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Importance of second-order deformation potentials in modeling of InAs/GaAs nanostructures
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Accurate modeling of electronic properties of nanostructures is a challenging theoretical problem. Methods
making use of continuous media approximation, such as k · p, sometimes struggle to reproduce results obtained
with more accurate atomistic approaches. On the contrary, atomistic schemes generally come with a substantially
larger cost of computation. Here, we bridge these two approaches by taking the eight-band k · p method
augmented with nonlinear strain terms fit to reproduce sp3d5s∗ tight-binding results. We illustrate this method in
the example of electron and hole states confined in quantum wells and quantum dots of photonics applications
relevant InAs/GaAs material system, and demonstrate a good agreement of a nonlinear k · p scheme with the
empirical tight-binding method. We discuss limits of our procedure as well as provide nonlinear eight-band k · p
parameter sets for InAs and GaAs. Finally, we propose a parametrization for effective term used to improve the
accuracy of the standard effective-mass method.
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I. INTRODUCTION

The realm of nanostructures is a very broad family of sys-
tems varying from colloidal nanocrystals [1], self-assembled
[2–5] and nanowire quantum dots [6,7] and quantum dashes
[8,9], nanowires [10,11], quantum wells, single dopants in
silicon [12,13], and more. One of the key points necessary
for the understanding of physical properties of nanostruc-
tures involves accurate and computationally efficient theoret-
ical studies of their electronic structure. Since calculations
for nanostructures may involve multimillion computational
boxes, nanostructures are usually beyond the reach of current
ab initio methods [14,15]. Therefore, various semiempirical
approaches are typically employed. Moreover, usually re-
searchers opt for one of two apparently opposite schemes. One
group of methods is based on the assumption of underlying
continuous media. This set involves in particular one-band
effective-mass approximation, as well as different flavors of
multiband (e.g., 4, 8, or 14) k · p method [16–20]. These
approaches combine very high-computational efficiency with
unambiguous parameter sets that can be obtained directly
from bulk properties. Moreover, the k · p approaches turned
out to be highly successful in understanding main spectral
[21–29] and spin-related [30–32] features for a broad group
of nanostructures.

There is however a second group of widely acknowledged,
so-called “atomistic” methods based on explicit accounting
for low, atomistic symmetry of nanostructures, which are de-
fined in calculations atom by atom. Notably, these [33] include
the empirical pseudopotential method [34–38] and the empiri-
cal tight-binding method [39–52]. Atomistic approaches often
provide more accurate results (such as, e.g., the magnitude of
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the bright exciton splitting [52–55]) and are methods of choice
when one deals with the effect of alloying [37,38,51,55–
58], low-shape symmetry and faceting [59–62], monolayer-
thin sizes [63] or sections of semiconductor [64–66], and
atomistically sharp interfaces [12,67,68]. Atomistic methods
are however usually much more computationally demanding
[46,69–71], with often complicated and nontrivial schemes for
semiempirical parameter fitting [46–48,72].

The properties of semiconductor nanostructures are
strongly modified by the presence of strain, which is inevitable
for a system composed of lattice mismatched materials. In
atomistic methods, strain is accounted for by displacements of
the atomic positions which alters the bond lengths and bond
angles. On the other hand, in continuous media approaches,
strain is represented by the macroscopic strain tensor field.
In a standard way, strain enters the k · p model via the well-
established Bir-Pikus Hamiltonian, containing strain-tensor
elements in linear order [73–75]. This approach accurately
describes the band structure, if strain is low or moderate.
To describe nonlinear effects (visible in DFT simulations
for InAs and GaAs materials [76]) which are relevant at
stronger strain, higher-order strain terms would be needed.
Despite the second-order scheme proposed [77] no reliable
parametrization is available.

In this work we aim to bridge these two seemingly ex-
cluding ways of calculations and improve k · p results con-
siderably by accounting for second-order strain effects. We
thus emphasize and study the importance of nonlinear strain
effects on the spectral properties of nanostructures. To this
end, we go beyond the standard Bir-Pikus Hamiltonian and
implement quadratic strain terms with the second-order de-
formation potentials [77]. By comparison to the sp3d5s∗ tight-
binding method, we find the relevant parametrization for InAs
and GaAs bulk materials. Then, using the eight-band k · p
Hamiltonian (supplemented by the second-order strain terms),
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we calculate the electron and hole energy levels in classes
of quantum well (QW) and quantum dot (QD) structures.
We show that single-particle energies are strongly affected
by nonlinear terms related to the biaxial strain. We also
demonstrate that, in the case of electrons in the QW and QD,
an excellent agreement between the eight-band k · p and the
sp3d5s∗ tight-binding model can be achieved if second-order
strain terms are taken into account. These findings are not
only important from the fundamental point of view, but also to
properly predict spectral characteristics of optoelectronic and
nanophotonic devices, especially InAs/GaAs QDs broadly
considered as efficient sources of single or entangled pho-
ton states also at the telecommunication spectral range of
1.3–1.55 μm.

The paper is organized as follows. In Sec. II, we describe
the models, calculate the band structure, and fit the mate-
rial parameters used in further simulations. In Sec. III, we
calculate the electron and hole states in the QW and the
QD structures. Finally, Sec. IV contains concluding remarks.
Furthermore, the derivation of strain Hamiltonian is presented
in the Appendix A.

II. BULK MATERIAL

The reference band structures for InAs and GaAs are
obtained within the sp3d5s∗ tight-binding model [39], where
we took the material parameters from Ref. [41]. To account for
the strain, we manipulate the atomic positions in the primitive
cell. The bond-length variations enter the Hamiltonian via the
orbital-dependent exponents rescaling the two-center integrals
(a generalization of the Harrison law) [41,78]. Interatomic
(hopping) matrix elements t are thus modified as

t = t0

(
d0

d

)η

,

where t0 (t) is the unstrained (strained) hopping matrix ele-
ment, d0 (d) is the unperturbed (perturbed) bond length, η

is the scaling matrix element whose magnitude is fitted to
reproduce bulk deformation potentials [41]. While the hydro-
static strain alters only the bond lengths, the uniaxial, biaxial,
and shear strain change the bond angles as well. Furthermore,
the uniaxial and biaxial strain lead to the significant energy
splitting in the atomic d shell. The dxy, dyz, and dzx orbital
on-site matrix elements are then given by [41]

Exy = Ed
{
1 + 2bd [εzz − (εxx + εyy)/2]

}
,

where Eyz, Ezx are given by cyclic permutations of indices; Ed

represents the unperturbed d-shell energy, bd is a material-
dependent parameter, and εi j are the strain tensor compo-
nents. We implemented the matrix elements using the form
described in Ref. [51], where the strain tensor components are
expressed in terms of the bond lengths and direction cosines.
We note here that strain related power dependence of hopping
matrix elements, as accounted by Harrison law, is inherently
nonlinear and may lead to nonlinear bulk bands evolution
under external strain, in particular for a larger strain as is
present in InGaAs nanostructures.

The second approach, which we utilize in the paper, is
the eight-band k · p model, where the Hamiltonian explic-
itly contains �6c, �8v, and �7v blocks corresponding to the

irreducible representations of the Td symmetry point group
[79,80]. According to the invariant expansion scheme [81],
the Hamiltonian can be expressed in terms of the matrices
representing crystal symmetry invariants. Then, the kinetic
part of the Hamiltonian is written [80]

Hk,6c6c = Eg + A′
ck2,

Hk,8v8v = − h̄2

2m0

{
γ ′

1k2 − 2γ ′
2

[(
J2

x − 1

3
J2

)
k2

x + c.p.

]

− 4γ ′
3[{Jx, Jy}{kx, ky} + c.p.]

}

− i
h̄2

m0
(κ ′[kx, ky]Jz + q′[kx, ky]J3

z + c.p.)

+ 2√
3

Ck
[{

Jx, J2
y − J2

z

}
kx + c.p.

]
,

Hk,7v7v = − �0 − h̄2k2

2m0
γ ′

1 − i
h̄2

m0
(κ ′[kx, ky]σz + c.p.),

Hk,6c8v =
√

3PT · k + i
√

3B+
8v(Tx{ky, kz} + c.p.)

+
√

3

2
B−

8v(Txx − Tyy)

(
2

3
k2

z − 1

3
k2

x − 1

3
k2

y

)

−
√

3

2
B−

8vTzz
(
k2

x − k2
y

)
,

Hk,6c7v = − 1√
3

[Pσ · k + iB7v(σx{ky, kz} + c.p.)],

Hk,8v7v = − h̄2

2m0

[−6γ ′
2(Uxxk2

x + c.p.)

− 12γ ′
3(Uxy{kx, ky} + c.p.)

]
− i

3h̄2

2m0
(κ ′Uz[kx, ky] + c.p.)

− i
√

3Ck (Uyzkx + c.p.),

where Eg is the energy gap, �0 describes the spin-orbit cou-
pling, P is a parameter proportional to the interband momen-
tum matrix element, m0 is the free-electron mass, A′

c accounts
for the remote band contributions to the electron effective
mass, γ ′

i are modified Luttinger parameters, κ ′ = − 1
3 (γ ′

1 −
2γ ′

2 − 3γ ′
3 + 2), q′ is an anisotropy parameter, B±

8v, B7v are
parameters related to the Dresselhaus spin-orbit coupling,
{A, B} = 1

2 (AB + BA), c.p. denotes cyclic permutations, σi

are the Pauli matrices, matrices Ji are related to the j =
3/2 representation of angular momentum, Ti are matrices
connecting the j = 1/2 representation to the j = 3/2, Ti j =
TiJj + TjJi, Ui = T †

i , and Ui j = T †
i j . The explicit definitions

of the matrices are given in Refs. [74,79,80].
Within the standard Bir-Pikus model, strain tensor ele-

ments enter the Hamiltonian in linear order [75,80]. At k = 0,
this is given by

H (1)
str,6c6c = a(1)

c Trε,

H (1)
str,6c8v = i

√
3C2(Txεyz + c.p.),
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FIG. 1. Band edges of InAs as a function of strain. In the case of linear strain approximation, we take the deformation potentials from
Ref. [82] (see Table I).

H (1)
str,6c7v = − i√

3
C2(σxεyz + c.p.),

H (1)
str,8v8v = a(1)

v Trε − b(1)
v

[(
J2

x − 1

3
J2

)
εxx + c.p.

]

− d (1)
v√
3

[2{Jx, Jy}εxy + c.p.],

H (1)
str,8v7v = −3b(1)

v (Uxxεxx + c.p.) −
√

3d (1)
v (2Uxyεxy + c.p.),

H (1)
str,7v7v = a(1)

v Trε,

where a(1)
c , a(1)

v , b(1)
v , and d (1)

v are the deformation potentials
[73,75]. The term proportional to the C2 parameter results
from the inversion asymmetry [74], and provides a mechanism
of spin-orbit coupling.

We go beyond the standard framework and include the
terms which are quadratic in strain tensor elements [77] and
correspond to the hydrostatic and biaxial strain, while second-
order terms with shear strain components are neglected. The
relevant part of the Hamiltonian in the invariant expansion is
then given by

H (2)
str,6c6c = a(2a)

c (εxx + εyy + εzz )2 + a(2b)
c (εxxεyy + c.p.),

H (2)
str,8v8v = a(2a)

v (εxx + εyy + εzz )2 + a(2b)
v (εxxεyy + c.p.)

− b(2a)
v

[(
J2

x − 1

3
J2

)
ε2

xx + c.p.

]

− b(2b)
v

[(
J2

x − 1

3
J2

)
εyyεzz + c.p.

]
,

H (2)
str,8v7v = −3b(2a)

v (Uxxε
2
xx + c.p.) − 3b(2b)

v

(
Uxxεyyεzz+ c.p.

)
,

H (2)
str,7v7v = a(2a)

v (εxx + εyy + εzz )2 + a(2b)
v (εxxεyy + c.p.),

where six additional deformation potentials are introduced. A
derivation scheme is presented in the Appendix A.

We calculated band edges of the InAs and GaAs bulk
materials using the tight-binding (TB) method. Then, the
deformation potentials of the eight-band k · p model are fitted
to the TB data (see Table I for values). Figure 1(a) presents
the results of band edges in InAs as a function of hydrostatic
strain. In this case, the effect of nonlinearity is weak, and

the H (1)
str already provides a good approximation. The results

for uniaxial and biaxial strain are shown in Figs. 1(b) and
1(c). For the biaxial strain we use the Poisson ratio εzz =
−(2C12/C11)ε‖, where C12 and C11 are the elastic constants.
The mismatch between the Bir-Pikus model and tight-binding
results becomes significant, however a good agreement can be
achieved if the second-order strain terms (H (2)

str ) are included.
In the case of hydrostatic and uni-/biaxial strain (repre-

sented by macroscopic tensor ε̂), the displacements of atoms
in the unit cell are well defined. On the other hand, if the
shear strain is taken into account, the situation becomes
more complicated. In such case, the atomic positions are also
affected by microscopic relative displacements between the
two crystal sublattices. The atomic positions (Ri) are then
given by [83–85]

Ri = (1 + ε̂)R0
i ± ζ

a

4
(εyz, εzx, εxy),

TABLE I. Deformation potentials (in eV), and parameters of the
valence force-field model, used in the calculations.

GaAs InAs

a(1)
c −6.79a (−7.17b) −4.78a (−5.08b)

a(1)
v 1.84a (1.16b) 1.24a (1.00b)

b(1)
v −1.85a (−2.0b) −1.77a (−1.8b)

d (1)
v −4.8b −3.6b

C2 2.5–5.5 (3.3) 6.0a

a(2a)
c −2.71a −3.40a

a(2b)
c 24.6a 18.1a

a(2a)
v −3.56a −1.56a

a(2b)
v 4.81a 1.07a

b(2a)
v −6.38a −5.95a

b(2b)
v −9.23a −6.64a

ã(2)
c −3.8a −3.2a

α (103 dyne ) 41.49c 35.18c

β (103 dyne ) 8.94c 5.49c

aValues fitted to the tight-binding band structure.
bValues taken from Ref. [82].
cValues taken from Ref. [21].
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TABLE II. Band structure parameters used in the calculations.
We show the values of reduced Luttinger parameters (where the
contribution from the �6c is substracted), which directly enter the
Hamiltonian [80].

GaAs InAs

Ev 0.0 eV 0.21 eVa

Eg 1.519 eVa 0.418 eVb

Ep 21.5 eVb 19.5 eVb

P calculated from P =
√

Eph̄2/(2m0 )

γ ′
1 2.26a 2.15b

γ ′
2 −0.299a −0.325b

γ ′
3 0.571a 0.542b

Ck −0.0034 eV Åc −0.0112 eV Åc

�0 0.341 eVa 0.38 eVb

aValues taken from Ref. [82].
bValues fitted to the tight-binding band structure.
cValues taken from Ref. [80].

where (R0
i ) is the initial (in unstrained crystal) position of

the ith atom, ζ is the Kleinmann parameter, a is the lattice
constant, and the sign ± depends on the sublattice (anion or
cation). In general, the value of Kleinman parameter depends
on hydrostatic and shear strain in the system [86]. Due to the
uncertainty related to ζ and the number of free parameters
(see the Appendix A), we skipped fitting of the second-order
shear strain terms. We approximate the value of Kleinman
parameter by a constant value with the formula [87]

ζ = α − β

α + β
,

where α, β are parameters of the Keating VFF model [21].
The comparison between the methods is given in Fig. 1(d).
As the fitting of C2 for GaAs requires high shear strain, its
value is not estimated satisfactorily (see Table I). Instead,
following Ref. [88] we take its value as 3.3 eV, which was
extracted from the experimental data of spin-relaxation time
[89]. Moreover we note that sp3d5s∗ parametrization by Jancu
[41] has limited accuracy for representing shear strains [90],
and as such may not be the best target for k · p fitting.

In the next step, we fit the band-structure parameters for
unstrained crystal (see Table II) for values]. While the TB
parametrization [41] for GaAs is in very good agreement with
Ref. [82], the comparison for InAs requires some rescaling of
the Luttinger parameters. Moreover, following Ref. [91], to
avoid spurious solutions in further calculations in nanostruc-
tures, we set A′

c = 1 and then rescale Ep.
In the case of the (single band) effective-mass model, the

most important second-order strain terms enter the Hamilto-
nian with a single effective parameter. If we neglect relatively
small nonlinearity of the hydrostatic strain, the effective mass
Hamiltonian for the electron can be written as

H̃eff =
∑

i

ki
h̄2

2m′ ki + Ec + ac(εxx + εyy + εzz )

+ ã(2)
c [(εxx − εyy)2 + (εyy − εzz )2 + (εzz − εxx )2],

where m′ is the electron effective mass, Ec is the conduction
band (cb) edge, ac is the standard cb deformation potential,
ã(2)

c is the effective parameter related to the strain in the second
order. The values of ã(2)

c for InAs and GaAs (where the fitting
procedure was optimized for the negative biaxial strain) are
given in Table I.

III. NANOSTRUCTURES

In this section, we utilize the models described previously
for the calculations of carrier states in QWs and QDs. We
find the strain distribution in the system within the standard
Keating VFF model [21]. The elastic energy is given by

U = 3

16

∑
i

NN(i)∑
j

Ai j
(
r2

i j − d2
i j

)2

+ 3

8

∑
i

NN(i)∑
j

NN(i)∑
k> j

Bi jk (ri jrik − di jdik cos θ0)2,

where NN(i) denotes nearest neighbors of the ith atom, ri j =
ri − r j and di j are actual and idealized (unrelaxed) distances
between the ith and jth atom, Ai j = αi j/d2

i j with bond-
stretching constant αi j , Bi jk = (βi j + βik )/(2di jdik ); here βi j

is a constant which represents bond bending. We use the
PETSC TAO [92] library to minimize the elastic energy of the
system via relaxation of the atomic positions. The strain tensor
elements are obtained from the direction cosines and the bond
lengths, in a way described in Ref. [51]. We find the electron
and hole states within multimillion atom simulations using
the sp3d5s∗ tight-binding model [39,41,51]. The passivation
of dangling bonds at the limit of computational domain has
been performed following Ref. [93].

For the eight-band k · p simulations, we move from the
atomic lattice to the Cartesian grid by taking hx = hy = aGaAs,
hz = aGaAs/2 mesh size, and averaging the strain and compo-
sition over the two cations in each mesh cell. To calculate elec-
tron and hole states in a nanostructure within the eight-band
k · p model, we perform the standard substitution ki = −ih̄ ∂

∂xi

in the bulk Hamiltonian. Since all of the material parameters
are position dependent, ki does not commute with them and
the operator ordering becomes important. The details of the
implementation are described in the Appendix of Ref. [31].

A. Quantum wells

In the previous section, we found that the nonlinear, eight-
band k · p model is capable to reproduce accurately bulk
band edge evolution under strain, as given by the atomistic
tight-binding model. In the following, we will verify how
both methods compare for nanostructures, where the quantum
confinement plays a significant role. We start by calculating
the ground-state energy of the electron [Fig. 2(a)] and hole
[Fig. 2(b)], in a quasi-two-dimensional system, namely the
InAs quantum well embedded in bulk GaAs. We study elec-
tron and hole ground-state energies as a function of quantum
well width changing from 5a to 25a, where a is the lattice
constant. This corresponds to quantum well thickness from
approximately 3 to 15 nm. The computational domain size
for the strain calculation is taken 220a × 220a × 220a, while
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FIG. 2. Energy of the electron (a) and the hole (b) ground
state, as a function of the QW width. Energy E = 0 corresponds
to the (unstrained) GaAs valence-band edge. For the linear strain
approximation we took the deformation potentials from Ref. [82]
(see Table I).

the single-particle states are calculated in a 80a × 80a × 60a
box [69]. Figure 2 shows results obtained by the tight-binding
calculation, the standard Bir-Pikus model, and the Bir-Pikus
model with nonlinear terms. Apparently (and similarly to the
strained bulk results) the linear Bir-Pikus model significantly
overestimates the single-particle electron energy and as well
it underestimates the ground hole state energy (please note the
reversed ordering of hole states as compared to the electron).
This is however expected since the quantum well is under
high biaxial strain (the lattice mismatch between GaAs and
InAs is about 7%), which according to Fig. 1(c) has strongly
nonlinear character and is not well reproduced by the linear
k · p approach already at the bulk level. In particular, in the
case of linear k · p the electron ground-state energy e1 is
overestimated by approximately 100 meV with respect to the
tight-binding approach. Additionally, approximately 30 meV
difference is also present in the energy of the hole ground state
h1. Overall, the linear k · p systematically overestimates the
single-particle energy gap e1 − h1 by approximately 130 meV.
On the other hand, we obtain an excellent agreement between
the eight-band k · p and the tight-binding method, if the terms
second order in strain are taken into account. For all consid-
ered quantum well thicknesses we obtain at most ≈10 meV
difference between both methods, with only some variations
due to different quantum well heights.

B. Quantum dots

1. Disk-shaped quantum dots

Next, we have calculated several lowest electron and hole
states for a series of disk-shaped InAs/GaAs quantum dots.
Here, we have assumed a fixed quantum dot basis diameter
equal to approximately 25 nm and systematically varied quan-
tum dot height from approximately 3 to 5.4 nm (5–9a). The
dot is placed on a lattice constant thick (≈0.6 nm) wetting
layer. Similarly to results for quantum wells, for disk-shaped
quantum dots, if the second-order strain terms are taken into
account, we obtain an excellent agreement for the electron
ground state [Fig. 3(a)]. Additionally, we study here the
energy difference [Fig. 3(c)] between the first excited electron

FIG. 3. Energy of the electron and hole states, as a function of
the QD height, where the base radius is fixed as a 21a. The width of
the wetting layer is a.

and the ground electron states (i.e., energy difference between
electron p and s shells, i.e., e2 − e1). This energy difference
increases with the quantum dot height, and the magnitude of
this spacing is also much better (within a few meV error)
reproduced by the augmented, nonlinear k · p approach as
compared to the straightforward linear k · p, with predictions
systematically smaller by approximately 10 meV.

In the case of the hole ground-state energy [Fig. 3(b)],
the relative discrepancies between the eight-band k · p and
tight-binding models become somewhat larger. This could be
expected since Jancu’s [41] tight-binding model is a 20-band,
atomistic model with d orbitals, and hole states in quan-
tum dots have complicated multiband character. However,
interestingly all three models predict quite similar energy
of the ground hole state (≈0.3 eV), with nonlinear results
only several meV closer to the tight-binding results for flat
(small height) quantum dots than those given by linear k · p.
Moreover, contrarily to a quantum well, the ground hole state
energy of a disk-shape quantum dot rather weakly depends on
quantum dot height. Actually, it even shows an opposite trend
with respect to the height, due to the strain distribution chang-
ing its character with an increasing quantum dot height [94].
Therefore, the size-dependent strain distribution in finite-
size quantum dots (rather than in a quasi-two-dimensional
quantum well) seems to play here a dominant role. Should
strain effects be artificially neglected (see Appendix B) the
ground hole state energy would simply increase with the dot’s
height due to reduced confinement. In fact, as shown in the
Appendix B, k · p and tight-binding results for disk-shaped
quantum dots with strain artificially neglected are quite simi-
lar, again demonstrating the key role of strain in the modeling
of quantum dots, and in particular the role of nonlinear strain
treatment in k · p.

To summarize, the single-particle gap (e1 − h1) in disk-
shaped InAs/GaAs quantum dots is systematically overesti-
mated by ≈100 meV by the linear k · p approach (mostly due
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FIG. 4. Energy of the electron and hole states, as a function of
the QD height, where the base radius is fixed as 20a. The width of
the wetting layer is a.

to large overestimation of e1), and only by ≈15 meV by the
nonlinear k · p method (mostly due to small underestimation
of h1).

The energy difference between the ground and the first
excited hole states (s and p shells spacing, i.e., h1 − h2 [95])
increases with the quantum dot height as in the case of the
electron [Fig. 3(d)], again with nonlinear k · p predictions
closer to the tight binding, than the linear approach results.
The second-order k · p overestimates the magnitude of this
spacing by ≈2 meV, whereas the linear k · p underestimates
this difference by ≈4 meV. Therefore, both for electron and
hole s-p shell spacings, the agreement between the nonlinear
k · p and the tight binding could be described as satisfactory
considering how inherently different (continuous media vs
atomistic) k · p and tight-binding models are.

2. Lens-shaped quantum dots

It is instructive to verify how nonlinear k · p performs for
other geometries, rather than flat quantum wells and disk-
shaped quantum dots. Therefore, Fig. 4 shows results obtained
for the lens-shaped quantum dot, with its height varying from
approximately 3 to ≈6.6 nm (5–11a), while keeping the base
diameter fixed to about 24 nm. Similarly to the previous case,
the lens-shaped quantum dot is placed on a lattice constant
thick (≈0.6 nm) wetting layer. Again, for the ground electron
state we obtain an excellent agreement [Fig. 4(a)] between the
nonlinear k · p and the tight binding.

Again, a very good agreement [Fig. 4(c)] is found for
p-s electron energy spacing (i.e., e2 − e1), with the nonlinear
method differing by at most 1 meV from the tight binding.
Notably, for the lens-shaped quantum dot (and differently
from the disk-shaped quantum dots) the electron p-s energy
difference is reduced with the quantum dot height.

Regarding the ground hole state [Fig. 4(b)], similarly to
the disk-shape quantum dots, both k · p variants underestimate
this energy by about 20–30 meV. Thus, the single-particle

band gap (e1 − h1) is overestimated by ≈70 meV by the linear
approach, and only by at most ≈30 meV by the nonlinear ap-
proach. Again, should the strain effect be artificially neglected
(see the Appendix B), the difference between the eight-band
k · p and the tight-binding predicted ground hole energies
would be within several meV.

A more notable difference between various methods is
observed for the s-p energy spacing of hole states (h2 − h1)
which is systematically overestimated (≈4 meV) by both k · p
approaches. The difference between atomistic and continuous
media approximation is thus somewhat larger for hole states
in lens-shaped quantum dots than in disk-shaped quantum
dots. This difference is present for both unstrained (see the
Appendix B) and strained quantum dots, yet strain further
increases its magnitude.

Part of this discrepancy is probably related to shear strains
which are more notable in lens-shaped quantum dots due
to their curved shape. Deformation potentials due to shear
strains are in fact reproduced with limited accuracy by Jancu’s
tight-binding parametrization [41,90]. Having said the above,
we should note that it is not our goal to claim that the
continuous media approximation (with complicated transfer
of strain from atomic lattice to regular grid) in all considered
cases is able reproduce the atomistic results.

IV. CONCLUSIONS

We have investigated the influence of strain nonlinear-
ity on the electron and hole energy levels in semiconduc-
tor nanostructures. We have used the Bir-Pikus Hamiltonian
extended by the terms which are quadratic in strain. We
have obtained the set of parameters for InAs and GaAs bulk
semiconductors by fitting to the results obtained from the
sp3d5s∗ tight-binding method. Next, we have provided the
ready-to-use parametrization for the effective term used to
improve the accuracy of the standard effective-mass method.
Then, we have calculated the electron and hole states for
quantum wells, and various quantum dot systems. We have
shown that, while the standard (linear in strain) eight-band
k · p model overestimates the electron and underestimates the
hole energy, a very good agreement to the tight-binding results
can be achieved if the terms second order in strain are taken
into account. This agreement is particularly good for electron
states confined in quantum wells and flat quantum dot sys-
tems. More discrepancies are found for hole states, especially
in curved, lens-shaped quantum dots. We are convinced these
differences originate from the different treatment of strains (in
particular shear strain) by k · p and tight binding, with further
research needed to track these divergences.
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APPENDIX A: SECOND-ORDER STRAIN HAMILTONIAN

According to the standard k · p model, the Hamiltonian can
be written as [80]

Hk = p2

2m0
+ h̄2k2

2m0
+ h̄

m0
k · p + V0(r)

+ h̄

4m2
0c2

(p + h̄k) · σ × (∇V0(r)),

where m0 is the free-electron mass, V0(r) describes the crystal
potential, c is the speed of light, and σ = (σx, σy, σz ) denotes
the vector of Pauli matrices.

Strain changes crystal lattice and lowers symmetry of the
system. In order to restore periodicity of the original Bravais
lattice, the Hamiltonian of the deformed crystal is written
in terms of the transformed coordinates r′ [73]. Then, the
Hamiltonian is represented in the basis of |μλ〉 (corresponding
to the band edge Bloch functions), where μ describes the
orbital part and λ denotes the spin [80]. At k = 0, the matrix
elements, expressed up to the second order in strain tensor
elements, take the form

〈σν|H ′
0|μλ〉 = Eνδνμδσλ +

∑
i j

Dνμ
i j εi jδσλ

+
∑
i jkl

F νμ

i jklεi jεklδσλ,

where Eν describes the unstrained band edges, Dνμ
i j and F νμ

i jkl
are first- and second-order deformation potentials respec-
tively.

With the group theory, one can predict the number of inde-
pendent tensor components (N0) for a given symmetry point
group. If tensor S connects A and B (e.g., Ai = ∑

j Si jB j),
and A, B belong to DA, DB representations respectively, the
number of independent S components is given by the number
of trivial representations in [73]

DS = DA × D∗
B.

Let us consider the tensor describing deformation potentials
(D̂) as S, a given block of the Hamiltonian as A, and the strain
tensor as B. The strain tensor ε̂ belongs to the representation
�5 ⊗ �5 = �1 ⊕ �3 ⊕ �4 ⊕ �5, and since it is symmetric, the
part related to �4 vanishes [73,84]. If we neglect the spin-
orbit coupling, the conduction band (cb) is related to the �1 ⊗
�1, and the valence band (vb) to the �5 ⊗ �5 representations.
Hence, in the case of the Dνμ

i j , the number of the independent
components is one for the cb, and three for the vb block. In
consequence, only four deformation potentials are needed: ac,
av, bv, and dv (we do not consider here the block connecting
cb with vb).

In the case of strain quadratic terms, the product ε̂ ⊗ ε̂ be-
longs to (�5 ⊗ �5) ⊗ (�5 ⊗ �5) = 3�1 ⊕ 3�3 ⊕ 3�5, which
leads to three independent terms in the cb block (a(2a)

c ,
a(2b)

c , a(2c)
c ) and nine components in the vb block (which we

denote as a(2a)
v , a(2b)

v , a(2c)
v , b(2a)

v , b(2b)
v , b(2c)

v , d (2a)
v , d (2b)

v , d (2c)
v ).

Although in presence of the spin-orbit interaction, the Hamil-

tonian blocks are described in terms of the double group
representations, in our approach it does not change the number
of independent components of considered tensors.

We write the Hamiltonian using the invariant expansion
method [81]. We note that strain tensor elements transform
like symmetrized products {ki, k j}. Then,we utilize the list of
irreducible tensor components for the point group Td , given
(up to the fourth order in k) in Appendix C of Ref. [80]. This
leads to the form

H (2)
str,6c6c = a(2a)

c (εxx + εyy + εzz )2 + a(2b)
c (εxxεyy + c.p.)

+ a(2c)
c (ε2

xy + c.p.),

H (2)
str,8v8v = a(2a)

v (εxx + εyy + εzz )2 + a(2b)
v (εxxεyy + c.p.)

+ a(2c)
v (ε2

xy + c.p.)

− b(2a)
v

[(
J2

x − 1

3
J2

)
ε2

xx + c.p.

]

− b(2b)
v

[(
J2

x − 1

3
J2

)
εyyεzz + c.p.

]
,

− b(2c)
v

[(
J2

x − 1

3
J2

)
ε2

yz + c.p.

]
,

− 2√
3

d (2a)
v [{Jx, Jy}εxyεzz + c.p.],

− 2√
3

d (2b)
v [{Jx, Jy}εzxεyz + c.p.],

− 2√
3

d (2c)
v [{Jx, Jy}(εxx + εyy)εxy + c.p.],

H (2)
str,8v7v = −3b(2a)

v

(
Uxxε

2
xx + c.p.

) − 3b(2b)
v (Uxxεyyεzz + c.p.)

− 3b(2c)
v (Uxxε

2
yz + c.p.)

−
√

3d (2a)
v (2Uxyεxyεzz + c.p.)

−
√

3d (2b)
v (2Uxyεzxεyz + c.p.)

−
√

3d (2c)
v [2Uxy(εxx + εyy)εxy + c.p.],

H (2)
str,7v7v = a(2a)

v (εxx + εyy + εzz )2 + a(2b)
v (εxxεyy + c.p.)

+ a(2c)
v

(
ε2

xy + c.p.
)
.

We neglected quadratic strain in off-diagonal blocks between
the cb and valence bands (namely H (2)

str,6c8v and H (2)
str,6c7v).

Due to large number of free parameters and uncertainty in
the value of Kleinman parameter (ζ ), we skipped the fitting
of parameters describing the shear strain (a(2c)

c , a(2c)
v , b(2c)

v ,
d (2a)

v , d (2b)
v , and d (2c)

v ). We also neglected terms containing the
product of the wave vector and strain tensor elements.

APPENDIX B: QUANTUM DOTS WITH STRAIN
EFFECTS NEGLECTED

Here, for completeness, we show results obtained for disk-
shaped (Fig. 5) and lens-shaped (Fig. 6) quantum dots of
the same shapes, dimensions, and compositions as in the
main text, yet with strain effects artificially neglected (i.e.,
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FIG. 5. Energy of the electron and hole states, as a function of
the QD height, where the base radius is fixed as a 21a. The width of
the wetting layer is a.

assuming identical bond lengths of InAs and GaAs, as well
as perfect tetrahedral bond angles).

Both figures show the same trends of decreasing (in-
creasing) ground electron (hole) state energy with quantum
dot height, consistent with the quantum confinement effect.
For both geometries the agreement between k · p and the
tight-binding description of carriers ground-state energies is
very good. Somewhat smaller agreement is found for the
energy difference between the ground and the first excited
states. Here, the k · p results systematically overestimate the
magnitude of this splitting, with respect to the tight binding,

FIG. 6. Energy of the electron and hole states, as a function of
the QD height, where the base radius is fixed as a 20a. The width of
the wetting layer is a.

for both disk- and lens-shaped quantum dots, and both for the
electron and the hole.

In the unstrained case, the hole s-p shells spacing (h1 − h2

energy spacing) [Fig. 6(d)] is reduced with growing quantum
dot height for both disk- and lens-shaped systems. However,
interestingly, the electron s-p spacing either increases with
the quantum dot height for disk-shaped nanostructures or
shows a rather flat (and nonmonotonous) trend for lens-shaped
systems. In all considered cases, contrary to a situation where
the strain is accounted for, k · p and tight-binding results are
both qualitatively and quantitatively similar.
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