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Giant Stark effect in coupled quantum wells: Analytical model
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Coupled quantum wells have been proposed as candidates for highly polarizable structures due to their near-
degenerate and dipole-coupled electronic states. Hence, many interesting applications in linear and nonlinear
optics can be envisioned. We analyze this proposal considering a simple structure with a delta-function barrier
separating the wells. While very substantial Stark shifts are certainly predicted for this geometry, perturbative
estimates based on polarizabilities (and hyperpolarizabilities) fail beyond a critical field strength that depends
inversely on the barrier. Hence, a giant Stark effect due to near-degenerate states is invariably limited by a small
critical field. Our analytical (hyper) polarizability expressions are applied to find quantitative Stark shifts for
GaAs quantum wells and transition-metal dichalcogenide bilayers. The predicted Stark shifts and critical fields
agree with the field dependence observed in a range of available experiments.
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I. INTRODUCTION

The Stark effect is a measure of the change in electronic
energy levels due to external electric fields. It is essential for
several device applications and as a diagnostic tool [1–4].
For these reasons, systematic searches for structures and mol-
ecules exhibiting a large Stark effect have been reported
[5–9]. Such structures are expected to exhibit large linear and
nonlinear optical response due to their large polarizability and
hyperpolarizabilities. In weak fields, the response can be un-
derstood from the unperturbed [superscript “(0)”] eigenstates
ϕ(0)

n and the associated energies E (0)
n . Perturbation theory then

shows that the contribution to the polarizability of state ϕ(0)
n

due to a state ϕ(0)
m is proportional to |〈ϕ(0)

m |x|ϕ(0)
n 〉|2/(E (0)

m −
E (0)

n ), where 〈ϕ(0)
m |x|ϕ(0)

n 〉 is the transition dipole moment.
Thus, materials possessing near-degenerate (E (0)

m ≈ E (0)
n ) and

dipole-coupled pairs of states are natural candidates for useful
materials. Their large response to (weak) electric fields con-
stitutes an example of a “giant” Stark effect [9].

The prototypical example of an electronic system pos-
sessing near-degenerate and dipole-coupled states is that of
two identical coupled quantum wells [9–17] as illustrated in
Fig. 1(a). Physically, such quantum wells may be formed
by semiconductor heterostructures [10–17] that are usually
modeled as one-dimensional square-well potentials. How-
ever, similar physics is found in coupled quantum dots [18]
and “molecular” systems such as ladder polymers [19] or
transition-metal dichalcogenide (TMD) bilayers [20–24]. If
the barrier between the wells is properly adjusted, the ground
state ϕ

(0)
1 and first excited state ϕ

(0)
2 will be close in energy but

still dipole coupled. A large barrier reduces the energy dif-
ference E (0)

2 − E (0)
1 and may lead to a large polarizability. In a

perfectly symmetric structure, the unperturbed ground and ex-
cited states are even and odd superpositions of localized states
pertaining to the individual wells. In quantum-chemistry
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language, these are bonding and antibonding combinations of
“atomic” orbitals. In an electric field above a certain critical
strength, however, the ground and first excited states become
increasingly localized in the left (positively biased) and right
(negatively biased) wells, respectively. Hence, the induced
dipole moment saturates at a value given by the separation be-
tween quantum well centers in this case. Consequently, there
are clearly limits to the achievable induced dipole moment.
This is essentially a nonperturbative effect and the simple
physical picture based on a field-independent polarizability is
restricted to fields well below the critical one.

In the present paper, we analyze a simple model of coupled
one-dimensional quantum wells separated by a Dirac delta
barrier of adjustable height. This system has been studied
previously in the absence of fields [25,26]. Hence, in the
present work, we expand the model by adding a constant
electric field. Such a coupled quantum well structure captures
the essential elements of the giant Stark effect. Importantly,
however, it may be analyzed analytically even in the presence
of arbitrarily strong electric fields. Hence, the exact Stark shift
of all states is readily accessible. In addition, polarizabilities
αn and first hyperpolarizabilities βn of state ϕ(0)

n can be
obtained analytically. With this model, we are therefore in a
position to analyze (i) the barrier dependence of αn and βn

and (ii) the limits of the perturbative regime. We restrict the
attention to carriers in parabolic bands characterized by an
isotropic effective mass. The derived expressions, therefore,
apply to both electrons and holes but, for simplicity, electrons
will be assumed in all derivations (for holes, the sign of the
dipole interaction should simply be inverted). Also, we omit
excitonic effects and, hence, consider only single-particle
states. We begin this paper by introducing, in Sec. II, the
double quantum well model and associated eigenstate prob-
lem. This problem is then analyzed using perturbative and
nonperturbative approaches in Secs. III and IV, respectively.
A comparison of the two is made to illustrate the limits of
the perturbative regime. Moreover, numerical estimates are
provided and compared to experiments for some characteristic
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FIG. 1. Double quantum well with total width a modeled with
a finite interwell barrier (a) and a delta-function barrier (b). The
potential is tilted by the electric field.

realizations of double-well structures in Sec. V. Finally, a
summary is given in Sec. VI.

II. STARK EFFECT

The applied model including the electric field is illustrated
in Fig. 1. We consider a one-dimensional double quantum well
with a full width a and infinite outer confinement restricting
electrons to move in the range −a/2 � x � a/2. The two
wells are separated by a potential barrier of width b and height
V0. However, to simplify the analysis, we take the limit b → 0
while keeping V ≡ V0b finite. Hence, the barrier is modeled as
a Dirac delta function V δ(x) in this limit as shown in Fig. 1(b).
The advantages of this simplification are that (i) compact
exact results can be found and (ii) the barrier dependence is
contained in the single parameter V.

The assumption of infinite outer confinement implies
Dirichlet boundary conditions for the wave function ϕ(x) at
x = ±a/2. It is convenient to use units, in which e = h̄ =
meff = a = 1 with meff the effective electron mass. Through-
out, we therefore take h̄2/(meffa2) as the energy unit and
electric fields are measured in units of h̄2/(emeffa3). In
addition, polarizabilities and hyperpolarizabilities are given
in units of α0 = e2meffa4/h̄2 and β0 = e4m3

eff a
10/h̄6, respec-

tively. Hence, in the presence of a normalized electric field E ,
the full eigenvalue problem for electrons is simply{

−1

2

d2

dx2
+ V δ(x) + Ex

}
ϕ(x) = Eϕ(x), ϕ

(
±1

2

)
= 0.

(1)

The wave function is continuous at the origin but the pres-
ence of a delta function implies a discontinuous slope, i.e.,
ϕ′(0+) − ϕ′(0−) = 2V ϕ(0). We will now analyze this prob-
lem using both perturbative and nonperturbative approaches.

III. PERTURBATIVE REGIME

We begin by studying the unperturbed (E = 0) states
ϕ(0)

n (x) that form the basis for the perturbation expansion.
We will restrict ourselves to V � 0 and so the unperturbed
energies E (0)

n ≡ k2
n/2 are always positive. The unperturbed

eigenstates can be classified as even-parity (n = 1, 3, 5, . . .)

FIG. 2. Barrier dependence of the wave numbers kn of field-
unperturbed states (top panel) and polarizability αn (lower panel)
using the same color code in both panels and with n indicating the
state.

states and odd-parity (n = 2, 4, 6, . . .) states. The odd states
are particularly simple, since their node at the origin ensures
that there is no effect of the delta-function barrier. Hence,
for these states kn = nπ and ϕ(0)

n (x) = √
2 sin(knx). The

even-parity states are slightly more complicated and can be
written as [26]

ϕ(0)
n (x) =

(
2kn

kn − sin kn

)1/2

sin

[
kn

(
1

2
− |x|

)]
. (2)

Enforcing the boundary condition connecting the slopes at
x = 0± then immediately leads to the eigenvalue condition
V tan( 1

2 kn) + kn = 0. For V = 0, the solutions are again
kn = nπ , while the wave numbers approach (n + 1)π as V
increases. A simple expansion shows that, in the limit of large
V, kn ≈ (n + 1)πV/(V + 2). Hence, any given even-parity
state becomes near degenerate with the odd-parity one just
above it in this limit. This behavior is illustrated in the top
panel of Fig. 2. It may be noted that near degeneracy is
reached at low barrier heights for low-lying state pairs, while
higher pairs remain energetically separated even in cases of
relatively high barriers.

To compute the corrections due to a weak electric field,
we write the wave functions as the series ϕn = ϕ(0)

n + Eϕ(1)
n +

E2ϕ(2)
n + · · · and, similarly, En = E (0)

n + E2E (2)
n + E4E (4)

n +
· · · . Note that only even orders appear in the expansion
of the energy for a symmetric (unperturbed) system. In
turn, the energy corrections provide the (hyper) polarizability
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via E (2)
n = − 1

2αn and E (4)
n = − 1

4βn. Applying the Dalgarno-
Lewis [27–32] technique, we compute the wave-function cor-
rections order by order. For instance, the first-order correction

ϕ(1)
n is found as the solution to the inhomogeneous equa-

tion (H0 − E (0)
n )ϕ(1)

n + xϕ(0)
n = 0, where H0 = − 1

2 d2/dx2 +
V δ(x) is the unperturbed Hamiltonian. Solving, we find

ϕ(1)
n (x) =

⎧⎪⎨
⎪⎩

4x sin
(

1
2 kn

){
sin

[
kn

(
1
2 −|x|

)]
+kn|x| cos

[
kn

(
1
2 −|x|

)]}
−kn sin(knx)

4kn sin
(

1
2 kn

)
[2kn(kn−sin kn )]1/2

1
4
√

2k2
n
{kn(1 − 4x2) cos(knx) + 4x sin(knx) + V sin(kn|x|)}

even

odd.

. (3)

These corrections are plotted in Fig. 3 for small and moderate barriers. Note that parity is switched between ϕ(0)
n and ϕ(1)

n . Also,
the corrections to the odd states now get an explicit dependence on V. Based on these expressions, the energy correction is
E (2)

n = 〈ϕ(0)
n |x|ϕ(1)

n 〉. Accordingly, we find a polarizability αn = −2〈ϕ(0)
n |x|ϕ(1)

n 〉 that generally, i.e., for both even and odd states,
is given by

αn = 15 − k3
n

(
1 + 3

4 (−1)nV
)
/(kn − sin kn)

12k4
n

, (4)

which simplifies to αn = (15 − k2
n )/12k4

n if V = 0. This agrees with findings in Refs. [28,30–32]. We plot the polarizabilities for
a few of the lowest states in the bottom panel of Fig. 2. For all states, αn varies roughly linearly with V once a threshold of V ≈ 3
is crossed. The lowest states are the most polarizable ones and moreover, αn ≈ −αn+1 for n odd. Hence, if several states are
occupied, a large degree of cancellation in the total polarizability will result. Finally, the fact that |αn| decreases with n derives
from the fact that near degeneracy between neighboring states is approached more slowly for high states; cf. the top panel of
Fig. 2. The Dalgarno-Lewis approach can be carried to second order to compute the first hyperpolarizability βn as detailed in
the Appendix. The resulting analytical expressions are rather elaborate, in particular, for the even states. However, in all cases, it
turns out that βn varies asymptotically as V 3 for high barriers. Thus, huge values can be expected for weakly coupled quantum
well structures.

The extent of the perturbative regime is readily estimated by comparing the separation between unperturbed energies E (0)
m −

E (0)
n and the field energy ∼Ea. Focusing on the two lowest states and assuming a relatively large barrier, we have E (0)

2 − E (0)
1 ≈

8π2/V using the asymptotic expression for kn above. Hence, equating this difference with the field energy leads to a critical field
E (1)

c ≈ 8π2/V (recalling that a = 1 in our units), above which nonperturbative behavior emerges.

IV. NONPERTURBATIVE REGIME

We now turn to the exact solution for the eigenstates in arbitrary fields. Except for the origin, the perturbed Schrödinger
equation, Eq. (1), is essentially Airy’s differential equation and general solutions are a combination of first and second Airy
functions Ai and Bi. Introducing z(x) = 21/3(E1/3x − E−2/3E ) and z0 = z(0) as well as z± = z(± 1

2 ) we then find the exact
eigenstates:

ϕ(x) = C

{{Bi(z−)Ai(z) − Ai(z−)Bi(z)}/{Bi(z−)Ai(z0) − Ai(z−)Bi(z0)}
{Bi(z+)Ai(z) − Ai(z+)Bi(z)}/{Bi(z+)Ai(z0) − Ai(z+)Bi(z0)}

x < 0
x > 0 . (5)

Here, C is a common normalization factor and the function is continuous at the origin by construction. Matching the two halves
using the boundary condition for the slopes at the origin, we find the eigenvalue condition:

Ai(z−)Bi(z+) − Ai(z+)Bi(z−) = 22/3πE−1/3V {Bi(z−)Ai(z0) − Ai(z−)Bi(z0)}{Bi(z+)Ai(z0) − Ai(z+)Bi(z0)}. (6)

As mentioned above, in the absence of a field, the odd-parity
eigenstates are completely unaffected by the barrier at the
origin due to the node at this position. This is no longer the
case in a finite field, however, since states have no definite
parity for E 
= 0. This, of course, agrees with the barrier
dependence shown for the first-order corrections in Fig. 3.

In Fig. 4, we plot the ground and first excited field-
perturbed wave functions from Eq. (5) for vanishing, weak,
moderate, and strong fields. First, it is apparent that, in the
absence of a field, the first excited state is unaffected by the
barrier. Similarly, a low barrier V = 2 has only a marginal
effect on the excited state in a relatively weak field E =
20. In contrast, a high barrier V = 20 means that a field of
E = 20 is in the nonperturbative regime, in which ground

and excited states are essentially located in the left and right
wells, respectively. As discussed above, the critical field for
perturbative behavior with a given (not too small) barrier
height is given by E (1)

c ≈ 8 π2/V , which equates to 39 and
3.9 for V = 2 and V = 20, respectively. Thus, for V = 2, the
case E = 20 is still in the perturbative regime while this is not
the case for V = 20. For sufficiently strong fields and high
barriers, a second critical field E (2)

c is encountered, such that
for E > E (2)

c both states are located in the left well. This field
can be estimated by balancing the orthogonality cost of the
excited state (upon moving to the same well as the ground
state) with the gain from the electric field. Thus, for high
barriers and approximating the eigenstates in each well by
sine functions, the energy of the lowest state in the right well
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FIG. 3. First-order corrections due to an electric field for wave
functions of the four lowest states in structures with small (V = 2)
and moderate (V = 20) barriers.

is 2π2 + E/4. Conversely, the second-lowest state in the left
well has an energy 8π2 − E/4. Balancing these energies leads
to a critical field of E (2)

c = 12π2 ≈ 118, at which locating both
ground and excited states in the left well becomes energeti-
cally favorable. Eventually, for E � E (2)

c there is virtually no
effect of the barrier on either state, as shown in the lower
panels of Fig. 4.

An illustrative measure of the transition from perturba-
tive to nonperturbative behavior is the induced dipole mo-
ment dn = 〈ϕn|x|ϕn〉 of the nth field-perturbed eigenstate. In
Fig. 5(a), we plot this measure for ground and excited states
for several barriers. The vertical blue lines indicate the critical
fields estimated by the formulas explained above. For rela-
tively high barriers and fields above the first critical one, E (1)

c ,
clear plateaus d1 ≈ −a/4 and d2 ≈ a/4 are observed for the
ground and excited state, respectively. This, then, corresponds
to the situation in which these states are located in the left and
right wells. Eventually, in very large fields E � 12π2 and for
reasonably high barriers, both states localize in the left well,
as discussed above. Note that, interestingly, the transition to
this situation is quite abrupt in the high-barrier case.

The induced dipole moments are accompanied by Stark-
shifted energies, as shown in Fig. 5(b). In the perturba-
tive regime E < E (1)

c , the field dependence is approximately
quadratic, i.e., En ≈ E (0)

n − 1
2αnE2 in terms of the polarizabil-

ity αn. Above the critical field, however, the field dependence
becomes approximately linear. This corresponds to the behav-
ior of a fixed dipole in the field. For the ground state, the slope
approaches −1/4 for large barriers corresponding to a state

FIG. 4. Ground (red) and first excited (green) states for small
(V = 2) and large (V = 20) barriers in various fields E ∈ [0, 2000].

centered at x = −a/4. This clearly highlights that the large
(quadratic) Stark shifts predicted by the perturbative result
En ≈ E (0)

n − 1
2αnE2 are limited to low fields and vary much

more slowly in strong fields. Again, we emphasize that the
critical field defining the upper limit of the perturbative regime
is strongly dependent on barrier height, as evidenced by Fig. 5.

We can now make a direct comparison between perturba-
tive and nonperturbative Stark shifts for a number of illus-
trative cases. To this end, we supplement the second-order
perturbation series En ≈ E (0)

n − 1
2αnE2 with the fourth-order

results En ≈ E (0)
n − 1

2αnE2 − 1
4βnE4 based on hyperpolariz-

abilities βn derived in the Appendix. We obviously expect
the more accurate fourth-order series to extend the range
of the perturbative regime. As will be demonstrated below,
though, the fourth-order approximation is vastly more inaccu-
rate than second-order results in the nonperturbative regime.
In Fig. 6, perturbative and exact Stark-shifted energies are
compared for cases ranging from the barrierless one to very
high barriers, V = 200. For vanishing and low barriers, the
hyperpolarizability correction clearly improves the agreement
in the vicinity of the first critical field. For slightly larger
fields, however, the correction is strongly overestimated and,
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FIG. 5. Electric field dependence of the induced dipole moment
(a) and energy (b) for ground (red lines) and first excited (green lines)
states. In (a,b), various barrier heights are indicated by line type.
The vertical blue lines in (a) indicate first E (1)

c = 8π 2/V and second
E (2)

c = 12π 2 critical fields.

in fact, the second-order series is more accurate. For V = 200,
both perturbative series are completely inadequate for E > 2.

It is interesting to apply the recently developed hyperge-
ometric resummation technique [33–35] to the present case
in order to find energy expressions valid for arbitrary fields,
as demonstrated for TMD excitons [34] and quantum dots
[36], as well as low- and three-dimensional hydrogen [33,35].
This approach requires access to at least four terms in the
low- and/or high-field perturbative series. Here, we will try
to construct a hypergeometric fit to the field dependence of
the ground-state energy in order to circumvent the inher-
ent limitations of the simple perturbative series. In brief,
in its simplest form [33], one writes the field-dependent
energy as the ansatz EH (E ) = E (0)

n × 2F1(h1, h2, h3,−h4E2).
This expression is guaranteed to agree with the unper-
turbed result since 2F1(h1, h2, h3, 0) = 1. Four constraints
are required to uniquely determine the coefficients h1 · · · h4.
Here, we demand that the low-field Taylor expansion of EH

agree with the fourth-order perturbative series En ≈ E (0)
n +

E2E (2)
n + E4E (4)

n . Moreover, for fields approaching E (1)
c , the

ground state varies roughly as E1 ≈ − 1
4E . Thus, we require

that the high-field expansion of EH agree with this. The
linear field dependence in high fields means that h1 = −1/2.
In addition, the low-field constraints are fulfilled provided
2h3E (2)

n = h2h4E (0)
n and −8h3(1 + h3)E (4)

n = h2(1 + h2)h2
4

E (0)
n . Finally, the requirement of a high-field slope of − 1

4 leads

FIG. 6. Comparison of exact (solid line) energies with second-
(dashed) and fourth- (dots) order perturbative expansions for ground
and first excited state for four different barriers V = 0, 2, 20, and
200. The circles show the hypergeometric fit and first critical fields
are shown as vertical blue lines.

to E (0)
n

√
h4�(h2 + 1

2 )�(h3) = − 1
4�(h2)�(h3 + 1

2 ). Isolating,
one readily derives a single equation for h2, which must sub-
sequently be solved numerically. The assumption of infinite
outer confinement means that field-assisted tunneling out of
the structure is impossible. Consequently, the coefficient h4

must be positive [33,36]. Finite barriers, on the other hand,
allow for tunneling [34,37] and this is captured by a negative
h4 in the hypergeometric ansatz [33].

We have applied the hypergeometric ansatz to the ground
state for various barrier heights. The resulting fits are shown
as the circles in Fig. 6. Clearly, the ansatz is an excellent
approximation in weak and moderate fields. It outperforms
both second- and fourth-order perturbation series and remains
highly accurate even in fields larger than the first critical one
E (1)

c . Only in high-barrier cases and for fields E � E (1)
c is

it noted that the ansatz lies slightly above the numerically
exact results. Thus, we conclude that, similarly to the case of
quantum dots [36], the hypergeometric resummation approach
incorporating both low- and high-field information is an accu-
rate tool for compact estimates of the Stark shift in coupled
quantum wells.

V. DISCUSSION

To convert the universal results of this paper to specific
predictions for actual electronic structures, we now aim to
obtain conversion factors for two prototypical double quantum
well structures: GaAs/AlxGa1−xAs heterostructures and
MoS2 bilayers. In the former case, GaAs wells are separated
by AlxGa1−xAs (x ≈ 0.3) barriers with conduction and
valence band offsets V (c)

0 ≈ 0.243 eV and V (v)
0 ≈ 0.131 eV,

respectively, assuming a 65:35 ratio between offsets [38].
When constants are reinstated, the dimensionless barrier V is
given by V = V0meffab/h̄2 and the first critical field expressed
in physical units is E (1)

c ≈ 8π2h̄2/(emeff a3V ). For conduction
electrons in GaAs, the effective mass is me ≈ 0.067m0

while for heavy holes we take mhh ≈ 0.66m0 with m0 the
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TABLE I. Normalized barriers V, polarizabilities α1, and hyperpolarizabilities β1, as well as critical fields E (1,2)
c for the ground state in

different coupled quantum well systems. The last column is an estimate of the maximum perturbative Stark shift.

Structure V
α1

[eV(nm/V)2]
β1

[eV(nm/V)4]
E (1)

c

(V/μm)
E (2)

c

(V/μm)

1
2 α1(E (1)

c )2

(meV)

GaAs QW (electron) 2.6 76 −40 × 103 31 120 37
a = 103.5 Å, b = 11.5 Å

GaAs QW (electron) 10 3.0 × 103 −590 × 106 0.98 15 1.5
a = 207 Å, b = 23 Å

GaAs QW (heavy hole) 14 2.4 × 103 −1.1 × 109 0.60 12 0.43
a = 103.5 Å, b = 11.5 Å

GaAs QW (heavy hole) 54 140 × 103 −54 × 1012 0.019 1.5 0.025
a = 207 Å, b = 23 Å

MoS2 bilayer (electron) 14 0.23 −0.14 540 11 × 103 34
a = 9.2 Å, b = 3.1 Å

free-electron mass [38]. To compare with experiments,
we will consider the geometry used in Ref. [10] and take
a = 103.5 Å and b = 11.5 Å for the GaAs/AlxGa1−xAs case.
In addition, for comparison, a structure with a and b doubled
will be studied.

For TMDs, the bilayer dimensions can be estimated from
the bulk geometry. Such bulk TMDs may be viewed as ma-
terial layers separated by vacuum slabs forming the barriers.
In the usual AA′ stacked 2H form, the c-axis lattice con-
stant (perpendicular to the layers) corresponds to a unit cell
containing two monolayers as every second layer is rotated
180°. This unit cell therefore consists of two material slabs
and two vacuum slabs. Assuming identical thicknesses of
material and vacuum slabs, each of these may be taken as
c/4. The bilayer considered in the present work is formed by
two material layers separated by a single vacuum slab. Hence,
for MoS2 with c ∼ 12.29 Å [39], the full width a and barrier
width b can be estimated as 3/4 and 1/4 times c, respectively.
Thus, we find roughly a = 9.2 Å and b = 3.1 Å. It may be
noted that a model describing van der Waals heterostructures
as homogeneous material slabs separated by vacuum regions
has recently successfully explained exciton binding energies
in such geometries [40]. For MoS2 and other TMDs, the
barrier for conduction band electrons can be estimated as the
vacuum level relative to the conduction band minimum, i.e.,
the electron affinity V0 ≈ 3.8 eV [41]. In addition, for motion
of electrons or holes perpendicular to the layers in atomically
thin TMDs it seems appropriate to use meff ≈ m0. This is in
contrast to the in-plane motion within TMD slabs, in which
electrons see a fully periodic potential. Hence, for in-plane
motion, the effective mass in TMDs is substantially reduced
compared to the free-electron value (typically meff, in-plane ∼
0.5m0 [41]). For out-of-plane motion in a few-layer geometry,
the mass correction is much smaller. For instance, in Ref. [42],
an ab initio calculation of valence band quantum well states in
few-layer WSe2 could be accurately fitted to an infinite-barrier
effective mass model using meff, out-of-plane = 1.08m0.

In Table I, results are compiled for narrow and wide GaAs
quantum wells as well as MoS2 bilayers as representative of
TMD structures in general. We provide numerical values for
polarizabilities and hyperpolarizabilities as well as first and
second critical fields. Furthermore, the maximal Stark shift in

the perturbative regime estimated as 1
2α1(E (1)

c )2 is evaluated.
When increasing the GaAs quantum well dimension from
∼100 to 200 Å, the normalized barrier increases by a factor
of 4. This simply reflects the fact that the characteristic
quantization energy h̄2/(meffa2) decreases quadratically with
dimension. Interestingly, the barrier for TMDs V ≈ 14 is of
comparable magnitude to the GaAs barriers. However, when
(hyper) polarizabilities are compared, extremely significant
differences become apparent. Hence, the ground-state elec-
tron polarizabilities of 100 and 200 Å GaAs quantum wells
exceed that of MoS2 bilayers by roughly two and four orders
of magnitude, respectively. The corresponding figures for
GaAs heavy holes are four and five orders of magnitude. This
trend is even more dramatic for β1, in that the wide GaAs
quantum well values for electrons and holes are some nine
and 14 orders of magnitude larger, respectively, than the result
for MoS2 bilayers. These dramatic figures, however, are coun-
tered by closely matching opposite trends in critical fields.
Thus, the upper critical field for the perturbative regime E (1)

c

is only 0.98 V/μm for electrons in a 200-Å GaAs quantum
well while for heavy holes it is as low as 0.019 V/μm. This
should be contrasted with the MoS2 bilayer value, which is
a substantial E (1)

c ≈ 540 V/μm. The second critical field E (2)
c

follows a similar trend. It may be argued that an appropriate
figure of merit is given by the maximum perturbative Stark
shift 1

2α1(E (1)
c )2. In terms of this measure, the results of Table I

show that the heavy-hole response in GaAs structures has the
lowest figures, viz., ∼0.43 meV (100 Å) and ∼0.025 meV
(200 Å), while the electron responses in TMD bilayers and
100-Å GaAs structures are characterized by similar values,
1
2α1(E (1)

c )2 ≈ 30 − 40 meV.
Comparing the present calculations to experiments is com-

plicated by the fact that measurements typically rely on optical
absorption or emission, which probes transitions between
conduction and valence bands. In addition, excitonic effects
may affect the interpretation. If, however, excitonic effects
are ignored, the total Stark shift observed is simply the sum
of electron and hole shifts [31]. For GaAs, this means that
the measured Stark shift in the perturbative regime for an
electron–heavy hole transition is completely dominated by
the hole contribution due to the different effective masses
and the scaling αn ∝ meff . Inspecting Fig. 3(a) in Ref. [10],

155410-6



GIANT STARK EFFECT IN COUPLED QUANTUM WELLS: … PHYSICAL REVIEW B 100, 155410 (2019)

the Stark shift for the lowest nonzero reported field strength
∼2.2 × 104 V/cm = 2.2 V/μm can be estimated as �E ∼
−5 meV. Converting, this means a polarizability of 2.1 ×
103 eV(nm/V)2 in excellent agreement with the computed
heavy-hole polarizability in Table I for the ∼100-Å GaAs
double quantum well. However, since no measurements for
smaller field strengths are reported in Ref. [10], it is difficult
to judge whether a field of 2.2 V/μm is, indeed, in the
perturbative (quadratic) regime. From the critical fields in
Table I, this appears to be the case for the electron contribution
whereas heavy holes have probably entered the nonperturba-
tive regime. Certainly, for larger fields, a quasilinear Stark
shift regime is reached in the measurements [10]. The linear
regime is very clearly observed in the experiments reported
in Ref. [14] employing a rather wide barrier (a = 125 Å, b =
45 Å), for which V ≈ 64. This geometry would correspond to
a heavy-hole critical field of E (1)

c ≈ 0.072 V/μm that is well
below the smallest reported field, 3.2 kV/cm = 0.32 V/μm,
in those experiments [14].

The reported experimental TMD data are in similarly good
agreement with the present theory. Hence, in Ref. [23], Klein
et al. report MoS2 bilayer polarizabilities of 1

2α ≈ 0.4 ×
10−8 mD/V equivalent to α ≈ 0.17 eV(nm/V)2 in good
agreement with the predicted 0.23 eV(nm/V)2. It should be
remembered, however, that the measured value is the com-
bined effect of electron and hole Stark shifts, while the value
in Table I is for electrons, with a similar value expected
for holes. For bilayer MoS2, the nonperturbative regime has
been probed by Chu et al. [22]. An approximately linear field
dependence is found for the Stark shift observed in both trans-
port and photoluminescence data. A slope of ∼2 × (260 −
275) meV(nm/V) is reported, in which the prefactor of 2
corresponds to the estimated out-of-plane dielectric constant
[22]. For the E (1)

c < E < E (2)
c regime, the present work predicts

a fixed electron-hole dipole ∼a/4 + a/4 yielding a Stark-shift
slope of a/2 = 460 meV(nm/V). Thus, again satisfactory
agreement with experiments is noted, in particular, given the
uncertainty in the experimental field estimate.

To interpret the main findings and explain the limits of the
perturbative regime we approximate k1 ≈ 2π as is appropriate
for V � 10; cf. Fig. 2. We then have α1 ≈ V/(8π )2 =
1/(8E (1)

c ). Thus, we reach the important conclusion that
polarizabilities and critical fields are clearly inversely related.
The physical explanation for this observation is simple:
Raising V means that E (0)

2 − E (0)
1 decreases, which clearly

increases α1 but, at the same time, puts a severe restriction on
the field Ea < E (0)

2 − E (0)
1 allowed in the perturbative regime.

Accordingly, despite appearances, the proposed figure of
merit 1

2α1(E (1)
c )2 ≈ E (1)

c /16 really scales linearly with the
critical field. Importantly, the rationale for near-degenerate,
and thereby highly polarizable, states is problematic because
1
2α1(E (1)

c )2 ends up inversely proportional to the barrier V.
Thus, increasing V to ensure weak coupling between the
halves of the double well is a problematic strategy. It is
convenient to reinstate physical constants and we then find

1

2
α1

(
E (1)

c

)2 ≈ π2h̄4

2m2
effa

3bV0
. (7)

It is readily verified that this expression is in good agreement
with the exact results in Table I. The barrier dependence

has already been discussed but the resulting scaling of
Eq. (7) with effective mass and dimensions derives from an
interplay between polarizability α1 ∝ m2

effa
5b and critical

field E (1)
c ∝ m−2

eff a−4b−1. The upshot summarized by Eq. (7)
is that reducing dimensions a and b while maintaining
reasonably low effective masses and barriers should provide
good candidates for giant Stark-shift geometries. As a case in
point, the large maximal perturbative Stark shift 1

2α1(E (1)
c )2 =

34 meV in TMD bilayers demonstrates that these could be of
interest for electro-optic and nonlinear-optical applications.
As shown in Table I, a similar value is found for the electron
response in narrow GaAs quantum wells. However, in
applications based on transitions across the band gap, the
GaAs response will likely be limited by the heavy-hole
response that will reduce the available perturbative regime.

VI. SUMMARY

In this paper, the rationale for giant Stark effects in struc-
tures exhibiting near-degenerate states has been critically
examined. Using coupled one-dimensional quantum wells
as a test case, analytical perturbative and nonperturbative
Stark shifts have been obtained and compared. In particular,
analytical expressions for polarizabilities and first hyperpo-
larizabilities have been obtained for all states. The breakdown
of perturbation theory above a critical field strength has
been examined and a simple estimate for the critical field
has been found. Above the critical field, the observed Stark
shift is significantly smaller than the perturbation prediction.
The correct high-field behavior has been restored, however,
through a hypergeometric ansatz adjusted using both low-
and high-field information. Finally, numerical predictions for
GaAs double quantum wells and bilayer TMDs have been
made and successfully compared to measured Stark shifts.
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APPENDIX: FIRST HYPERPOLARIZABILITY

By carrying the Dalgarno-Lewis technique to second order,
we find the wave-function correction ϕ(2)

n . In practice, this en-
tails solving the inhomogeneous problem (H0 − E (0)

n )ϕ(2)
n +

xϕ(1)
n − E (2)

n ϕ(0)
n = 0. Although the result is rather lengthy,

this task is readily accomplished using symbolic mathematical
software. It is then a simple task to compute the fourth-order
energy using

E (4)
n = 〈

ϕ(2)
n

∣∣x∣∣ϕ(1)
n

〉 − E (2)
n

[〈
ϕ(2)

n

∣∣ϕ(0)
n

〉 + 〈
ϕ(1)

n

∣∣ϕ(1)
n

〉]
≡ − 1

4βn. (A1)

Starting from even-parity unperturbed states, the final result
is a relatively complicated combination of polynomials and
trigonometric factors,

βn = F (kn)

73 728k10
n (kn − sin kn)3sin3

(
1
2 kn

) , (A2)
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with

F (k) = 12k(7k8 − 46k6 + 12 420k4 − 121 120k2 − 158 400) sin
(

1
2 k

)
+ 4k(15k8 + 82k6 − 14 916k4 + 130 080k2 − 95 040) sin

(
3
2 k

)
− 24k(k8 + 5k6 − 258k4 + 1680k2 − 47 520) sin

(
5
2 k

)
+ 24k(k6 − 6k4 + 560k2 − 15 840) sin

(
7
2 k

)
+ 3(40k10 + 31k8 + 2152k6 − 34 400k4 + 506 880k2 + 126 720) cos

(
1
2 k

)
+ 3(8k10 − 49k8 − 2312k6 + 52 320k4 − 760 320k2 − 168 960) cos

(
3
2 k

)
+ k2(51k6 + 568k4 − 55 200k2 + 760 320) cos

(
5
2 k

)
+ (3k8 − 88k6 + 1440k4 + 190 080) cos

(
7
2 k

) − 63 360 cos
(

9
2 k

)
. (A3)

The odd-parity states, on the other hand, lead to a compact expression:

βn = 3V k6
n + (9V 3 + 45V 2 + 48V − 64)k4

n + 480(3V + 28)k2
n − 126 720

4608k10
n

. (A4)

In both even and odd cases, the barrierless limit V = 0 is the exceedingly simple result

βn = −k4
n + 210k2

n − 1980

72k10
n

. (A5)
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