thus the re-

lation Pus(�r) = v�
s (�r) becomes uMs(�r) = v�

Ms(�r). As we will
show in Sec. III, the MBS are also eigenstates of the chiral
symmetry C, implying vMs(�r) = iuM,−s(�r). Finally, since C =
T̃ P , the Majorana state must be an eigenstate of T̃ as well,
yielding the last relation uMs(�r) = −iu�

M,−s(�r). The relations
illustrated in Fig. 1(e) and 1(f) become equalities within the
Majorana spinor.

II. SPIN CANTING OF THE MAJORANA STATE

In the nanowire/quantum dot setups where the character
of the potential MBS is determined by analyzing its coupling
to the discrete levels of a quantum dot, the spin canting
of the MBS turns out to play an important role [12,15,16]. If
there is a mismatch between the spin of the MBS and that of
the electron on the quantum dot, the coupling, and in con-
sequence the conductance, is suppressed. Thus we turn next
to examine the local spin canting angle in our Majorana
nanotube.

We first notice that the total spin of the Majorana particle,
summed over both particle and hole contributions, is zero.
Thus, we focus on the relative spin composition of the par-
ticle components, (uM↑, uM↓). These are complex quantities
for the considered CNT setup. The local expectation value
for each spin direction in the particle sector is given by
〈�uM (�r)|sα|�uM (�r)〉, where sα are the Pauli matrices, α = x, y, z,
and �uM (�r) = (uM↑(�r), uM↓(�r))T is the electron component of
the wave function.

Due to the symmetry relations, see Fig. 1(e) and Ref. [15],
for the Majorana state it holds:

〈�uM (�r) | sx | �uM (�r)〉 = −2Im
(
u2

M↑(�r)
)
,

〈�uM (�r) | sy | �uM (�r)〉 = −2Re
(
u2

M↑(�r)
)
,

〈�uM (�r) | sz | �uM (�r)〉 = 0.

The expectation value 〈sz〉 is zero because of the pseudo-time-
reversal symmetry. Knowing the values of 〈sx(�r)〉 and 〈sy(�r)〉,
we can define a local spin direction in the plane perpendicular
to the nanotube:

θxy(�r) = arctan

( 〈sy(�r)〉
〈sx(�r)〉

)
= π/2 − 2 arg(uM↑(�r)). (1)

The full 3D spatial profile of the wave function together
with the local θxy(�r) for our numerically obtained Majorana
state is shown in Fig. 2(a). The distance from the CNT sur-
face encodes the local amplitude of the MBS wave function,
|uM↑(�r)|, and the color scale maps θxy(�r). The oscillation of
θxy along z with the same period as the MBS wave function is
clearly visible. Further, Fig. 2(b) shows a zoom of the left end
of the tube for the first peak of |uM↑(�r)| along z, polar angle
ϕ resolved and displaying the helical pattern of θxy. Finally,
Fig. 2(c) visualizes the local spin canting at the very left end of
the nanotube, where the electron tunneling would occur. The
spin-canting angle takes several different values at the edge
atoms, with visible C2 symmetry. Thus the tunneling from
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FIG. 2. Spin-canting angle θxy(�r) and the amplitude |uM↑(r)| of the electronic component of the Majorana state, obtained in a real-space
tight-binding calculation of a finite (12,4) CNT with 4000 unit cells (L = 6.14 μm) for a magnetic field B⊥ = 14T. In all panels, the color
corresponds to the local value of 〈θxy〉. (a) The full Majorana state and its leftmost 0.5 μm, with distance from the CNT surface encoding
|u↑(r)|. (b) 2D projection of the region with the first maximum of the Majorana wave function, with point size corresponding to |uM↑(r)|.
(c) The left termination (i.e., the first 1.8 nm) of the CNT lattice. Vector length corresponds to |uM↑(r)|, its orientation to the spin canting
angle. In both (b) and (c), note the variation of 〈θxy〉 with the polar coordinate.

a putative quantum dot coupled to the left end is definitely
different than in a nanowire, where the spin is assumed to have
only one direction on the whole nanowire cross section. A full
blockade of one spin direction of the left Majorana state [15]
could never be achieved in a nanotube. In shorter systems, like
the nanowires studied in Refs. [12,16], the quantum dot would
always (in the language of the authors) be coupled both to the
left and right Majorana states. Whether this effect is helpful
or detrimental for the experiment is not yet clear and will be
the object of our future work.

The full spin texture could be directly resolved only by
local measurements, for example, with a spin-polarized STM
tip [43].

III. EFFECTIVE FOUR AND ONE-BAND MODEL

The low-energy Hamiltonian of a nonsuperconducting
CNT in the basis {|kK ↑〉 , |kK ↓〉 , |kK ′ ↑〉 , |kK ′ ↓〉} is given
by

H (k) =

⎛
⎜⎝

ξK↑(k) μBB⊥ �KK ′ 0
μBB⊥ ξK↓(k) 0 �KK ′

�KK ′ 0 ξK ′↑(k) μBB⊥
0 �KK ′ μBB⊥ ξK ′↓(k)

⎞
⎟⎠, (2)

where ξτ s(k) = ετ s(k) − μ is the single-particle energy mea-
sured with respect to the chemical potential μ, ετ s(k) is the
single-particle energy of the electrons [see Eq. (A4)], �KK ′

is the energy scale associated with the valley mixing (in our
calculation, it is ∼2.5 meV) and μBB⊥ is the Zeeman energy
due to the perpendicular magnetic field B⊥. Diagonalization of
this Hamiltonian results in four spin- and valley-mixed bands
shown in Fig. 1(c). We can safely neglect any contributions
from disorder, because CNTs can be grown with ultraclean
lattices [44–46]. The Bloch Hamiltonian can be solved analyt-
ically with the assumption that the correlation induced by the
magnetic field between lower ( 1©, 2©) and the upper ( 3©, 4©)

pairs of bands is negligible [29]. When the chemical potential
is set in the lower gap at the � point, this approximation allows
us to consider only the lower bands Ẽ1(k) and Ẽ2(k); it holds
for μBB⊥ smaller than both of the spin-orbit coupling and the
valley mixing energy scales, which in our case are ∼2 meV.
The details of the calculation and a short discussion of the
CNT properties are presented in the Appendix A 1.

In the eigenbasis of Eq. (2) with the two-band approxima-
tion, the corresponding BdG Hamiltonian for our system is
given by

H̃BdG =

⎛
⎜⎜⎜⎝

Ẽ1(k) 0 �̃p(k) −�̃s(k)
0 Ẽ2(k) �̃s(k) �̃p(k)

�̃p(k) �̃s(k) −Ẽ1(k) 0
−�̃s(k) �̃p(k) 0 −Ẽ2(k)

⎞
⎟⎟⎟⎠. (3)

Out of the two superconducting pairing terms, �̃s(k) =
�̃s(−k) is an even function of k, while �̃p(k) = −�̃p(−k)
is an odd function of k, see Fig. 1(d). The pairing term �̃p(k)
can be viewed as a p-wave like gap. The BdG Hamiltonian
Eq. (3) can be partly diagonalized, taking into account the
blocks with the single-particle energies Ẽ1(k), Ẽ2(k) and the
superconducting gap �̃s(k). Details of this calculation are
given in Appendix A 3. Then, the rotated BdG Hamiltonian
is block diagonal and the blocks are given by

Ĥ±
BdG =

(
ξ̃±(k) �̃p(k)

�̃p(k) −ξ̃±(k)

)
. (4)

The quasiparticle energies ξ̃±(k) are

ξ̃±(k) = 1
2 (Ẽ1(k) − Ẽ2(k))

± 1
2

√
(Ẽ1(k) + Ẽ2(k))2 + 4�̃2

s (k).

The functions ξ̃+(k) and �̃p(k) are sketched in Fig. 3(a).
The low-energy physics, relevant for the Majorana states, is
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FIG. 3. k-space properties of a proximitized CNT in magnetic
field at low energies. (a) Quasiparticle energy ξ̃+(k) and supercon-
ducting order parameter �̃p(k) in the effective one-band model.
The superconducting order paramater is an odd function of the
momentum k. Three k values generate the dominant contributions to
zero energy modes: one comes from the � point and one from each
of the Fermi points, ±kF . (b) The Fourier transform of the numerical
Majorana wave function for different azimuthal cuts ϕ confirms that
the zero mode contains only three dominant k contributions.

described by the block Ĥ+
BdG. The particle-hole symmetry

operator for the Ĥ+
BdG block is P = τxK, and the chiral sym-

metry operator is C = τy, where τx,y,z are the Pauli matrices
acting in the two-dimensional subspace of each block.

IV. ANALYTICAL RECONSTRUCTION
OF THE 3D MBS WAVE FUNCTION

A. 1D Majorana profile

MBSs are zero-energy eigenstates of the BdG Hamiltonian
and of the particle-hole symmetry operator. From the behavior
of ξ̃+(k), we infer that the low-energy physics has three
contributions: one from the � point and one from each of the
Fermi points. This ansatz is confirmed by the Fourier trans-
forms for several azimuthal cuts (ϕ = r⊥/R = const) of the
numerically obtained MBS wave function, shown in Fig. 3(b).
One clearly sees one peak at the � point and two peaks at
opposite momenta. The peak locations are independent of ϕ

but their height is not. Furthermore, the peak at negative k
is larger. This is caused by the helical spin structure of the
single-particle spectrum, shown in Fig. 1(b). The solution at
±kF is generated mostly by the band 1©, and spin ↑ for this
band is associated with k < 0.

Thus, similar to some 1D models for nanowires [19], the
generic form of a Majorana state can be defined as

|�M〉 = A�√
2

|��〉 + AR√
2

|�kF 〉 + AL√
2

|�−kF 〉 . (5)

We will later take into account the 3D nature of each of these
three contributions and reconstruct the 3D spatial profile of the
Majorana wave function. For now, we approximate Ĥ+

BdG ≈
Ĥ�

BdG + ĤR
BdG + ĤL

BdG, where we make Taylor expansions
around the momenta k = 0 and k = ±kF , with kF determined
by the constraint ξ̃+(kF ) = 0. The details of the calculation
are presented in Appendix B.

Crucially, the spinorial components of the solutions at each
of the three k points are the same, which allows us to combine
them into a single state which is also an eigenstate of both P
and C. With the three contributions we can construct the 1D
solution from the generic solution Eq. (5). It is characterized
by an exponential decay governed by the imaginary wave
vectors κi (i = �, L, R). The coefficients can be determined
by the three constraints:

P�M (z)
!= �M (z), (6a)

�M (z = 0)
!= 0, (6b)∫ ∞

0
dz|�M (z)|2 != 1. (6c)

From previous findings [29], we know that in the topo-
logical regime κ� ∈ R and κR, κL ∈ C. Moreover, it holds
that Re(κR) = Re(κL ) and Im(κR) = −Im(κL ) ⇔ κR = κ�

L.
Therefore, the wave function can be written as

�M,1D(z) =
[

A�√
2

eκ�z + AR√
2

eκRz + AL√
2

eκ�
Rz

](∓i
1

)
.

These eigenvectors are not eigenstates of the particle-hole
operator P = τxK, but we can multiply them by a complex
number c± = ±1 + i, such that they satisfy the Majorana
constraint. Then, by applying the Majorana Eq. (6a) and the
boundary Eq. (6b) conditions we get the 1D solution, which
is given by

�M,1D(z) = N
2

(ψ‖(z) + ψ�
‖ (z))

1√
2

(
1 − i
1 + i

)
, (7)

where

ψ‖(z) = (eκF z+ikF z − eκ�z ) (8)

encodes the dependence of the wave function on the lon-
gitudinal coordinate. The sum ψ‖(z) + ψ∗

‖ (z) satisfies the
boundary condition Eq. (6b), and N is the normalization
constant determined from Eq. (6c). The contribution from the
� point is a pure evanescent state and from the contribution
from the Fermi points we get a decaying oscillation with the
wave vector kF .

B. Reconstructing the 3D profile

In the remaining part of this paper, we will provide the
analytical form only for u↑(�r) (dropping the M subscript
for compactness of notation), since the remaining Majorana
spinor components can be obtained by the application of P ,
T̃ , and C symmetries.
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The Majorana operator to create the state Eq. (5) is
defined as

γ̂M =
∑

k

(
u
v

)T (
dk+

d†
−k+

)
,

where k ∈ {�, kF , − kF } and u = v� = 1−i√
2

. To find the ana-
lytical wave function, we need to transform the wave function
from the one-band back to the four-band model; this proce-
dure is discussed in Appendix C. To express the Majorana
state in the sublattice- and spin-resolved basis, we need the
transformations reversing Eqs. (A7), (A12), and (A18). At the
end, we obtain

γ̂M =
∑
k,τ,s

(uτ s(k)ckτ s + vτ s(−k)c†
−kτ s), (9)

for k ∈ {�,±kF }, where the coefficients uτ s(k) correspond to
the electron and vτ s(k) to the hole contribution, respectively.
We find a compact form for the coefficients,

uτ s(k) = τ s�τ s(k)λs(k), (10)

vτ s(k) = τ s�τ s(k)λ�
s (k), (11)

with

�τ s(k) =
{

as(k) for τ = +1
bs(k) for τ = −1,

and [see Eqs. (A8) for as(k) and bs(k)]

λs(k) = u m(k)g(sk) − s v n(k)h(sk).

The coefficients g(k), h(k), and n(k), m(k) are found
below, in Eqs. (A13) and (A19), respectively. By using
the relations as(−k) = b−s(k), g(−k) = h(k), m(−k) = m(k),
n(−k) = n(k), we obtain �τ s(k) = �−τ−s(−k) and λs(k) =
−iλ�

−s(−k). Finally, we arrive at the symmetry relations of
the electron and hole coefficients uτ s(k) and vτ s(k) illustrated
in Fig. 1(f).

We have now the expression of the wave function in
conduction basis. To apply the boundary condition it must,
however, be recast in the sublattice-resolved basis. In general,
for the transformation into the sublattice basis one needs also
the valence band contribution. Here we can use the fact that,
due to the high chemical potential, we are far away from the
charge neutrality point and therefore the contribution from
the valence band is negligible. With this, the components
in the sublattice basis are defined as upτ s(k) = eipητ sk uτ s(k),
where ητ s(k) = arg(γτ s(k)) is the phase of Eq. (A2) in the
low-energy regime, and p = +1 for A sublattice and p = −1
for B sublattice.

Since our nanotube is chiral, the open boundary conditions
imply that the wave function must vanish on one end at
the missing A atoms and on the other end at the missing B
atoms [42]. We use therefore the open boundary condition

�A(z = 0, r⊥)
!= 0 ∀r⊥. The wave function up↑(�r) is given by

the superposition of the three contributions k ∈ {�, kF , − kF }
and the two valleys K and K ′, each with its specific transverse

profile eiτk⊥x⊥ :

up↑(r) = A�√
2

[eipηK↑� uK↑(�)eik⊥r⊥

+ eipηK ′↑� uK ′↑(�)e−ik⊥r⊥ ]eκ�z

+ AR√
2

[eipηK↑kF uK↑(kF )eik⊥r⊥

+ eipηK ′↑kF uK ′↑(kF )e−ik⊥r⊥ ]eκF z+ikF z

+ AL√
2

[eipηK↑−kF uK↑(−kF )eik⊥r⊥

+ eipηK ′↑−kF uK ′↑(−kF )e−ik⊥r⊥ ]eκF z−ikF z. (12)

The amplitudes can be fixed by observing that the Majo-
rana condition requires A� ∈ R and AR = A�

L. From the open
boundary condition in the longitudinal direction, we obtain a
relation between AR and A�; hence, the particle component of
the wave function can be written as

up↑(�r) = 1√
2

∑
τ

eiτk⊥r⊥ [AReipητ↑kF uτ↑(kF )ψ‖(z)

+ A�
Reipητ↑−kF uτ↑(−kF )ψ�

‖ (z)]. (13)

The expressions for uτ s(k) are given in Eq. (10), and for
ψ‖(z) in Eq. (8). The spatial profile of the wave function is not
trivial, in the sense that it cannot be factorized into separate
longitudinal and transverse profiles, up↑(�r) �= f (r⊥)g(z). The
absolute value |AR| is fixed by the normalization and its phase
by the Majorana condition. Note that the transverse momen-
tum k⊥ is quantized by the periodic boundary condition. The
Fermi wave vector kF is given by the position of the chemical
potential μ, and the characteristic decay lengths at � and ±kF

by the parameters of the Hamiltonian at this μ. Thus all factors
in the wave function are in principle known from the analytics.

C. Comparison between analytical and numerical results

To test the accuracy of our formula Eq. (13), we have
performed a comparison between the analytical and numerical
solutions for several 1D cuts of the full MBS profile, at vary-
ing values of the azimuthal angle ϕ. We fitted the numerical
solutions with Eq. (13), finding for each cut the parameters
κ�, κF , kF , and AR.

The results for three values of the polar angle, ϕ =
0◦, 24.23◦, 114.23◦ are shown in Fig. 4. The analytical model
clearly reproduces very well the numerically obtained wave
functions. However, due to the simplifications inherent in the
effective one-band model, there are three aspects where we
have to adjust for the lost information.

(i) In the microscopic model, the P symmetry holds exactly
(by construction), but T̃ is minimally broken by two small
effects. One is the presence of the weak spin-flip terms in
the Hamiltonian, due to the enhanced spin-orbit coupling
[30,32,42]. The other is the small Peierls phase for the nearest-
neighbor hopping due to the magnetic field [47]. Thus in the
numerical solution, the T̃ - and C-related components of the
Nambu spinor differ by about ±3%. Removing the spin flip
and the Peierls phase restores the T̃ and consequently also the
C symmetries, see Appendix A 2 for details.
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FIG. 4. Azimuthal cuts of the electron component uA↑ of the Ma-
jorana spinor for (a) ϕ = 0◦, (b) ϕ = 24.23◦, and (c) ϕ = 114.23◦.
The position of the cut in the full MBS wave function is indicated
in each inset. The analytical form of u↑ is given by Eq. (13), its
parameters are obtained from fits to the modulus of the numerical
solution.

(ii) In the analytics, we neglected some correlations due to
the magnetic field. Further, we performed Taylor expansions
around the three momenta k = 0,±kF . Thus, the values κ� ,
κF , and kF from the analytics are slightly different from
those which are obtained by fitting the numerical data using
Eq. (13), see Table I.

(iii) We implemented the valley mixing through a continu-
ous potential ridge along the CNT/superconductor interface.

TABLE I. Values of kF , κ� , and κF from the analytical calcula-
tion compared with values fitted from the numerics.

Analytics ( 1
μm ) Fits ( 1

μm )

κ� −7.94 −8.93
κF −6.56 −8.01
kF 118.92 115.25

FIG. 5. The absolute value of the fitted amplitude |AR| of 28
different ϕ cuts. The colors correspond to different groups of atoms
related by the C4 symmetry (i.e., atoms at the same z position). From
the inset, we see the approximate π periodicity of AR and thus the C2

symmetry of the MBS wave function.

This results in the coupling between the two valleys, but
also in their coupling to higher transverse momentum bands
which therefore also contribute, albeit very weakly, to the
final Majorana state. In consequence, although we expect AR

to be independent of ϕ, we obtain from the fitting procedure
different AR for different ϕ cuts, with the resulting values of
|AR(ϕ)| shown in Fig. 5. We see that, although not constant,
the amplitude AR is a weakly varying function of ϕ. Moreover,
the data resolved for atoms at the same z position show that
AR is close to π periodic. This is a consequence of the C4

symmetry of our (12,4) CNT where the K ′/K valley states
carry the angular momentum � = ±1. Since the Majorana
state is constructed predominantly from electron (and hole)
states with � = ±1, the amplitude of its wave function, to
which AR was fitted, has an approximate C2 symmetry. This is
also visible in Fig. 2(c), where the C2 (instead of C1) symmetry
of spin texture arises from the factor of 2 in Eq. (1).

In Fig. 6, we show a comparison between the analytical and
numerical results for Re(uA↑), Im(uA↑) and the resulting cant-
ing angle θxy(z) for ϕ = 0. The slight discrepancy between
the numerical and analytical values of the real and imaginary
parts of u↑(�r), shown in Figs. 6(a) and 6(b), is amplified in the
spin-canting-angle behavior shown in Fig. 6(c). In particular,
additional phase jumps are visible at positions where the real
value in numerics is small and positive, while the analytical
result is also small but negative. Nevertheless, the overall
agreement is again good.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have shown in a combination of numerical
modeling and analytical calculations how to determine the full
spatial profile of the MBS in a proximitized semiconducting
CNT. The wave function has three contributions: one from
the � point and one from each Fermi point, which is also
supported by an analysis of the numerical data via a Fourier
transformation. We find the symmetry relations which must
be fulfilled by the components of the Majorana spinor. The
excellent agreement between the analytically obtained and the
numerically calculated spin- and sublattice-resolved spinor
gives us confidence in the accuracy of the local observables
further derived in this paper. Despite being obtained for a
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FIG. 6. (a), (b) Numerical and analytical Re(uA↑(z)) and
Im(uA↑(z)) for the polar angle ϕ = 0◦ with parameters from the
|uA↑(z)| fit. (c) The spin-canting angle θxy, defined in Eq. (1), for
the cut ϕ = 0◦.

CNT, our results might also serve as a reference for other
systems where a microscopic calculation of the MBS spinor
is not possible. The features which our model captures very
well are the three main momentum contributions to the MBS,
the decaying behavior of the wave function combined with
its spiral pattern, its oscillation, and the symmetries linking
the different components of the Nambu spinor. We show that
our analytical model fits very well the numerical data of
the wave function obtained by a tight-binding calculation.
Our results will be useful for modeling and interpreting the
experimental results in a realistic quantum transport setup
where the properties of the Majorana states are probed locally.

In our future investigations, we will study in detail the
interactions between the substrate and the nanotube—both
with respect to the tunneling processes which induce the
proximity effect as well as the implications of high electric
fields which may arise at the interface between the CNT and
the substrate as a result of the charge transfer.

The code used to find the energy spectrum and eigenstates,
as well as the data sets used in this paper are publicly
available [48].
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APPENDIX A: CNT SPECTRUM

1. Single-particle spectrum

The simplest way of obtaining the Hamiltonian of a CNT in
the momentum space representation is to use the zone-folding
approximation [34]. The Hamiltonian of a CNT can be written
in the sublattice basis for A and B sublattices,

H0 =
∑
k,s

γs(k)a†
ksbks + H.c., (A1)

where a†
ks (b†

ks) creates an electron on A (B) sublattice with
momentum k and spin s. The factor determining the kinetic
energy γ (k) is defined as

γs(k) = ts,1eik·a1 + ts,2eik·a2 + ts,3, (A2)

where ts,i is the spin-dependent hopping parameter, see
Fig. 1(a), between an A atom and its ith neighbor, and a1

and a2 are the Bravais lattice vectors of the graphene lattice.
The low-energy unperturbed CNT Hamiltonian HCNT can
be obtained by an expansion of Eq. (A1) around the Dirac
points k = κ + τK [42] and a rotation from sublattice into
conduction/valence band basis. In the following, we will
assume that the chemical potential is in the conduction band,
obtaining

HCNT − μN =
∑
k,τ,s

ξτ s(k)c†
kτ sckτ s, (A3)

where ξτ s(k) = ετ s(k) − μ, ετ s(k) = |γτ s(k)| is the CNT
single-particle energy in the conduction band, μ the chemical
potential and c†

kτ s|0〉 = |kτ s〉 define the basis of Eq. (2). The
curvature of the CNT’s lattice results in both spin-dependent
and spin-independent modifications, which can be represented
as shifts in both transverse and longitudinal momentum. Thus,
the single-particle energies of a CNT in Eq. (2) for given
transverse momentum k⊥ and longitudinal momentum k at
low energies are given by

ετ s(k⊥, k) = h̄vF {(k − τK‖ + τ�kc
‖ )2

+ (k⊥ − τK⊥ + τ�kc
⊥ + s�kSO

⊥ )2}1/2, (A4)

where K⊥, K‖ are the transverse and longitudinal components
of momentum at the Dirac point K . The quantum numbers τ

and s are are defined in the main text. In the case of the (12, 4)
semiconducting nanotube, the numerical values of those mo-
mentum shifts in our calculations are �kc

⊥ = −22.83 μm−1,
�kc

‖ = 66.62 μm−1, �kSO = −2.917 μm−1, K‖ = 0, and the
lowest energy subbands shown in Fig. 1(b) have k⊥ − τK⊥ =
τ/3R. The value of k⊥ for the K valley subband in our
nanotube is −35/R, where R is the CNT radius. Note that the

155417-8



TRANSVERSE PROFILE AND THREE-DIMENSIONAL SPIN … PHYSICAL REVIEW B 100, 155417 (2019)

single-particle energies satisfy the time-reversal conjugation,
ετ s(k) = ε−τ−s(−k).

The low-energy Bloch Hamiltonian Eq. (2) also con-
tains the valley mixing and Zeeman field contributions, H =
HCNT + H�KK ′ + HZ . Since the nanotube we are studying is
of the zigzag class [36,37], to mix the valleys it is enough to
break only the rotational symmetry. In our setup, we consider
the valley mixing introduced by the presence of the substrate,
modeling it as an electrostatic potential with a Gaussian
distribution in the polar coordinate, V (ϕ) = V0 exp(−(ϕ −
π/2)/�ϕ). This corresponds to the substrate extending in the
xz plane. In the reciprocal space, the valley-mixing term is
given by

HKK ′ =
∑
k,s

�KK ′ (c†
kKsckK ′s + c†

kK ′sckKs), (A5)

and couples states with the same spin and k but opposite
valley. Following Ref. [29], we set �KK ′ = 2.5 meV.

The Zeeman effect with the field applied along the x axis
couples opposite spins in the same valley:

HZ =
∑
k,τ

μBB⊥(c†
kτ↑ckτ↓ + c†

kτ↓ckτ↑). (A6)

The CNT Hamiltonian in Eq. (2) can be brought to a di-
agonal form by employing two unitary transformations. More
details about the transformations can be found in Appendix
D.1 of Ref. [29]. The first transformation diagonalizes the
Hamiltonian without Zeeman energy (B⊥ = 0) and is defined
as (

ckKs

ckK ′s

)
=

(
as(k) bs(k)

−bs(k) as(k)

)(
αks

βks

)
, (A7)

with as(k)2 + bs(k)2 = 1 and the following values of as(k)
and bs(k):

a2
s (k) = 1

2

⎛
⎝1 − ξKs(k) − ξK ′s(k)√

(ξKs(k) − ξK ′s(k))2 + 4�2
KK ′

⎞
⎠, (A8a)

b2
s (k) = 1

2

⎛
⎝1 + ξKs(k) − ξK ′s(k)√

(ξKs(k) − ξK ′s(ks))2 + 4�2
KK ′

⎞
⎠, (A8b)

where the energy eigenvalues are

E±s(k) = 1
2 (ξKs(k) + ξK ′s(k))

± 1
2

√
(ξKs(k) − ξK ′s(k))2 + 4�2

KK ′ . (A9)

Due to the time-reversal conjugation of ξτ s(k) = ξ−τ−s(−k), it
can be shown that as(k) = b−s(−k) and E±s(k) = E±−s(−k).

Using Eq. (A7), the Zeeman term can be expressed as

B̃⊥ = B⊥(|a↑(k)||a↓(k)| + |b↑(k)||b↓(k)|), (A10)

B�
⊥ = B⊥(|a↑(k)||b↓(k)| − |b↑(k)||a↓(k)|). (A11)

The magnetic field B̃⊥ couples the spins within the lower
and upper band pair, while B�

⊥ couples the spins between band
pairs. Both are symmetric in k, i.e., B̃⊥(k) = B̃⊥(−k) and
B�

⊥(k) = B�
⊥(−k). This is a consequence of the pseudo-time-

reversal symmetry.

In the regime of small Zeeman energy, i.e., �E =
|E+s − E−s| > μBB⊥, the terms with B�

⊥ can be omitted. This
allows us to treat the upper and lower pair of bands separately.
We shall proceed to find the solutions for the lower band pair
only, assuming that the chemical potential μ is tuned into the
gap between the two energy bands Ẽ1 and Ẽ2. Therefore, we
will neglect the influence of the bands Ẽ3 and Ẽ4 because
those bands are not occupied. Then, the second transforma-
tion diagonalizing the Hamiltonian with magnetic field is
defined as (

αk↑
αk↓

)
=

(
g(k) h(k)

−h(k) g(k)

)(
fk1

fk2

)
, (A12)

where the coefficients must satisfy g2(h) + h2(k) = 1. The
new quantum number in Eq. (A12) i ∈ {1,2} just reflects the
ordering of the energy bands E1 < E2. The coefficients g and
h are defined as

g2(k) = 1

2

⎛
⎝1 − E−↑(k) − E−↓(k)√

(E−↑(k) − E−↓(k))2 + 4(μBB̃⊥)2

⎞
⎠,

(A13a)

h2(k) = 1

2

⎛
⎝1 + E−↑(k) − E−↓(k)√

(E−↑(k) − E−↓(k))2 + 4(μBB̃⊥)2

⎞
⎠.

(A13b)

The coefficients satisfy the pseudo-time-reversal conjuga-
tion g(k) = h(−k). Then, the single-particle energies of the
full Hamiltonian with decoupled band pairs are

Ẽi(k) = 1
2 (E−↑(k) + E−↓(k))

+ (−1)i 1
2

√
(E−↑(k) − E−↓(k))2 + 4(μBB̃⊥)2.

(A14)

The renormalized magnetic field opens a band gap at
the � point. The single-particle energies have the prop-
erty Ẽi(k) = Ẽi(−k) with i ∈ {1,2} because B̃⊥(k) = B̃⊥(−k).
This pseudo-time-reversal symmetry for conduction band
states results in the relation depicted in Fig. 1(f). Since the
single-particle states of a finite CNT in our setup contain
both �k, s and −�k,−s contributions with equal weights, their
spin components in the real space must also obey the relation
shown in Fig. 1(e).

2. Pseudo-time-reversal symmetry

The pseudo-time-reversal invariance holds exactly for our
effective model Hamiltonian Eq. (2). For the real space Hamil-
tonian, given by Eq. (1) in Ref. [29], with hopping terms given
by Eq. (9) in Ref. [42], it is, however, broken by two effects,
both absent in our four-band model. The first and smaller
one is the presence of nearest-neighbor hoppings with spin
flip, which couple neighboring angular momentum subbands
[30,32,42].

The second and dominant effect is due to the modification
of the hoppings by the magnetic field [47] which destroys
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FIG. 7. The breaking of T̃ as a function of B⊥ and of V0. (a) The
substrate potential has the amplitude V0 = 0.4 eV, the value taken
in the simulations shown in the main text. (b) The magnetic field is
B⊥ = 14 T as in the main text and the strength V0 of the substrate
potential is varied.

T̃ by adding the same complex phase (Peierls phase) to
all hoppings. Figure 7 shows the strength of T̃ breaking,
quantified as the difference between the band 1© (cf. Fig. 1)
minima at k > 0 and at k < 0, as a function of B⊥ and of
V0, as shown in the inset of Fig. 7(a). The contribution of
the spin-flipping terms is an order of magnitude smaller than
that of the Peierls phase. This can be understood by noticing
that the Peierls phase affects the terms with largest energy
scales, i.e., the hopping integrals of the order of ∼eV. The
spin-flipping term is comparatively weak, acting only on a
meV scale. Omitting both terms in the Hamiltonian restores
the symmetry between k < 0 and k > 0.

Nevertheless, even when both effects are present, for
our parameters B⊥ = 14 T and V0 = 0.4 eV the pseudo-time-
reversal still holds down to μeV energy scales.

3. Superconducting spectrum

Including superconducting correlations on a mean-field
level, we add to the Hamiltonian a superconducting pairing
term [39], which is given by

HSC =
∑

k

�0(c†
kK↑c−kK ′↓ + c†

kK ′↑c−kK↓ + H.c.), (A15)

where �0 is the superconducting order parameter, which
we take to be 0.4 meV. We can express the pairing Hamilto-
nian Eq. (A15) in the eigenbasis of the CNT Eq. (2) and, after
applying the approximations and transformations described in
Appendix A 1, we obtain the BdG Hamiltonian Eq. (3) with
the pairing terms:

�̃p(k) = �0(g2(k) − h2(k)) = −�̃p(−k), (A16)

�̃s(k) = 2�0g(k)h(k) = �̃s(−k). (A17)

We see that the pairing term �̃s(k) has an even and �̃p(k) an
odd parity, as shown in Fig. 1(c).

The basis change which transforms Eq. (3) into Eq. (4) is
given by (

fk1

f †
−k2

)
=

(
m(k) n(k)
−n(k) m(k)

)(
dk+

d†
−k−

)
, (A18)

with the normalization condition m2(k) + n2(k) = 1 and
the coefficients defined in the following way:

m2(k) = 1

2

(
1 + E1(k) + E2(k)√

(E1(k) + E2(k))2 + (2�̃s(k))2

)
,

(A19a)

n2(k) = 1

2

(
1 − E1(k) + E2(k)√

(E1(k) + E2(k))2 + (2�̃s(k))2

)
.

(A19b)

APPENDIX B: 1D MAJORANA BOUND STATE SOLUTIONS

MBSs are zero energy eigenstates of the BdG Hamiltonian
and the particle-hole symmetry operator. The low-energy
physics of the BdG Hamiltonian Eq. (4) is described by
the block Ĥ+

BdG. For the MBSs, we will approximate the
BdG Hamiltonian by Ĥ+

BdG ≈ Ĥ�
BdG + ĤR

BdG + ĤL
BdG because

the low-energy physics of Ĥ+
BdG has three contributions, as

illustrated in Fig. 3(a). This is also supported by the numerics,
see Fig. 3(b).

1. �-point contribution

The first contribution is coming from the � point. There-
fore, we obtain from a Taylor expansion around the � point

ξ̃+(k) ≈ ξ̃+(0) + h̄2k2

2m�
,

�̃p(k) ≈ λh̄k,
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where 1
m� = ∂2 ξ̃+(k)

h̄2∂k2 |
k=0

and λ = ∂�̃p(k)
h̄∂k |

k=0
. Then the BdG

Hamiltonian for k ≈ � becomes

Ĥ�
BdG =

(
h̄2k2

2m� + ξ̃+(0) λh̄k
λh̄k −(

h̄2k2

2m� + ξ̃+(0)
)
)

, (B1)

and the corresponding BdG equation reads(
h̄2k2

2m� + ξ̃+(0) λh̄k

λh̄k −(
h̄2k2

2m� + ξ̃+(0)
)
)(

u�

v�

)
= E

(
u�

v�

)
.

Now, we interpret k as the momentum operator k → k̂ =
−i∂z and make the ansatz(

u� (z)
v� (z)

)
=

(
u�

v�

)
eκ�z. (B2)

For the momentum κ� , we need to solve the secular

equation det (Ĥ�
BdG − E1)

!= 0 for any energy E and we
obtain

κ2
� = 2

m�ξ̃+(0)

h̄2 + 2

(
m�λ

h̄

)2

±
√√√√(

2
m�E

h̄2

)2

+ 4

(
m�λ

h̄

)2
((

m�λ

h̄

)2

+ 2
m�ξ̃+(0)

h̄2

)
.

(B3)

For zero-energy modes, the equation can be simplified:

κ� = ±
⎛
⎝m�λ

h̄
±

√(
m�λ

h̄

)2

+ 2
m�ξ̃+(0)

h̄2

⎞
⎠. (B4)

The corresponding zero energy eigenvectors are given by(
u�

v�

)
= 1√

2

(∓i
1

)
. (B5)

2. Fermi point contribution

For the Fermi point contribution, we need to linearize
ξ̃+(k) around kF and −kF , see Fig. 3. Then, we can define
the following two Nambu spinors �R = (dk+,R, d†

−k+,L ) and

�L = (dk+,L, d†
−k+,R). The subscripts R, L denote the right

and left movers. The corresponding BdG Hamiltonians are
given by

ĤR
BdG =

(
vF h̄(k − kF ) �̃p(kF )

�̃p(kF ) −vF h̄(k − kF )

)
, (B6)

ĤL
BdG =

(−vF h̄(k + kF ) �̃p(−kF )
�̃p(−kF ) vF h̄(k + kF )

)
, (B7)

where for ĤR
BdG we have k > 0 and for ĤL

BdG we have k < 0.
The corresponding BdG equation reads(

vF h̄(k − kF ) �̃p(kF )
�̃p(kF ) −vF h̄(k − kF )

)(
uR

vL

)
= E

(
uR

vL

)
,

(−vF h̄(k + kF ) �̃p(−kF )
�̃p(−kF ) vF h̄(k + kF )

)(
uL

vR

)
= E

(
uL

vR

)
.

With k → k̂ = −i∂z and making the ansatz(
uR(z)
vL(z)

)
=

(
uR

vL

)
eκRz and

(
uL(z)
vR(z)

)
=

(
uL

vR

)
eκLz,

we get the decay lengths κR and κL from the secular equations

det (ĤR/L
BdG − E1)

!= 0. The decay lengths for the zero-energy

modes become κR = ikF ∓ |�̃p(kF )|
vF h̄ and κL = −ikF ∓ |�̃p(kF )|

vF h̄ .
Furthermore, we get the two eigenvectors(

uR

vL

)
= 1√

2

(±isgn(�̃p(kF ))
1

)
= 1√

2

(∓i
1

)
,

(
uL

vR

)
= 1√

2

(∓isgn(�̃p(−kF ))
1

)
= 1√

2

(∓i
1

)
,

where we used sgn(�̃p(kF )) = −1 and sgn(�̃p(−kF )) = +1,
see Fig. 1(b).

APPENDIX C: CONSTRUCTION OF 3D MAJORANA
WAVE FUNCTION

Explicitly, the coefficients of the electron and holes are
parts of the MBS Eq. (9) given by

uK↑(k) = a↑(k)[um(k)g(k) − vn(k)h(k)],

uK ′↑(k) = −b↑(k)[um(k)g(k) − vn(k)h(k)],

vK↑(k) = a↑(k)[vm(k)g(k) − un(k)h(k)],

vK ′↑(k) = −b↑(k)[vm(k)g(k) − un(k)h(k)],

uK↓(k) = −a↓(k)[um(k)h(k) + vn(k)g(k)],

uK ′↓(k) = b↓(k)[um(k)h(k) + vn(k)g(k)],

vK↓(k) = −a↓(k)[vm(k)h(k) + un(k)g(k)],

vK ′↓(k) = b↓(k)[vm(k)h(k) + un(k)g(k)].

APPENDIX D: EFFECTS OF LOCAL PROXIMITY

The isotropic superconducting pairing introduced in the
main text has a heuristic justification in the large size of the
proximity length in the usual superconductor/metal junctions,
of the order of 10–100 nm [49], much larger than the CNT di-
ameter. Nevertheless, the reduced dimensionality of the CNT
offers only a small area for tunneling between the nanotube
and the superconducting substrate. We model this with a su-
perconducting pairing amplitude which decays exponentially
with the distance from the line of contact between the CNT
and the superconductor,

�(ϕ) = �0 exp

(
− R cos(ϕ − ϕ0)

λ�

)
,

where ϕ0 is the polar angle of the contact line and λ� is a
characteristic length for the decay of the proximity effect.
We find that the superconducting gap is still present in the
CNT and can be closed by the application of B⊥, as shown
in Fig. 8(a). The size of the effective superconducting gap
decreases with increasing λ�, as can be seen in the neigh-
borhood of the k|| = ±0.1nm−1 points, where the gap is not
affected by the Zeeman field. Since the gap is smaller, a lower
magnetic field suffices to close it. The ranges of polar angles
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FIG. 8. The influence of a localized superconducting pairing on the bulk spectrum and the wave function of the Majorana states. (a) For
different values of the parameter λ�, the band gap still closes, but at different values of B⊥. For λ� = aCC (the carbon-carbon bond length),
we set �0 = 0.8 meV to keep a clear band gap. (b) The polar angle range with strongest pairing, i.e., R cos(ϕ − ϕ0 ) < λ�; the grey circle
represents constant amplitude over the CNT circumference, the arc fragments are color coded as in (a). Cuts across |ui↑| (c) and the spin
canting angle (d) along several values of the polar angle ϕ. The corresponding values of B⊥ are the same in (c) and (d). (e) The local spin
direction of the particle component of the Majorana spinor; the arrows representing electron spin for various values of λ� are superposed on
each atom to show that the spin direction is not much influenced by λ�. The color code is the same as in (a)–(d), B⊥ for each λ� is the same
as in (c), (d).

where the atoms are within λ� distance from the substrate
are shown in Fig. 8(b). With reduced gap size, the Majorana
states forming in the topological phase decay more slowly, but
both the oscillations of the wave function amplitude displayed
in Fig. 8(c) and the spin-canting angle in Fig. 8(d) remain

qualitatively the same as for � = const = �0. A close look at
the spin expectation value in the particle part of the Majorana
spinor at the very left end of the CNT [cf. Fig. 8(e)] shows
that the spin texture at the left end does not vary strongly with
λ� and still many spin directions are present.
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