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Recently, we have proposed an unusual mechanism of superconducting current that is specific for quantum
Hall edge channels connected to superconducting electrodes. We have shown that the supercurrent can be
mediated by a nonlocal electron-electron interaction that provides an opportunity for a long-distance information
transfer in the direction opposite to the electron flow. A convenient model for such interaction is that of an
external circuit. The consideration has been performed for the case of a single channel. In order to facilitate
the experimental verification and the observation of peculiar features of the effect, in this paper, we provide
a more detailed description of the phenomenon and extend the results to more sophisticated setups. We
establish that the dynamical phase contributes to superconducting interference; this being the manifestation
of the channel chirality. We consider setups that include the scattering between quantum Hall channels of
opposite direction and multiple superconducting contacts. For a single quantum Hall constriction, we derive
a general and comprehensive relation for the interaction-induced supercurrent in terms of scattering amplitudes
and demonstrate the nonlocal nature of the current by considering its sensitivity to scattering. In multiterminal
setups, we reveal the characteristic phase dependences of the supercurrents explaining those in terms of
interference of Andreev reflection processes. For more complex setups encompassing, at least, two constrictions,
we find an interplay between noninteracting and interaction-induced currents and contributions of more complex
interference processes.
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I. INTRODUCTION

Topological edge states, from their first discovery in quan-
tum Hall systems [1] through the advent of topological insu-
lators [2], have proved to be both interesting by themselves
[3–5] as well as a tool for fundamental physics research
and practical applications [6]. Their chirality/helicity and the
quantized conductance have all played their own important
roles. It is feasible and interesting to combine quantum Hall
physics with superconductivity by contacting the edge chan-
nels with superconducting electrodes; this being a subject of
intensive theoretical and experimental research [7–12].

The quantum Hall systems can be devised to arrange the
scattering between the edge channels of different chirality by
making corner junctions or constrictions. In Refs. [13–15],
the authors studied the interferometers made from corner
junctions between edge channels for integral and fractional
quantum Hall systems. In Ref. [16], they have examined
tunneling between edge states via an intermediate quantum
Hall island. In Ref. [17], the authors have proposed to use
a tunnel junction to probe the helicity of edge states. Such
quantum Hall setups can be combined with superconducting
electrodes [12]. Beenakker [18] has proposed an experimental
setup for probing annihilation probability between Bogoli-
ubov quasiparticles from two superconducting sources with
a phase difference between them with the goal to demonstrate
their Majorana nature. The quantum Hall setups may include
more than two superconducting electrodes, such multiterminal
superconducting structures are under active theoretical and
experimental investigation [19–25].

Recently, the authors have addressed the supercurrents
in a long chiral integer Hall edge channel with two

superconducting electrodes [26]. Although this current van-
ishes in approximation of noninteracting electrons, we have
shown the possibility of an interaction-induced supercurrent.
This supercurrent appeared to require a nonlocal electron-
electron interaction and is related to an information flow
in the direction opposite to the electron flow that is pro-
vided by such interaction. We have considered several spe-
cific interaction models and formulated an external circuit
model that facilitates controllable and efficient nonlocal
interaction.

In this article, we study the specific features of the phe-
nomenon in order to facilitate its experimental verification.
We show that the dynamical phase that may be induced by
electrostatic potential affects the superconducting interference
in sharp contrast with the nonchiral systems. We consider
more complex quantum Hall setups that involve scattering
between the edge channels and multiple superconducting
electrodes and compute the interaction-induced supercurrent
in these setups. This is important in view of the fact that the
setups are easy to employ and flexible to reveal the peculiar-
ities of the effect under consideration. To avoid unnecessary
details, we consider only a simplest external circuit model of
the nonlocal interaction. Qualitatively, the results hold for any
other nonlocal interaction.

In all setups, the supercurrent values are of the same order
of magnitude as for the single channel case but do depend on
details of potential and Andreev scattering in the structure.
Full and general analysis can be performed in a situation
of a single constriction where the electron trajectories do
not make loops. We specify to several distinct setups, some
demonstrating the nonlocal nature of the interaction-induced
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supercurrent, some, such as the Beenakker setup, not exhibit-
ing any supercurrent at all.

In a similar fashion, we analyze the supercurrents for the
case of many superconducting terminals connected to a single
edge channel. We reveal the relation between the current
and a complex amplitude of Andreev scattering that is con-
tributed by a multitude of partial amplitudes corresponding
to various sequences of Andreev processes. For two super-
conducting electrodes, the phase dependence of the current is
sinusoidal suggesting single Cooper pair transfers as the dom-
inant transport mechanism. More electrodes complicate this
dependence that gives the signatures of multiple Cooper pair
transfers.

As an example of more complex and potentially interesting
situation, we consider a setup comprising two constrictions
and two or three superconducting electrodes. The presence of
loop trajectories complicates the sequences of Andreev pro-
cesses and may lead to an interplay of interaction-induced and
common proximity supercurrents that results in a complicated
phase dependence of the current.

The paper is organized as follows. In Sec. II, we recite the
previous results on interaction-induced supercurrent, explain
the model, and the way to derive the effect microscopically.
We also consider the effect of dynamical phase. In Sec. III,
we apply these concepts to a single junction setup, derive
a general formula, and specify it to a variety of the situa-
tions. In Sec. IV, we discuss the supercurrents in multiple
superconducting terminals connected to a single edge channel.
In Sec. V, we consider a more complex setup comprising
two constrictions and three superconducting terminals. We
conclude in Sec. VI.

II. INTERACTION-INDUCED SUPERCURRENT IN
QUANTUM HALL EDGE CHANNELS

Here, we introduce the microscopic model, shortly recite
the results of Ref. [26], and explain the mechanism of the
interaction-induced supercurrent.

Let us consider a chiral channel at the edge of a quantum
Hall bar (Fig. 1). We assume that the relevant energy scales are
much smaller than the Landau-level separation, thus, the edge
states can be described with a Hamiltonian encompassing
electron field operators ψσ (x) with a linear spectrum near
Fermi level, σ =↑,↓ being the spin index,

H0 = −ivF

∑
σ

∫
dx ψ†

σ (x)∂xψσ (x). (1)

In addition to this, we include the terms with the electrostatic
potential V (x) and the pairing potential �(x) induced to the
channel in the vicinity of superconducting electrodes,

H1 =
∑

σ

∫
dx V (x)ψ†

σ (x)∂xψσ (x)

+
∫

dx[�∗(x)ψ↑(x)ψ↓(x) + �(x)ψ†
↓(x)ψ†

↑(x)].

(2)

We have not considered the electrostatic potential in
Ref. [26].

QH
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FIG. 1. Interaction-induced supercurrent in a quantum Hall edge
(QHE) channel. (a) A chiral channel at the edge of the quantum Hall
bar (light gray) is connected to two superconducting electrodes in
the points x1,2. Further away, the channel is covered with metallic
electrodes 3 and 4 that provide a nonlocal electron-electron interac-
tion between points x3,4. (b) The diagram for the relevant interac-
tion correction to the total energy of the system, G being electron
Green’s functions, and V being the interaction. The chirality of the
channel requires that the diagram gives a nonzero contribution only
if ωω′ < 0.

The resulting Matsubara Green’s function G(ω; x, x′) is a
2 × 2 matrix in Nambu space and satisfies

[−iω − ivF ∂x + H(x)]G(ω; x, x′) = −δ(x − x′), (3)

H(x) = V (x)τz + �(x)τ+ + �∗(x)τ−, (4)

where τz, τ
± = (τx ± iτy)/2 are Pauli matrices in Nambu

space.
It is important to note that the chirality of the channel

is manifested in the form of Green’s functions as follows:
G(ω; x, x′) = 0 if ω > 0, x > x′ or ω < 0, x < x′. We com-
pute the supercurrent as a part of the energy that depends
on the difference of the superconducting phases. For this
correction, the Green’s functions should form a closed loop
encompassing the coordinates of the superconducting termi-
nals x1,2. The above property makes such a loop equal to
zero if the Green’s functions are at the same energy ω. This
forbids the supercurrent for noninteracting electrons. Such a
loop is, however, not zero if the frequencies of the Green’s
functions making the loop are opposite in sign; this may be
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the case when they are the parts of the interaction correction
[Fig. 1(b), the loop is formed if ωω′ < 0]. The interaction
that leads to supercurrent must be a nonlocal one: Since the
loop encompasses x1, x2, the interaction line should connect
the points <x1 to those >x2.

The general form of the interaction correction reads

(�E ) = −2
∫

dω dω′dx dx′V (ω − ω′; x, x)

× Tr[G(ω; x, x′)τ̂zG(ω′; x′, x)τ̂z]. (5)

Let us elaborate on the Green’s functions. Since those obey the
first-order differential equation, its general solution for ω > 0
reads

vFG(ω; x, x′) = exp

[
−ω(x − x′)

vF

]
P exp

[
− i

vF

∫ x′

x
dz H(z)

]

(6)

where P indicates the position ordering of the exponent argu-
ments that are arranged from the left to the right in descending
order of their coordinates.

The contributions of pairing and electrostatic potential to
the position-ordered exponent are separated in space differ-
ently. The contributions of � come from the vicinity of each
superconducting lead i,

Ûi = P exp

(
−iv−1

F

∫
dz[�(z)τ+ + �∗(z)τ−]

)
, (7)

where the integration interval covers the vicinity and are
readily expressed in terms of the electron-hole conversion
(Andreev) probability pi at this lead,

Ui =
( √

1 − pi −ieiφi
√

pi

−ie−iφi
√

pi
√

1 − pi

)
. (8)

It is a unitary matrix that depends on the superconducting
phase φi at this particular lead. The contribution of the elec-
trostatic potential is accumulated on an interval xb > xa and
reads

K̂ab =
(

eiχab 0
0 e−iχab

)
, χab = −

∫ xb

xa

dx V (x)/vF ,

(9)

χab being a dynamical phase [27] accumulated over the in-
terval. With this, for any interval (x3, x4) that includes the
superconducting electrodes, the Green’s function reads

vFG(ω; x3, x4) = −e−(ω/vF )(x3−x4 )[θ (ω)θ (x3 − x4)Q̂

− θ (−ω)θ (x4 − x3)Q̂−1], (10)

where a unitary matrix Q̂ is the P-ordered exponent on this
interval,

Q̂ = K̂31Û1K̂12Û2K̂24. (11)

The energy correction contains a factor incorporating infor-
mation about the Andreev reflection and superconducting
phases,

A = Tr[Q̂τzQ̂
−1τz]. (12)

Since the matrices on the ends K̂31, K̂24 commute with τz, we
can neglect those and reduce Q to Q′ ≡ Û1K̂12Û2. With this,

A = 2(1 − 2p1)(1 − 2p2) − 8
√

p1(1 − p1)p2(1 − p2)

× cos(φ1 − φ2 − 2χ21). (13)

Let us specify the interaction to the model used in
Ref. [26]. To realize a nonlocal interaction that transfers the
electric signals upstream, one embeds the QHE edge into an
external electric circuit [Fig. 1(a)]. To connect the edge to the
circuit, we cover it with two metallic electrodes that are spread
at x < x3 and x > x4, respectively (x4 − x3 ≡ L̃). By a gauge
transform, the interaction can be reduced to the contact points
and is expressed in terms of the cross impedance between
these electrodes [for the circuit in Fig. 1(a), Z34 = Z2

B/(ZA +
2ZB)],

V (ν; x, x′) = v2
F

2
δ(x − x3)δ(x − x4)

Z34(ν)

|ν| . (14)

We stress that the interaction in question is an environment-
induced interaction between the quasiparticles rather than
an interaction of a quasiparticle with the environment of
the external circuit. The latter can provide decoherence and
dissipation but not the effect under consideration. It is also
clear from the fact that this interaction is proportional to a
cross impedance between the distant parts of the edge channel.

We specify to the model of the frequency-independent (at
the scale �vF /L̃) impedance to arrive at

�E = AR34

2
; R34 = e2

π2

vF

L̃
Z34. (15)

We compute the current by differentiating the energy with
respect to the phase difference φ ≡ φ1 − φ2,

I (φ) = 2∂φ (�E )

= −8eR34

√
p1 p2(1 − p1)(1 − p2) sin(φ − 2χ21). (16)

This differs from the answer given in Ref. [26] by the
inclusion of the dynamical phase χ21 that effectively shifts
the superconducting phase difference. The dynamical phase
is invariant with respect to time reversal whereas the super-
conducting phase is not, so one may wonder why those two
match each other. However, the time reversibility is essentially
violated in QHE regime, and the chirality sets the relation
between the phases. This leads to interesting and measurable
consequences: The supercurrent between two electrodes can
be modulated by a gate voltage applied to the channel to
induce the dynamical phase. This effect of the gate voltage
is rather local: It needs to be applied to the part of the channel
between the superconducting electrodes.

The scale of the current is e times the inverse time of flight
between the electrodes vF /L̃ times a small factor that is the
dimensionless impedance Z34e2/h̄. A common estimation of
for Z34 is the vacuum impedance, this gives the small factor
�10−2.

Let us note that the current is a sinusoidal function of
phase. In usual nonchiral superconducting junctions, this oc-
curs only in the limit of low transparency, and the correspond-
ing process is identified as a single Cooper pair tunneling
between electrodes 1 and 2. Here, the transparency is high
since the channel is completely ballistic. Nevertheless, the
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FIG. 2. Single constriction setups. (a) General framework for
all possible single-constriction setups. We count the coordinates for
each channel from the constriction in the direction of the channel
propagation. In this way, we can describe Andreev and potential
scatterings on the same footing with a local potential that may mix
N-propagating channels. This allows for an easy generalization of
the single-channel approach. (b)–(e) Various setups. The modulation
of the constriction transmission changes the interaction coefficient in
the setup (b) and propagation probability in the setups (d) and (c).
No interaction-induced supercurrent is found in setup (e).

underlying elementary process seems to be a single Cooper
pair tunneling. Thus, the sinusoidal dependence requires a
separate explanation.

In fact, the prefactor A given by Eq. (12) contains the
probability of Andreev conversion (from the electron to the
hole or vice versa) of a quasiparticle that passes the structure.
The elementary process responsible for the supercurrent is,
thus, an Andreev conversion of a single quasiparticle upon
its transfer in the direction of the flow. The conversion may
occur in either of the two electrodes, and the supercurrent
comes about from the interference of these two possibilities.
The dependence is sinusoidal since, for the two-electrode
setup, there can be only a single conversion. As we will see
in Sec. IV, more conversions can occur in the setups with
more superconducting electrodes, and this results in higher
harmonics in the phase dependence of the current.

III. SINGLE CONSTRICTION

The simplest way to make a nontrivial QH setup is to
make a constriction in a QH bar with the width that is com-
parable with the spread of the edge channel wave functions
[Figs. 2(b)–2(e)]. There is a scattering of the electron waves at
the constriction: Upon passing the constriction, an incoming
electron will either stay at the same edge with probability T or
be reflected to the opposite edge with probability 1 − T . In all

setups, we implement the external circuit nonlocal interaction:
The beginning and end of each channel is covered by a metal
electrode included in the circuit (not shown in the figure).

A common specific feature of all single-constriction se-
tups is that the electron trajectories do not form any closed
loops whatever the scattering they experience. This is why
all such setups can be treated in the same manner. We do
this by counting the coordinates for each channel separately
in the direction of propagation, starting form a point in the
constriction. In this way, we can reduce all setups to a single
general model depicted in Fig. 2(a). There, we have N-chiral
channels subject to local pairing and electrostatic potential,
these potentials being N × N matrices in the channel space.
The Green’s function is also a matrix in channel space satis-
fying

[−iω − iv̌F ∂x + H(x)]G(ω; x, x′) = −1̌δ(x − x′), (17)

H(x) = V̌ (x)τz + �̌(x)τ+ + �̌∗(x)τ−, (18)

where “check” denotes the matrix structure in the channel
space. We note that vF also has this structure since the velocity
may depend on the channel. Apart from this extra structure,
the Eq. (17) is a complete analog of Eq. (3) and can be solved
with a position-ordered exponent.

To simplify further, we note that the pairing potential is
diagonal in channels either before or after the constriction,
and the nondiagonal potential is localized on the constriction
[Fig. 2(a)]. With this, the Green’s function can be represented
in a form analogous to Eq. (10), a, b being the channel indices
and x, x′ are beyond the scattering region,√

va
F vb

FGab(ω; x, x′) = −e[−(|ω|/vF )|x−x′|][θ (ω)θ (x − x′)Q̂ab

− θ (−ω)θ (x′ − x)(Q̂−1)ab]. (19)

The unitary matrix Q̂ is composed of the matrices of the
superconducting electrodes before and after the constriction,
and the matrix Ŝ that describes the scattering at the constric-
tion,

Q̂ = Û1ŜÛ2. (20)

For two channels,

Ŝ = š
1 + τz

2
+ š† 1 − τz

2
, š ≡

(
t r

−r′ t ′

)
. (21)

t, t ′ and r, r′ being the transmission and reflection amplitudes
at the constriction. To compute the interaction correction,
we employ the external circuit nonlocal interaction model.
In general, we have the contributions from each pair of the
electrodes at the beginning and at the end of the channel, those
are weighted with the corresponding cross impedances.

We are ready to derive the answers for the specific se-
tups. Let us start with one shown in Fig. 2(b). Here, both
superconducting electrodes are connected to the same channel
upstream from the constriction. Naively, one would regard
the superconducting current as a local quantity determined
by the electrodes and the space between those. However,
this is not true in view of the nonlocal character of the
interaction. The setup provides a good and practical illus-
tration for this. Similar to Eq. (16), the current is given by
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FIG. 3. Multiple superconducting electrodes contacting the same
channel N = 3.

I = −8eRB
√

p1 p2(1 − p1)(1 − p2) sin(φ − 2χ21) with

RB = e2

π2

(
T

vF

L3 + L4
Z34 + (1 − T )

vF

L3 + L5
Z35

)
. (22)

Here, and further in the text, Li is the distance from the
constriction to the metallic electrode i. We see that the in-
teraction coefficient R does depend on the transmission of
a distant constriction switching between two values corre-
sponding to completely open and closed constriction. A gate
that modulates this transmission will modulate this interaction
coefficient and current without changing the external circuit.
This would be a convenient experimental proof of nonlocality.
A similar result is obtained if both electrodes connect the same
channel downstream the constriction.

If one electrode is upstream from the constriction, and an-
other one is downstream [Figs. 2(c) and 2(d)], the modulation
of the transmission modifies the probability to go from one
to another rather than the interaction. The current is given by
I = −8eRC,D

√
p1 p2(1 − p1)(1 − p2) sin(φ − 2χ21) with

RC = e2

π2
(1−T )

vF

L3 + L5
Z35, RD = e2

π2
T

vF

L3 + L4
Z34. (23)

The dynamical phase χ21 is accumulated along a path pass-
ing the constriction and eventually incorporates the phase
of either transmission or reflection amplitude. Interestingly,
RB = RC + RD, and this can be used for the experimental
identification of the effect.

For a setup where the superconducting electrodes are either
upstream or downstream from the constriction but contact
different channels [Fig. 2(e)], we find no interaction-induced
supercurrent. This is related to the fact that a closed loop
of Green’s functions encompassing both electrodes always
equals zero. Beenakker [18] has proposed to measure current
noise correlations in the setup. Luckily, those would not be
obscured by the supercurrent.

IV. MULTIPLE SUPERCONDUCTING TERMINALS

In view of a significant experimental and theoretical in-
terest to multiterminal superconducting nanostructures, we
consider here multiple superconducting electrodes connected
to the same channel. The approach outlined in the previous
section suits for multiple superconducting electrodes as well.
Here, we concentrate on a simple but general situation when
N-superconducting electrodes are in contact with the same
channel (Fig. 3 gives the setup for N = 3).

The Green’s function between the edges of metallic elec-
trodes is given by Eq. (10) with Q encompassing all matrices
Ûi, i = 1 · · · N of the superconducting electrodes and the
matrices K̂i,i+1 responsible for the accumulation of dynamical

phase between the electrodes,

Q̂ =
N−1∏
i=1

ÛiK̂i,i+1ÛN . (24)

Here, we skip K̂ matrices before and after the superconducting
electrodes since they do not affect the answer for the current.

The energy correction is given by �E = AR/2 where the
interaction coefficient R is defined by the interaction via the
external circuit,

R = e2

π2

vF

L̃
Z45, (25)

whereas

A = 2(1 − 2|Qeh|2) (26)

incorporates all the information about the Andreev probabili-
ties and superconducting phases.

Actually, Qeh is the amplitude of Andreev conversion of
an electron to a hole while passing the setup, and |Qeh|2 is
the conversion probability. It is instructive to regard it as a
sum of partial Andreev amplitudes corresponding to different
sequences of conversion or passing at the electrodes. For
instance, there are partial amplitudes where the electron is
converted at one of the electrodes passing all other. Another
set of the partial amplitudes corresponds to the case when the
electron is converted to the hole at the first electrode, the hole
is converted back to the electron at the second, and finally
back to hole at the third one, whereas passing all others. Each
partial amplitude, in agreement with Eq. (24), is a product of
amplitudes from all electrodes and spaces in between those.
Let us give an example of such analysis for N = 3 and derive
the expression for A.

The amplitude of the process where the conversion occurs
at electrode 1 reads

A1 = −i
√

p1

√
1 − p2

√
1 − p3eiφ1 e−iχ12 e−iχ23 , (27)

similar contributions for electrodes 2 and 3 are obtained by
index exchange and change in signs of the dynamical phase,

A2 = −i
√

p2

√
1 − p1

√
1 − p3eiφ2 eiχ12 e−iχ23 , (28)

A3 = −i
√

p3

√
1 − p2

√
1 − p1eiφ3 eiχ12 eiχ23 , (29)

and there is a contribution that corresponds to the conversion
at each electrode,

A123 = (−i)3√p1
√

p2
√

p3eiφ1 e−iχ12 e−iφ2 eiχ23 eiφ3 . (30)

Let us, for convenience, shift the phases φ1,3 with the cor-
responding dynamical phases φ1 → φ1 − 2χ12, φ3 → φ3 +
2χ23. With this, we express the conversion probability as

|Qeh|2 = p2(1 − p1)(1 − p3) + p1(1 − p2)(1 − p3)

+ p3(1 − p2)(1 − p1) + p1 p2 p3 (31)

+ 2
√

p1(1 − p1)p2(1 − p2) cos(φ1 − φ2) (32)

+ 2
√

p2(1 − p2)p3(1 − p3) cos(φ2 − φ3) (33)

+ 2
√

p1(1 − p1)p3(1 − p3)(1 − p2) cos(φ1 − φ3)

(34)

− 2
√

p1(1 − p1)p3(1 − p3)p2 cos(2φ2 − φ3 − φ1).

(35)
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Here, the term (31) comprises the squares of the partial
amplitudes. It does not depend on phases and, therefore, does
not contribute to the current. The term (32) comes about the
interference of the amplitudes in pairs A1,A2 and A3,A123.
Somewhat surprisingly, it corresponds to the currents between
electrodes 1 and 2 as if the third electrode was not at all
present. The same applies to the term (33): It corresponds to
the current between electrodes 2 and 3 as if no electrode 1
is present and arises from the interference of the amplitudes
in pairs A3,A2 and A1,A123. The term (34) describes the
current between 1 and 3 only, although its amplitude is
reduced by Andreev conversion at electrode 2 and manifests
interference between A1 and A3. All these terms lead to
the currents as if there were tunnel junctions connecting the
corresponding electrodes and manifest a single Cooper pair
tunneling between the electrodes. The last term (35) is of a
different nature. It manifests a more interesting process of
two Cooper pair tunnelings: The Cooper pairs from 1 and 3
simultaneously entering electrode 2, or reversely, two Cooper
pairs from 2 getting to 1 and 3 that cannot be described with
elementary tunnel junctions. For a bigger number of elec-
trodes, more complex processes, involving more electrodes
and Cooper pairs, are manifested.

Finally, the currents read (we count the phases from elec-
trode 2, φ2 = 0),

I1 = I0
1 sin φ1 + I13 sin(φ1 − φ3) + Ii sin(φ1 + φ3), (36)

I3 = I0
3 sin φ1 + I13 sin(φ3 − φ1) + Ii sin(φ1 + φ3), (37)

I2 = −I3 − I1, where I0
i = −8eR45

√
pi p2(1 − pi )(1 − p2),

I13 = −8eR45
√

p1 p3(1 − p1)(1 − p3)(1 − p2), Ii = −8eR45√
p1 p3(1 − p1)(1 − p3)p2. The last terms ∝ Ii are due to

the interesting process. The currents are shifted sinusoidal
functions of any phase.

V. AN EXAMPLE OF A COMPLEX SETUP

It is not difficult to form two constrictions in a Hall bar
(Fig. 4). This provides an example of a more complex setup
that cannot be understood with the approach of the previous
sections. The reason for this is a possibility of looping electron
trajectories that provide multiple Andreev conversions from
the same electrodes multiple scatterings at the same constric-

S

5

4 6
S2

S3 7

a b

FIG. 4. An example of a more complex setup: A Hall bar with
two constrictions. This provides a possibility of electron trajectories
that loop over the ring between the constrictions a and b. This leads to
noninteracting current between electrodes 2 and 3. The supercurrent
to 1 is interaction induced and is evaluated in this section.

tion. In the setup under investigation, the loops occur in the
ring between constrictions a and b.

It has to be noted that looping trajectories lead to a non-
interacting current, in this case, between electrodes 2 and 3.
The magnitude of this current can be estimated as evF /Lc and
is typically much bigger than the expected interaction-induced
current. The precise expression can be derived from the phase-
dependent contribution to the ground-state energy that reads

�E = −vF

Lc

∑
pm

Li2(
√

RaRbe±iλ). (38)

Here, Li2 is the dilogarithm function, e±iλ are the eigenvalues
of the matrix Q̂c = Û2K̂23Û3K̂32, the matrices Û2,3 represent
Andreev conversion at the corresponding electrodes whereas
K̂23,32 represent the accumulation of dynamical phases on
paths 2 → 3, 3 → 2 and include the phases of the reflection
amplitudes ra, r′

b, respectively. More explicitly,

cos λ = Q0

= cos(χ23 + χ32)
√

(1 − p2)(1 − p3)

+√
p2 p3 cos(φ2 − φ3 + χ32 − χ23). (39)

However, the supercurrent from electrode 1 can only be
due to a nonlocal interaction. Let us compute the contribution
proportional to Z45; all other contributions can be evaluated in
the same manner. We start with evaluation of G(ω, x4, x5) at
ω > 0. It is determined by electron-hole propagation between
these points and is a sum of partial propagation amplitudes
with a different number of loops in the ring between constric-
tions a and b. The contribution with no loops encompasses the
propagation along the paths 4 → a → 5 and reads

G (0) = e−[ω(L4+L5 )/vF ] ˆ̄U1r̂a. (40)

Here, to shorten the notations, we introduce ˆ̄U that incorpo-
rates the adjacent K̂ (for instance, ˆ̄U1 = K̂51Û1K̂1a) skip the
irrelevant K̂ at the end of the path. The contribution with one
loop, in addition to this, encompasses the path a → 2 → b →
3 → a,

G (1) = e−[ω(L4+L5 )/vF ] ˆ̄U1t̂ae−(ωLc/vF ) ˆ̄U2r̂b
ˆ̄U2. (41)

The contributions with higher loop numbers form a
geometric series where each term is multiplied with
r̂′

a
ˆ̄U2r̂b

ˆ̄U3 exp(−ωLc/vF ) ≡ Q̂c
√

RaRb exp(−ωLc/vF ). This
sums up to

G = e−[ω(L4+L5 )/vF ] ˆ̄U1{r̂a + [t̂a(r̂′
a)−1M̂t̂ ′

a]}, (42)

M̂ ≡ Q̂c
√

RaRbe−(ωLc/vF )

1 − Q̂c
√

RaRbe−(ωLc/vF )
. (43)

We concatenate this with another Green’s function at ω′
and integrate over ω,ω′. This integration is more involved
than in the previous cases since the propagation involves
the paths of different lengths L = L4 + L5 + nLc, n being
the number of the loops made by a trajectory. The answer
involves many different combinations of dynamical phases.
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To simplify, we shift φ2 → φ2 + μ + ν, φ3 → φ3 + μ − ν,
μ ≡ arg(r′

a) + χa2, ν ≡ χ2b + arg(rb) + χb3 and introduce

χA = 2χ1a + arg(ta) − arg(r′
a) − arg(t ′

a) − χ3a, (44)

χB = 2χ1a + 2 arg(ta) − 2 arg(r′
a) + ν + μ, (45)

χC = 2χ1a + 2 arg(ta) − 2 arg(r′
a) − χ3a. (46)

With this,

�E = −4
√

p1(1 − p1)Ta
e2

π2

vF

L4 + L5
Z34

× {√
RaRbFA[cos(χA − φ1 + φ2)

√
p2(1 − p3) (47)

+ cos(χA − φ1 + φ3)
√

p3(1 − p2)] (48)

+ 2TaRbFB[− cos(χB − φ1 + φ2)
√

p2(1 − p2)(1 − p3)

− cos(χB − φ1 + φ3)
√

p3(1 − p3)(1 − p2)

+ cos(χB − φ1 − φ3 + 2φ2)
√

p3(1 − p3)p2] (49)

+ TaR3/2
b R1/2

a FC[cos(χC − φ1 + φ2)
√

p2(1 − p3)

+ cos(χC − φ1 + φ3)
√

p3(1 − p2)]
}
. (50)

Here, the dimensionless coefficients FA,B,C come about the
frequency integration. They depend on the ratio of paths c ≡
Lc/(L4 + L5), the reflection coefficient

√
RARB in the ring,

and incorporate information about the Andreev conversion,
superconducting, and dynamical phases in the ring by a single
parameter Q0 defined by Eq. (39).

The coefficients are expressed in integral form as

FA =
∫ ∞

0

dx dx′

x + x′ e−(x+x′ )[e−cxD(x) + e−cx′
D(x′)], (51)

FB =
∫ ∞

0

dx dx′

x + x′ e−(x+x′ )(1+c)D(x)D(x′); (52)

FB = −
∫ ∞

0

dx dx′

x + x′ e−(x+x′ )(1+c)(e−cx′ + e−cx )D(x)D(x′);

(53)

D−1(x) = 1 − 2
√

RaRbQ0e−cx + RaRbe−2cx. (54)

They approach constant limits at c → 0 and scale as 1/c at
c → ∞; this signifies that in the limit of large ring circumfer-
ences the energy scale is determined by Lc.

Let us consider and interpret the terms in the phase-
dependent energy correction. We see that the overall expres-
sion is proportional to Ta since the electrons should get to
the ring to feel other superconducting ring. The terms (48)
proportional to FA come about the interference of paths that
do and do not visit the ring, and this is seen from square-
root dependence on the reflection coefficients. We have not
encountered this situation in the previous sections since there
any relevant path passes all the electrodes. We see this in
different dependences of the coefficients on Andreev con-
version probabilities, for instance,

√
p2(1 − p3) misses the

factor
√

1 − p2 present in the previous expressions. The phase
dependence of the terms can be still interpreted in terms of

single Cooper pair tunneling between either 1 and 2 or 1
and 3.

The terms (49) proportional to FB arise from the interfer-
ence of various trajectories that visit the ring and experience
Andreev conversion when going from 4 to 5. Their structure
is similar to that studied in the previous section. There is a
term that manifests a process whereby two Cooper pairs from
1 and 3 enter electrode 2. It has to be present since in the
limits Rb → 1, Ra → 0 we return to the single-channel setup
considered in Sec. IV where the two-Cooper pair tunneling
has been identified. The terms (50) proportional to FC result
from the interference of the trajectories that pass the ring
with and without Andreev conversion in the ring. This is
why the dependence of the coefficients on the conversion
probabilities is identical to that of (48). The presence of
looping trajectories and various paths leads to the fact that the
similar terms pick up different dynamical phases that cannot
be compensated with the shifts of the superconducting phases
as in the previous examples.

VI. CONCLUSIONS

In conclusion, we have extended the previous study of
interaction-induced supercurrents in a single quantum Hall
edge channels to experimentally relevant and widely used
quantum Hall setups with scattering between the edge chan-
nels. We restricted ourselves to a simple but relevant inter-
action model where the informational flow in the direction
opposite to that of the electron propagation is provided by an
external circuit.

For a single constriction in a Hall bar, the considerations
are simple and can be performed in very general form. We
have considered specific setups that manifest the nonlocal na-
ture of the interaction-induced effect whereby a supercurrent
can be modulated by changing the transmission coefficient
of a distant constriction. We have considered a multiterminal
superconducting system where the electrodes are connected
to a single edge channel, understood the supercurrent in terms
of interference of Andreev conversion processes, and have
identified a process that can be regarded as two-Cooper pair
tunneling.

We have considered a more complex exemplary setup that
involves two constrictions and thereby gives a possibility of
looping trajectories. This gives rise to interplay of noninter-
acting and interaction-induced currents and significantly com-
plicates the situation. We demonstrate the evaluation of the
phase-dependent energy correction in this complex setup and
interpret the result in terms of various interference processes.

The results presented facilitate the experimental observa-
tion of interaction-induced supercurrent and contribute to the
active field of superconductor-QHE nanostructures. The most
interesting experimental signatures revealed in this article
include: (i) The effect of dynamical phase (induced by a
gate electrode) on the superconducting interference that is
the signature of chirality; (ii) the absence or presence of
the effect depending on the positioning of superconducting
electrodes with respect to the constriction (Fig. 2). In partic-
ular, we prove that the Beenakker setup is not affected by
the interaction-induced supercurrent. (iii) Modulation of the
current by modulation of the transparency of the constriction
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the current does not go through: a striking manifestation
of the essentially nonlocal nature of the interaction-induced
supercurrent (Sec. III); (iv) subsequent interaction-induced
Andreev reflection in many-electrode setups (Sec. IV). It
complicates the phase dependence of the currents making it
possible to distinguish different Andreev processes experi-
mentally; (v) interplay of interaction-induced and common

supercurrent in a two-constriction setup where the phase
dependence manifests and distinguishes even more complex
Andreev processes.
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