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Tunable valley Hall effect in gate-defined graphene superlattices

Johannes H. J. Martiny ,* Kristen Kaasbjerg, and Antti-Pekka Jauho
Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

(Received 14 May 2019; revised manuscript received 14 August 2019; published 15 October 2019)

We theoretically investigate gate-defined graphene superlattices with broken inversion symmetry as a platform
for realizing tunable valley-dependent transport. Our analysis is motivated by recent experiments [C. Forsythe
et al., Nat. Nanotechnol. 13, 566 (2018)] wherein gate-tunable superlattice potentials have been induced on
graphene by nanostructuring a dielectric in the graphene/patterned-dielectric/gate structure. We demonstrate
how the electronic tight-binding structure of the superlattice system resembles a gapped Dirac model with
associated valley-dependent transport using an unfolding procedure. In this manner we obtain the valley Hall
conductivities from the Berry curvature distribution in the superlattice Brillouin zone, and demonstrate the
tunability of this conductivity by the superlattice potential. Finally, we calculate the valley Hall angle relating the
transverse valley current and longitudinal charge current and demonstrate the robustness of the valley currents
against irregularities in the patterned dielectric.
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I. INTRODUCTION

The electronic structure of graphene hosts well-separated
degenerate minima in momentum space which are labeled as
the K, K ′ valleys [1]. Electrons in graphene are thus described
not only by their charge and spin but also by their valley
degree of freedom, which is conserved when intervalley scat-
tering is absent. In recent years this new degree of freedom has
been proposed as a stable carrier of information in so-called
valleytronics [2–6].

In hexagonal materials lacking inversion symmetry, control
of the valley degree of freedom can be accomplished by gen-
erating opposite transverse currents of carriers with different
valley index when applying an in-plane electric field. This
valley Hall effect is the result of a nonzero Berry curvature of
opposite sign in each valley which acts as a valley-dependent
magnetic field in momentum space [7]. Indirect measurements
of valley currents in such materials have been suggested in,
e.g., bilayer graphene under transverse electric field [8–10] or
in graphene superlattices defined by an underlying hexagonal
boron nitride (hBN) substrate aligned commensurately with
the graphene sheet [11]. These observations have been made
in nonlocal transport measurements where a current flowing
between two terminals in a Hall bar induces a nonlocal voltage
between two different terminals through a combination of the
direct and indirect valley Hall effects.

The valley Hall effect and the associated valley currents
are absent in pristine graphene unless perturbations break the
sublattice symmetry of the bipartite lattice. The electronic
properties of graphene have previously been engineered using,
e.g., strain [10,12,13], substrate effects [14–16], or litho-
graphic etching of a periodic array of holes in the graphene
sheet [17–19]. Recently, a new approach to band structure
engineering has been demonstrated where holes or indenta-

*johmar@dtu.dk

tions are made not in the graphene sheet but in an underlying
dielectric instead [20]. This procedure avoids introducing any
short-range disorder to the graphene sheet, and thus limits
intervalley scattering while effectively inducing a superlattice
potential on the graphene sheet by a gate under the dielectric.
As such, this nanostructuring approach seems very well suited
for valleytronic applications.

In this work we theoretically investigate the electronic
structure and valley-dependent properties of a graphene super-
lattice geometrically structured for valleytronics. We define a
superlattice by a periodic external potential corresponding to a
graphene sheet gated through a nanostructured dielectric with
a regular array of indentations or holes. Symmetry analysis
of this structure reveals that a finite valley Hall effect is
possible when these holes do not have an inversion center.
Our choice of superlattice structure is supported by earlier
studies demonstrating extremely stable band gaps with respect
to disorder when perturbations break the graphene A/B sub-
lattice symmetry [21,22], and by the natural formation of such
deformations in hBN [23].

We study the electronic band structure of these systems
within a tight-binding model and show the emergence of
tunable band gaps in the energy spectrum as the superlat-
tice potential is applied. Using an unfolding procedure for
the spectral weight and electronic Berry curvature [24], the
superlattice results are mapped to the graphene Brillouin
zone where we recover a gapped K, K ′ valley structure with
Berry curvature distributions of opposite sign in each val-
ley. We compare these supercell tight-binding results with
an analytical model of graphene with sublattice asymmetry
and an overall shift in the Fermi energy, and find a close
resemblance at small superlattice potentials. We furthermore
compute the valley-resolved transverse conductivities arising
from the finite Berry curvature distributions in each valley,
and demonstrate the tunability of these conductivities with
the strength of the applied superlattice potential, as well
as the position of the Fermi energy. Finally, a Boltzmann
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FIG. 1. (a) The superlattice system considered in this work: a
graphene sheet (empty and filled circles) gated through a patterned
dielectric with triangular zigzag-edged holes yielding an effective su-
perlattice potential (red-to-black gradient). The supercell is marked
by the dashed lines (left), alongside the normal (graphene) unit cell
(right). The lack of inversion center and the sublattice asymmetric
structure of the gated regions induce the valley Hall effect under
in-plane electric field. The geometry is characterized by the supercell
hexagon side length L and the triangle side length R. (b) The
corresponding supercell (SBZ) and normal (NBZ) Brillouin zone.
The SBZ is shown enlarged four times for clarity. (c) Sketch of the
considered graphene/nanostructured-dielectric/gate structure. Here
we show nanopatterned hBN with the naturally occurring triangular
zigzag edges holes nucleated on boron sites.

equation approach for the longitudinal conductivity enables
us to calculate the valley Hall angle at different electronic
fillings and make predictions for experimental observations
in nonlocal transport experiments [25].

II. METHOD

We consider a graphene sheet under the effect of a periodic
superlattice potential, providing a model for graphene on top
of a patterned dielectric. We posit a triangular array of holes
etched into the dielectric, and thus a similar structure for the
induced superlattice potential in the graphene monolayer as
shown in Fig. 1. The hexagonal unit cell of this superlattice is
shown in Fig. 1(a), with the induced gate potential indicated
by the gradient. The geometries considered can be uniquely
described by the supercell hexagon side length L and the
triangular superlattice potential side length R. We model the
superlattice by a tight-binding Hamiltonian which includes
on-site terms arising from the gate-induced potential

H =
∑
i,σ

V (ri )c
†
iσ ciσ +

∑
〈i j〉,σ

ti jc
†
iσ c jσ , (1)

where ti j = −tδ〈i j〉, with t = 3.033 eV, includes nearest-
neighbor hopping, and V (r) is the gate-induced potential,
defined here along a zigzag edge in the graphene sheet since
this edge profile minimizes intervalley scattering [26,27].
The potential corresponds to a zigzag-edged triangle etched
into, e.g., hBN as the dielectric, where such perforations
appear naturally nucleated on a single sublattice [23]. In
our calculations we consider both perfectly sharp (flat) and
smoothly varying spatial profiles of the potential, as well
as some degree of armchair edges caused by edge disorder
in the dielectric nanostructuring. In the following we ignore
the possible lattice constant mismatch between the hBN and

graphene, and the resulting moiré structure. Other inversion
symmetry breaking shapes of the induced superlattice poten-
tial can also lead to the valley Hall effect in the superlattice.
Here we restrict ourselves to the C3 structures outlined above,
wherein stable band gaps and lack of intervalley scattering
lead directly to characteristic plateaus of finite valley Hall
conductivity.

Our main goal is to calculate the transverse conductivity
arising from the valley Hall effect. This effect can be under-
stood from wave-packet dynamics [28,29]. The equation of
motion for such a wave packet composed of states from a
single band n can in the presence of an electric field be written
(h̄ = 1)

ṙn(k) = ∂kεn(k) − eE × �n(k), (2)

where we recognize the first term on the right-hand side
as the conventional band velocity, while the second term
is responsible for various anomalous transport phenomena,
determined by the electronic Berry curvature

�n(k) = ∇k × i〈unk|∇k|unk〉, (3)

written here in terms of the periodic part of the Bloch state,
|unk〉 = e−ik·r|ψnk〉. In particular, when an in-plane E field
is applied to a perturbed graphene lattice with broken inver-
sion symmetry, electrons in each valley have opposite Berry
curvature and thus acquire transverse anomalous velocity
components depending on their valley index, leading to the
valley Hall effect.

Valley-resolved conductivities follow from the Berry cur-
vature of occupied states by integrating over each valley
region separately,

σ K (K ′ )
xy (EF ) = −2e2

h

∫
K (K ′ )

d2k

2π
�xy(k, EF ). (4)

Here, the integration region in each case is exactly half the
Brillouin zone with the 	 → M symmetry lines as the borders
[24], and we have defined the Berry curvature of occupied
states

�xy(k, EF ) =
∑

n

fn(k)�n(k), (5)

with fn(k) = [e(Enk−EF )/kBT + 1]−1 the Fermi-Dirac distribu-
tion. We fix a low temperature of T = 1 K in the following
in order to clearly distinguish the step in the valley-resolved
conductivity near the band edges.

The valley Hall conductivity is then defined as the differ-
ence between the valley-resolved conductivities

σ v
xy = σ K

xy − σ K ′
xy . (6)

In the presence of time-reversal symmetry only half the
Brillouin zone needs to be considered in the calculation of
the valley Hall conductivity since σ K

xy = −σ K ′
xy and thus σ v

xy =
2σ K

xy = −2σ K ′
xy [28].

A. Unfolding

We now turn to the calculation of the valley-resolved con-
ductivities from the tight-binding supercell results. Diagonal-
ization of the tight-binding Hamiltonian yields the supercell
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eigenenergies and Bloch states Enk, |ψnk〉, from which we can
also obtain the spectral function

A(k, ω) =
∑

nk

η/π

(ω − Enk)2 + η2
, (7)

where η is a numerical broadening.
The valley-resolved conductivities are not immediately

available since the Berry curvature folds into the superlattice
Brillouin zone (SBZ) in a nontrivial way, which prohibits
the direct application of Eq. (4). Our approach is thus to
unfold the Berry curvature obtained in the SBZ back into the
graphene (normal) Brillouin zone (NBZ) and recover infor-
mation about the valley degree of freedom [30]. We note that
the considered superlattice potential is a perturbation clearly
described in terms of the underlying ordered graphene lattice,
and that the unfolded Berry curvature and associated valley
Hall conductivity thus remain well defined [24,31]. Details of
this unfolding procedure can be found in Appendix A, and we
provide here a short summary.

The central quantity in the unfolding procedure is the
overlap between a normal cell orbital |χik〉 with k ∈ NBZ and
a supercell Bloch state |ψNK〉 with K ∈ SBZ,

λiNk = 〈χik|ψNK〉, (8)

which we can calculate directly from the tight-binding Bloch
states.

Quantities in the SBZ can then be unfolded to the NBZ by
convolution with the overlap λ, and, e.g., the unfolded spectral
function becomes

A(u)(k, ω) =
∑

i

∑
NK

|λiNk|2 η/π

(ω − ENK )2 + η2
, (9)

where the sum over i = A, B spans the sublattices of graphene,
and ENK are the band energies of the superlattice. The unfold-
ing of the Berry curvature [Eq. (3)] from the tight-binding re-
sult follows in a similar manner but requires a more extensive
treatment, since the analogous expression to Eq. (9) becomes
gauge dependent [24,31]. Once the unfolded Berry curvature
�(u)(k, EF ) is obtained by this procedure, the valley-resolved
conductivities follow by a simple application of Eq. (4).

B. Valley Hall angle

We characterize the relative magnitude of the response
associated with the valley Hall effect by calculating the valley
Hall angle:

tan θv = σ v
xy

σxx
. (10)

This angle is finite only close to the band edges where the val-
ley Hall conductivity is nonzero. We obtain the longitudinal
conductivity σxx from a DC Boltzmann equation approach in
the relaxation time approximation [32],

σxx = 2e2 1

A

∑
nk

τnkv
2
nk,xδ(EF − Enk), (11)

where A is the sample area, and vnk = (1/h̄)∇kεnk is the band
velocity component in the x̂ direction. Here, we calculate this

analytically from the tight-binding Hamiltonian:

vnk = 1

h̄
〈nk|∇kHk|nk〉. (12)

For numerical evaluation of the longitudinal conductivity at
low temperatures we approximate the delta function by a
Lorentzian δ(EF − Enk) → 1

π
(η/2)[(EF − Enk)2 + (η/2)2]−1

with a constant broadening η = 3 meV.
We extract the relaxation time from a typical mobility near

the charge neutrality point in hBN-encapsulated graphene
μ ≈ 105 cm2 V−1 s−1 at the given temperature. If we con-
sider the conduction to be limited by charged impurities, the
relaxation time varies linearly with the Fermi energy [33],

τkF = Cci,τ EF , (13)

where the proportionality constant is Cci,τ ≈ 10 ps/eV at the
chosen mobility. For gapped systems we set τnk = Cci,τ δEnk

in Eq. (11), where δEnk is the energy measured from the band
edge of the gapped region.

III. RESULTS

A. Band structure and Berry curvature in the supercell

We first consider the electronic structure of the superlattice
of Fig. 1(a) (L = 4, R = 3) directly in the SBZ. For V = 0
we recover the usual graphene band structure folded into the
superlattice Brillouin zone [dashed lines in Fig. 2(a)]. For the
geometry considered here the K, K ′ points are both folded
into the superlattice 	SC point, resulting in nearly degenerate
linear bands around this symmetry point. The splitting of
these curves at larger |kSBZ

x | depends on the choice of the
specific cut in k space. When the finite superlattice potential
is applied, an effective sublattice asymmetry is obtained on
top of a constant overall shift of the bands. Thus, for V �= 0 a
gap opens continuously in the spectrum, with a simultaneous
shift of the bands upward in energy as shown in Figs. 2(a) and
2(b). For the structures considered in this work the sublattice
asymmetry is an intrinsic feature which is not removed by
smoothly varying gate potentials, and we thus find these band
gaps to be stable with respect to the smoothness of the applied
potential with only a minor decrease in the gap magnitude
(see Sec. III D below). We note that the gap may close at
larger values of |V | ∼ t depending on the specific geometry
of the gated region and supercell width, but the gap formation
at |V | < t considered here is universal to all geometries, as
predicted previously for potentials of C3 symmetry [22]. We
demonstrate this universal gap formation in Fig. 3(a), where
the density of states (DOS) is shown for different extents of
the superlattice potential in the supercell. The inset shows
the corresponding band gap size (�) and the shift in the
center of the band gap (Es) as a function of the superlattice
potential magnitude V . The effect of varying the magnitude
of the superlattice potential is similar to that of changing the
ratio between the gated region (triangle side length R) and the
supercell size (hexagon side length L), as investigated further
in Appendix B. Similar gap openings have been demonstrated
previously within the tight-binding model for gated superlat-
tices in Ref. [34], where circular potentials were considered
instead. However, the gap opening in Ref. [34] was attributed
to the local sublattice asymmetry near the edge, and thus these
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FIG. 2. (a), (b) Spectral weight (gray surface, η = 3 meV) close
to the SBZ 	 point for different values of the constant superlattice
potential V (ri ) = 1 eV, 2 eV. The dashed lines in (a) show the V = 0
(pristine graphene) band structure. (c), (d) Corresponding line cuts
of the occupied Berry curvature when the Fermi energy is fixed in
the gap at each potential. (e) Supercell Berry curvature in the SBZ
with the valence band filled. The pristine system K and K ′ valleys
fold to the SBZ 	 point, yielding a sign-changing peak centered on
this symmetry point. The horizontal dotted line indicates the cut in k
space shown above.

band gaps were found to be quickly decaying with increasing
smoothness of the gate potential due to the disappearance of
the local edge asymmetry.

In Figs. 2(c) and 2(d) we show the supercell Berry cur-
vature along the same cut in k space as in (a) and (b). The
distribution displays a double-peaked structure, with a clear
sign change appearing exactly at the 	SC point. As the su-
perlattice potential is increased, this distribution is noticeably
broadened but retains its shape. A similar result is obtained
if the supercell and potential geometries are changed instead
as shown in Fig. 3(b). The full threefold symmetry of this
distribution arising from the supercell folding is shown in
Fig. 2(e), where the Berry curvature is shown in the full SBZ.
The rotational symmetry of this distribution follows from the
specific folding of the NBZ valleys into the SBZ. The same

(a)

(b) (c)

FIG. 3. (a) Density of states for different geometries of the
superlattice at V = 1 eV. Inset: Band gaps as a function of the
superlattice potential magnitude (full lines) for different geometries
of the gated region (L = 4). The band gap widens as the superlattice
potential is increased in all considered geometries. Dashed lines
show the corresponding shift (Es) of the center of the band gap as the
superlattice potential is increased. This shift increases linearly with
increasing superlattice potential, with the slope determined by the
size of the gated region (R). (b) Line cut of the SBZ Berry curvature
in the gap for different geometries of the gated regions (L = 4, V =
1 eV). The shape of the Berry curvature distribution broadens for
increasing size of the gated region R, mirroring the broadening with
increasing superlattice potential magnitude V . (c) The SBZ Berry
curvature when the supercell size is varied instead, demonstrating
the opposite scaling in the width.

symmetrical distribution is found when other superlattice
geometries are considered, the only variation being in the
width of the Berry curvature peaks. This effect is illustrated
in Fig. 3(b).

B. Unfolded Berry curvature and valley Hall conductivity

Prior to our consideration of the unfolded result, it is in-
structive to compare the superlattice tight-binding calculations
with results from a well-known model of the valley Hall effect
in graphene. For this purpose, we consider a model which
neglects confinement due to the periodic structure of the
applied potentials, and simply considers the average potential
on the A and B sites of the graphene system, leading to an
effective sublattice asymmetry. This corresponds to a gapped
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Dirac model,

Hτ (q) =
√

3

2
at (τqxσx + qyσy) + �

2
σz, (14)

with τ = ±1 the valley index, q = k − τK measured with
respect to the K, K ′ points, and a the graphene lattice constant.
The Berry curvature in the K, K ′ region close to the gap edge
can be derived analytically, e.g., for the conduction band [7],

�xy(q) = τ
3a2t2�

2(�2 + 3a2t2|q|2)3/2
, (15)

with associated Berry phases approaching ±π for small �,
and hence a quantized valley Hall conductivity following from
Eqs. (4)–(6) of σ v

xy = 2e2/h at the top of the valence band.
This simple model with Berry curvature peaks of opposite
sign in each valley and quantized valley Hall conductivity will
serve as the comparison point for the superlattice results. We
note that the utilized full tight-binding model goes beyond
the simple decomposition into distinct valleys in the massive
Dirac model above, since the tight-binding model includes
both valleys and thus the effects of intervalley scattering [35].

We now turn to the unfolded quantities A(u),�(u), which
are shown in Fig. 4. The spectral weight of the nearly de-
generate bands in the supercell around the 	SC point now
unfold into the NBZ K, K ′ valleys as seen from the line cut
through the K point in (a) and (b). As such, the unfolded
spectral weight resembles the valley structure of the massive
Dirac model introduced above. Correspondingly, the unfolded
Berry curvature peaks exactly at the center of each valley,
but with opposite signs as shown in Figs. 4(c) and 4(d).
The full distribution is shown in Fig. 4(e). Here, we observe
sharp peaks around each symmetry point with opposite signs
in the entire valley regions. It now becomes clear how the
rotational symmetry of the supercell Berry curvature arises.
The unfolded Berry curvature peaks of each valley fold into
separate regions of the SBZ around the 	SC point, yielding
the flower structure in Fig. 2(e).

A finite valley Hall effect in these systems is evident from
the unfolded Berry curvature distribution, since integration of
this quantity around each valley yields finite valley-resolved
conductivities of opposite signs. The result of the integration
procedure [Eqs. (4)–(6)] is shown in Fig. 5 as a function of the
Fermi energy for different values of the superlattice potential.
As demonstrated above, the band edges act as Berry curvature
hot spots causing a saturation of the valley Hall conductivity
as the Fermi energy approaches the gap from below. This
plateau then decays when states in the bands above the gap
start contributing Berry curvature of opposite sign. In the
limit of small V we found above that the unfolded electronic
structure and Berry curvature distribution closely resemble
an effective massive Dirac model, and in this case we also
find that the valley Hall conductivity approaches a quantized
plateau value of 2e2/h as predicted from Eq. (15). When the
superlattice potential is increased this plateau widens as the
gap expands and a small variation in the plateau value appears.
We note that the numbers of k points needed to converge the
valley Hall conductivity increase dramatically as the potential
is decreased since the Berry curvature distribution becomes
more sharply peaked. All calculations in this work are per-
formed with Nk = 230 × 230 k points.

FIG. 4. (a), (b) Line cuts of the unfolded spectral weight (gray
surface) close to the NBZ K point for different values of the constant
superlattice potential V (ri ) = 1 eV, 2 eV. The result at the K ′ point
along this same cut in k space can be found by reflection around the
central point Kτ , and thus has similar structure. (c), (d) Correspond-
ing line cuts of the unfolded occupied Berry curvature in the K (blue)
and K ′ (red) valley with the Fermi energy fixed in the gap at each
potential. (e) Unfolded Berry curvature in the NBZ demonstrating
equal peaks of opposing signs, indicating the presence of transverse
valley currents. The dotted line indicates the cut in k space shown
above.

In the limit of larger superlattice potentials the simple
resemblance to the shifted massive Dirac model breaks down,
and the valley Hall conductivity decays from the quantized
plateau value of 2e2/h as demonstrated in Fig. 5, ultimately
vanishing at V = 3.4 eV. In this limit the superlattice po-
tential approaches the energy scale of the hopping t and the
electronic structure is strongly perturbed, resulting in a Berry
curvature distribution diverging from the simple model. In
particular, the valence and conduction bands flatten and the
valley structure of the unfolded spectral weight is lost.

C. Valley Hall angle and associated nonlocal response

In Fig. 6(a) we show the valley Hall angle θv
H =

arctan σ v
xy/σxx, which is the ratio of the magnitude of the
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FIG. 5. Valley Hall conductivity as a function of filling (full
lines) for varying values of the superlattice potential V , shown
alongside the density of states (dotted lines). Berry curvature accu-
mulated near the band edges causes a saturation of the valley Hall
conductivity as the gap is approached, and for small V the quantized
2e2/h value of the massive Dirac model is approached. The inset
shows the plateau value in the gap as the superlattice potential is
tuned. The valley Hall conductivity decays for larger superlattice
potentials, as the supercell bands flatten and the unfolded valley
structure is lost.

transverse valley and longitudinal charge currents. The angle
is finite only close to the band edge where the valley Hall
conductivity peaks and exceeds the longitudinal conductivity
in a small interval. Following Ref. [25], we estimate the valley
Hall contribution to the nonlocal resistance from the valley
Hall angle in, e.g., a Hall bar of width W , with interterminal
distance d and valley diffusion length lv:

�RNL/ρxx = W

2Lv

tan2 θv

1 + tan2 θv

e−|d|/Lv , (16)

FIG. 6. Valley Hall angle (full lines) and expected nonlocal resis-
tance signal (dashed lines) close to the band edge for two values of
the superlattice potential V = 1 eV, 3 eV. The band gap is indicated
by the vertical dashed lines. The valley Hall angle is only finite close
to the band edge where σxy ∼ σxx , and approaches π/2 in the gap.
The predicted nonlocal resistance close to the band edges is obtained
using the expression of Ref. [25]. The peaks in the ratio RNL/ρxx

occur exactly at the θv = π/4 point, i.e., when the valley Hall and
longitudinal conductivities are equal, σ v

xy = σxx . These peaks in the
nonlocal response shift as the superlattice potential is tuned.

FIG. 7. Valley Hall conductivity as a function of filling for
different values of the superlattice potential for a smoothly varying
potential (u = 0.2), the profile of which is displayed in the inset. The
results are similar to the flat-potential case, with some additional
structure in the peak structure due to the lifting of degeneracies of
bands near the band edge.

where Lv = lv
√

1 + tan2 θv is a renormalized valley diffusion
length.

We note that this interpretation relies on the picture of
bulk valley currents carried by subgap states [25,36], which
is but one interpretation of nonlocal measurements in valley
Hall systems. In particular, these currents are missing when
the Fermi energy is placed in the gap in Landauer-Büttiker
calculations [37] and only reappear as edge currents when
detailed modeling of the electronic structure and edge profiles
are considered [38]. In this work we thus restrict ourselves to
making predictions close to the band edge outside the gapped
region where the interpretation as bulk valley currents is valid.

The expected nonlocal signal for varying values of the
superlattice potential is displayed in Fig. 6(b), for W, d, lv =
100, 103, 105 nm. The nonlocal response is shifted as the
superlattice potential is varied, since it peaks near the band
edge where the valley Hall angle θv approaches π/4. This
tunability of the nonlocal response with the external potential
provides an unambiguous way of separating stray current and
valley Hall contributions to the nonlocal resistance.

D. Robustness with respect to the dielectric environment

In what follows we consider more realistic potentials based
on the specific dielectric environment in patterned dielectric
superlattices. In particular, we consider potentials varying
smoothly with the distance r from the edge of the side of the
nanostructured indentation in the dielectric to the center, here
parametrized by V (r)/Vmax = {exp[(r − 1)/u] + 1}−1 − 1/2,
with u ∈ [0, 1] a continuous parameter setting the smoothness
of the potential, u = 0 being the flat potential considered
so far, and u = 1 the extreme case of a linearly decreasing
potential. Line profiles of this potential are shown in the inset
of Fig. 7, and the full 2D potential for u = 0.2 is shown in the
gradient of Fig. 1(a). Further details of the spatial profile of
the smoothly varying potential are included in Appendix C.

The valley Hall conductivity obtained for this potential is
shown in Fig. 7. The result is similar to that obtained above
for the flat potential, although with slightly narrower plateau
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FIG. 8. Variation of the valley Hall conductivity with respect
to irregularities in the edge profile of the superlattice potential,
corresponding to irregularities in the dielectric etching. The regular
limit for a smoothly varying potential (V = 2 eV, u = 0.2) is shown
in the full black line, alongside the same calculation with random
edge profiles at the superlattice potential boundary (gray lines).
The average of all such configurations is shown in the red dotted
line. The finite valley Hall conductivity does not require a perfectly
symmetrical induced potential, and is thus a general prediction in
these superlattices.

regions. Additionally, new features appear away from the
band edge since degeneracies are lifted and thus the integrated
Berry curvature varies in small increments when each band
edge is reached. For small potentials we again approach the
quantized value in the gap.

Finally, we conclude our analysis of realistic potentials
by considering irregularities in the edge of the dielectric
etching, which modulates the potential near the edge. We
simulate this effect by adding a random potential to the edges
of the gated region in the supercell, disrupting the perfect
zigzag edges considered thus far which where expected to
minimize coupling of the valleys. At each site which is a
nearest neighbor to the gated-region edge we add a random
potential wedge ∈ [−0.5, 0.5] eV, and consider the resulting
valley Hall conductivity for different random configurations at
a fixed superlattice potential (V = 2 eV, u = 0.2). The result
of this procedure is shown in Fig. 8 (gray lines), together with
the clean-limit result (full black line) and the average of the
irregular configurations (red dashed line). The application of
these random edge potentials does not substantially modify
the valley Hall conductivity, which displays a shifted peak
structure for all configurations with a small variation in the
plateau value. The average tracks the clean-result peak, with a
rounded plateau due to the different shifts of the gapped region
in different configurations.

IV. DISCUSSION AND CONCLUSIONS

We have theoretically investigated graphene superlattices
defined by periodic gating as a platform for valleytronics. For
zigzag-edged triangular potentials where inversion symmetry
is broken and intervalley scattering is suppressed, a gate-
tunable valley Hall effect appears. This effect stems from
the accumulation of Berry curvature near the band edge of

the superlattice band structure, which unfolds to curvature of
opposite sign in the K and K ′ valleys of the graphene Brillouin
zone. For small potentials the system resembles a gapped
Dirac model with quantized valley Hall conductivity, yet
when the gate-tunable potential is increased this valley Hall
conductivity decreases continuously, resulting in a platform
for valleytronics where both the magnitude and width of the
valley Hall conductivity plateau can be tuned by an external
gate. Finally, we have considered experimental signatures of
the gate-tunable valley Hall effect when the Fermi energy
is tuned close to the band edge in nonlocal transport exper-
iments, and determined how this response varies with the
external potential.

In this work we have considered the maximum of the exter-
nally induced potential as the tunable parameter. In addition
to this degree of freedom the effect of alignment between
the substrate and the graphene sheet, with a corresponding
rotation and shift in the induced potential, can also have a
profound impact on the valley Hall conductivity [39]. For
the atomically resolved model considered here the result will
in general depend on the size of the gated region, with sign
changes in the valley Hall conductivity when the sublattice is
shifted.

Our idealized model of irregularities at the edge of the
induced potential implies a periodic structure with the same
edge profile, and as such we are limited to calculating mod-
ifications to the intrinsic part of the valley Hall conductivity.
In general the valley Hall conductivity also has contributions
from disorder, commonly classified as the side-jump and
skew-scattering corrections [40]. We note that these correc-
tions occur outside the gapped region, and do not substantially
modify tunable properties of the valley Hall conductivity in
these systems [41].

The main measurable consequence of the nonzero Berry
curvature in time-reversal-invariant systems, such as the su-
perlattice considered in this work, is a finite correction to the
nonlocal resistance. Recently, additional measurable conse-
quences have been predicted, including applications in cur-
rent rectification [42] and direct detection via the so-called
Magnus Hall effect [43]. The gate-tunable Berry curvature
predicted in this work could define a controllable platform for
further investigations of these effects.
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APPENDIX A: UNFOLDING PROCEDURE

We unfold quantities calculated in the supercell Brillouin
zone (SBZ) back into the pristine graphene, or normal, Bril-
louin zone (NBZ) following Ref. [30].

Real space and reciprocal lattice vectors in the normal cell
and supercell are related by [44]

A = M · a, (A1)

B = M−1 · b, (A2)

with M a matrix of integers.
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For the triangular superlattices considered here, the general
form of this matrix is [45]

M = L

(
2 1
1 2

)
, (A3)

with L the side length of the supercell hexagon. The determi-
nant of this matrix is the ratio of unit cell volumes.

A given wave vector k ∈ NBZ is folded into a unique K ∈
SBZ by a reciprocal lattice vector [44]

K = k − G0, (A4)

with G0 = ∑
i qiBi, where the qi are integers. We define K ′(k)

as the unique K point to which a given k point folds.
A wave vector in the SBZ unfolds into multiple values

ki = K + Gi, (A5)

with a number of elements Nk in {Gi} given by Nk = det M
[44].

We employ a tight-binding calculation using localized or-
bitals |φir〉, and find the Bloch states. These are characterized
by quantum number n and wave vector k in the normal
(pristine) cell, and by quantum number N and wave vector
K in the supercell:

|nk〉 =
∑

i

Cink|ik〉 (A6)

=
∑

ir

Cinkeik·(r+τ i )|φir〉, (A7)

|NK〉 =
∑
IR

CINKeiK·(R+τI )|φIR〉, (A8)

with r, R lattice vectors in the normal cell and supercell, and
τ i/I the relative position of each orbital in the unit cell and
supercell, respectively.

Given a quantity ONK defined in the SBZ, we now define
the corresponding unfolded quantity in the NBZ:

O(u)
ik =

∑
NK

|〈ik|NK〉|2ONK (A9)

=
∑

N

λiNkONK ′(k). (A10)

Unfolding then boils down to finding the Bloch state overlap
λiNk, which we will derive within a tight-binding scheme
below. Note that the unfolding becomes more complicated
for the Berry curvature since a derivative with respect to k
is included in the definition of this quantity (see Eq. (31) of
Ref. [31]).

Define a map I → R + r′(I ), i′(I ) uniquely identifying a
localized orbital in the supercell (I) with a similar orbital in
the normal cell [i′(I )], where r′(I ) is a normal cell lattice
vector giving the relative position between unit cells. We
can then calculate the overlap between a given supercell and
normal cell orbital:

〈φir|φIR〉 = 〈φir|φi′(I )R+r′(I )〉 (A11)

= δii′(I )δr,R+r′(I ), (A12)

where the final equality follows from orthogonality of the
normal cell orbitals. This simple form of the orbital overlap

(a) (b)

(d)(c)

FIG. 9. (a), (b) Band gap variation with the superlattice potential
magnitude for different geometries. (c), (d) Band gap (�) and
shift (Es) variation with the supercell size (L, R = 4) and extent of
the superlattice potential (L = 5, R), respectively, shown here for
multiple values of the superlattice potential magnitude (V ). The
small asterisks indicate the average potential on each site in the
supercell, which matches the numerically calculated shift (Es). The
same general result is obtained for different configurations: The band
gap widens for either greater magnitude of the superlattice potential
or increasing ratio between gated region and supercell size.

enables a calculation the Bloch state overlap:

λiNk = 〈ik|NK〉 (A13)

=
∑
I,rR

CINKe−ik·(r+τ i )eiK·(R+τI )〈φir|φIR〉 (A14)

=
∑
I,R

CINKe−ik·[R+r′(I )+τ i]eiK·(R+τI )δii′(I ) (A15)

=
∑

I

CINKe−ik·[r′(I )+τi]eiK·τI δii′(I )δK[k], (A16)

where [k] is the set of wave vectors k which downfold to K.
Note that for a given k the value of K for which this delta
function is finite is unique. This enables us to collapse all sums
over K when unfolding, picking out the value K ′(k).

Calculation of the unfolded Berry curvature proceeds
from this formalism using the gauge-invariant approach of
Ref. [31], and its extension to tight-binding in Ref. [24].

APPENDIX B: BAND GAP AND SHIFT FOR DIFFERENT
GEOMETRIES

In this Appendix we provide further information on the
evolution of the gap in the spectrum � = |E1 − E0|, and
the shift in the center of this gap Es = E0 + �/2, where
E1,0 indicate the band edges with E1 > E0. Figure 9 displays
further calculations of these quantities for different geometries
[(a), (b)], and their evolution with the superlattice geometry
parameters L, R [(c), (d)]. The shift in the center of the gap
(Es) is seen to vary linearly with the superlattice potential,
as might be expected from considering the average potential
in the unit cell. Indeed, calculating this average potential as
Vavg = V (NV /NSC ) ∝ (R2/L2), where NV = R2 is the number
of sites with shifted on-site potentials from the superlattice
potential and NSC = 6L2 is the total number of sites in the
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FIG. 10. (a) Extended view of the band structure EN (k) showing
the gap and miniband formation of the supercell. The symmetry
points are those of the SBZ. (b) Corresponding density of states,
demonstrating the shifted band gap. (c), (d) LDOS, plotted using
the radii of black (white) disks to indicate the value at A (B) sites,
sampled just above and below the gap at ω = 0.1, 0.29 eV [dashed
lines in (a)]. The superlattice potential breaks inversion symmetry
and causes a splitting of the A/B weight at these sites. (e) Local
gap magnitude at each site in the supercell as derived from the
local density of states (variations enhanced ×5), showing a small
variation at the potential edge. (f) Corresponding shift in the center of
this local gap (variations enhanced ×5), showing a small difference
between A/B sites in the supercell. All plots are for a representative
configuration of (L = 4, R = 3, V = 2 eV).

supercell, we find a close match with the obtained value of
the shift. This average potential is shown (small asterisks)
alongside the obtained shifts in Figs. 9(c) and 9(d).

Similar simple models for the band gap (�) in the elec-
tronic spectrum of a given geometry based on, e.g., the
average graphene A/B site asymmetry do not match the
calculated band gap in these systems. This follows from the
fact that band gap formation can be driven both by the periodic

center edge
0

0.2

0.4

0.6

0.8

1

0.01
0.2
1

u

(a)

(c)

(d)

(b)

FIG. 11. Spatial variation of the superlattice potential
([L, R, u] = [4, 4, 0.2]), shown as (a) a color gradient, (b) a
contour plot. (c) The equivalent line cuts indicated by the black
dotted lines in (b) for different values of the smoothness parameter
u = [0.01, 0.2, 1], which interpolates between the extreme cases of
flat and linearly decreasing potentials. (d) Variation of the induced
band gap (full lines) and shift (dashed lines) with the smoothness
parameter u for the (L, R) = (4, 4) geometry outlined above. There
is only a small decay in the gap magnitude.

structure of the superlattice potential itself, which can result in
band gaps even for circular potentials, and effects associated
with local symmetry of the potential structure such as A/B
asymmetry on the edges of the potential. The former of these
mechanism can yield extreme sensitivity to small variations
in the superlattice size L, as seen in, e.g., antidot lattices
[17]. For the potentials of C3 symmetry considered in this
work we thus restrict ourselves to the general observations,
as found in similar superlattices [17,34], that the size of the
induced band gap is directly proportional to the magnitude of
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the superlattice potential and the extent of this potential R,
and inversely proportional to the supercell size (L), i.e., the
distance between gated regions, as demonstrated in Fig. 9.

A full picture of a typical band gap and the minibands
closest to the gap is provided in Figs. 10(a) and 10(b),
alongside the DOS in the same region. The gap formation in
real space can be observed by calculating the local density of
states (LDOS) as a projection of the spectral weight on a given
orbital φIR in the supercell:

LDOS(RI , ω) = 1

NK

∑
NK

|〈φIR|NK〉|2ANK (ω). (B1)

The LDOS above and below the band edge is displayed in
Figs. 10(c) and 10(d) at energies as shown by the dashed
lines in (a), and demonstrates the opposite splitting of the
LDOS on the A/B sublattices above and below the band
edge caused by the inversion-symmetry-breaking superlattice
potential. In these plots the LDOS is plotted on A (B) sites as
black (white) disks, with the radius indicating the magnitude
of the LDOS normalized to the maximal value in the supercell.
From the LDOS around the gap region we can define the

local gap and shift [�(r), ES (r)] using the band edges of
the local gap in the LDOS at a given site. These quantities
are shown in Figs. 10(e) and 10(f), using a plotting scheme
similar to that for the LDOS. In these cases the maximal
variation from the mean is much smaller (7%, 6% for the
gap and shift, respectively) than for the LDOS, and we have
thus enhanced the variation fivefold in these plots. The local
gap is almost homogeneous, and the only variation of the
local gap magnitude �(r) is seen to take place close to
the superlattice potential edge where the potential locally
breaks A/B symmetry. The shift Es(r) is also homogeneous
apart from a minor constant A/B variation due to the dif-
ferent number of A/B sites enclosed by the superlattice
potential.

APPENDIX C: SPATIAL PROFILE OF THE
SUPERLATTICE POTENTIAL

We present the spatial profile of the superlattice potential
(Fig. 11) here.
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