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Modal analysis for nanoplasmonics with nonlocal material properties
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Plasmonic devices with feature sizes of a few nanometers exhibit effects which can be described by the
nonlocal hydrodynamic Drude model. We demonstrate how to exploit contour integral methods for computing
eigenfrequencies and resonant states of such systems. We propose an approach for deriving the modal expansion
of relevant physical observables. We use the methods to perform a modal analysis for a metal nanowire. All
complex eigenfrequencies in a large frequency range and the corresponding resonant states are computed. We
identify those resonant states which are relevant for the extinction cross section of the nanowire.
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I. INTRODUCTION

Nanofabrication technologies allow for a rapid progress in
engineering nano-optical devices [1]. Plasmonic resonances
are the center of attention for many topical applications
exploring new regimes of physics. Examples comprise the
demonstration of plasmonic lasers [2], tailoring light emission
of nanoantennas [3,4], probing single molecules and nanopar-
ticles by Raman scattering [5], plasmonic photochemistry [6],
and quantum emitters interacting with metal nanoresonators
[7].

An adequate description of material dispersion plays an
important role for the investigation of light-matter interac-
tion in plasmonic structures [8]. In many cases, the material
dispersion can be described by the Drude-Lorentz model or
by a rational function fit to measured material data [9,10].
Such models are based on spatially local interactions between
the light and the free electron gas of the plasmonic scatterers
[11]. When the scatterers are at the size of a few nanometers,
nonlocal material models are required [12]. These models
lead to additional resonances of the electromagnetic field with
sub-nm wavelengths. Recently, surface plasmon resonance
blueshifts have been observed in metal nanoparticles [13,14]
which could be explained [15] using the nonlocal hydrody-
namic Drude model (HDM) [16]. This model assumes that the
motion of the electron gas behaves as a hydrodynamic flow
and allows for the investigation of nonlocal physical effects
[17–23].

For the study of physical phenomena in nanoplasmonic
systems, a deeper understanding of the effects based on the
HDM is required. A modal description is the most instruc-
tive approach [24,25]. In the case of local material models,
numerically computed resonant states of plasmonic systems
have been successfully used to derive modal expansions
[26–29]. However, in the case of the HDM, a coupled sys-
tem of equations has to be solved [30–33]. To the best of
our knowledge, for this system, the computations of eigen-
frequencies in a large frequency range with corresponding
resonant states and modal expansions have not yet been
reported.

In this work, we investigate plasmonic resonances based on
the HDM. We present a contour-integral-based framework for
a modal analysis. Typical physical observables are sesquilin-
ear forms which involve a complex conjugation of the solution
fields. We propose a general approach for the computation
of modal sesquilinear quantities. The framework is applied
to calculate the eigenfrequencies and corresponding resonant
states of a metal nanowire. Furthermore, the modal extinction
cross section of the nanowire illuminated by plane waves is
computed. This allows one to classify the resonant states of
the nanowire into states which couple to the light sources and
into states which have no contribution to the extinction cross
section.

This work is structured as follows. Section II introduces a
coupled system of equations describing the HDM and summa-
rizes numerical methods for modal analysis. In the subsection
Modal expansion of sesquilinear quantities, we extend the
framework of the Riesz projection expansion (RPE) [28] in
order to obtain modal expansions of physical observables,
such as the extinction cross section. Section III applies these
methods for an investigation of the resonances of a metal
nanowire. Section IV concludes the study.

II. PLASMONIC RESONANCES BASED ON THE
HYDRODYNAMIC DRUDE MODEL

The HDM is based on the interaction of a nonlocal polar-
ization current and its resulting electric field. In the frequency
domain and for nonmagnetic materials, this is described by
the coupled system of equations,

∇ × μ−1
0 ∇ × E(r, ω) − ω2εloc(r, ω)E(r, ω)

= iωJhd(r, ω) + iωJ(r, ω), (1)

β2∇(∇ · Jhd(r, ω)) + ω(ω + iγ )Jhd(r, ω)

= iωω2
pε0E(r, ω), (2)

for the electric field E(r, ω) and the nonlocal hydrody-
namic current density Jhd(r, ω), where J(r, ω) is a given
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FIG. 1. Schematics of a metal nanowire illuminated by a plane
wave of wavelength λ0. Electric field intensity sketched on a cut
through the nanowire. (a) Nearly constant electric field intensity in
case of the local Drude model. (b) Radially oscillating field pattern
in case of the nonlocal hydrodynamic Drude model.

impressed current density, ω is the frequency, εloc(r, ω) is
the permittivity resulting from the local material response,
ε0 is the vacuum permittivity, and μ0 is the vacuum per-
meability. The damping constant γ and the plasma fre-
quency ωp correspond to the local Drude model εd(ω) =
ε0(ε∞ − ω2

p/(ω2 + iγω)), where ε∞ is the relative permittiv-
ity at infinity. The factor β = √

3/5 vF relates to the Fermi
velocity vF [16].

The nonlocal material response is caused by Jhd(r, ω),
which affects the permittivity function for the free elec-
tron gas. If β → 0, then the coupled system simplifies to
Maxwell’s equations for the local Drude model. For an il-
lustration of the effect of the HDM, a nanowire excited by
a plane wave is sketched in Fig. 1. While, for the local Drude
model, the electric field intensity inside of the nanowire is
nearly constant, the electric field pattern is radially oscillating
considering the HDM [see Figs. 1(a) and 1(b), respectively].
The reader is referred to [31,32] for a detailed derivation
of Eqs. (1) and (2) including the applied assumptions and
approximations.

Physical scattering solutions E(r, ω0) and Jhd(r, ω0) of the
coupled system can be obtained for real frequencies ω0 ∈
R. The eigenfrequencies are defined as the complex reso-
nance poles ω̃k ∈ C of the analytical continuation of E(r, ω0)
and Jhd(r, ω0) into the complex plane yielding E(r, ω) and
Jhd(r, ω), where ω ∈ C [28]. The resonant states, also called
eigenmodes, of the coupled system correspond to these eigen-
frequencies.

A. Numerical methods for modal analysis

The contour integral method BEYN’S ALGORITHM [34] is
applied to numerically solve the nonlinear eigenproblem [35]
corresponding to the coupled system given by Eqs. (1) and
(2). Contour integral methods for such problems require the

definition of an integration path in the complex frequency
plane which encloses the eigenfrequencies corresponding to
the eigenmodes of interest. The numerical integration along
this contour projects vector fields onto the space spanned by
these eigenmodes. In this way, an approximate eigenspace is
constructed. Then, e.g., the methods proposed in [34,36] apply
a singular-value decomposition (SVD) to this approximate
eigenspace and solve a linear eigenproblem of small dimen-
sion. The approach presented in [37] applies the Rayleigh-Ritz
method to the approximate eigenspace and solves a nonlinear
eigenproblem of small dimension. The common property of
these methods is that they essentially require the solution of
scattering problems for the integration points on the chosen
contour. This is in contrast to standard approaches for solving
nonlinear eigenproblems, such as the Arnoldi method, which
are based on linearization of the nonprojected problems using
auxiliary fields [38,39].

For the modal expansion of scattering problems, an un-
conjugated scalar product can be used [29]. In this context,
it is an open problem how to deal with the expansion of
nonholomorphic quantities, e.g., the extinction cross section.
The contour-integral-based RPE [28] allows one to perform a
modal expansion without a scalar product. A solution E(r, ω0)
to the coupled system given by Eqs. (1) and (2) can be
expanded into a weighted sum of eigenmodes yielding the
coupling of the modes to specific sources J(r, ω0) with ω0 ∈
R. Cauchy’s integral formula,

E(r, ω0) = 1

2π i

∮
C0

E(r, ω)

ω − ω0
dω,

is exploited, where E(r, ω), ω ∈ C, is the analytical continu-
ation of E(r, ω0) into the complex plane and C0 is a closed
integration path around ω0 so that E(r, ω) is holomorphic
inside of C0. Deforming the integration path and applying
Cauchy’s residue theorem yield

E(r, ω0) = − 1

2π i

∮
C̃1

E(r, ω)

ω − ω0
dω − . . . − 1

2π i

∮
C̃K

E(r, ω)

ω − ω0
dω

+ 1

2π i

∮
Cnr

E(r, ω)

ω − ω0
dω,

where C̃1, . . . , C̃K are contours around the eigenfrequencies
ω̃1, . . . , ω̃K and Cnr is a contour including ω0, the eigenfre-
quencies ω̃1, . . . , ω̃K , and no additional eigenfrequencies. The
Riesz projections,

Ẽk (r, ω0) = − 1

2π i

∮
C̃k

E(r, ω)

ω − ω0
dω,

corresponding to ω̃k describe the coupling of the eigenmodes
to the considered source field. The field,

Enr(r, ω0) = 1

2π i

∮
Cnr

E(r, ω)

ω − ω0
dω,

contains nonresonant components as well as components cor-
responding to eigenfrequencies outside of the contour Cnr. For
this modal expansion approach, instead of projecting random
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vectors as for BEYN’S ALGORITHM, the numerical integration
is performed by solving the coupled system using physical
source fields at the integration points.

Equations (1) and (2) are spatially discretized with the
finite element method (FEM) [40,41]. The FEM solver JCM-
SUITE is used to solve scattering problems. Perfectly matched
layers (PMLs) are applied to realize outgoing radiation condi-
tions [42]. High order polynomial ansatz functions and mesh
refinements are used to reach a sufficient numerical accuracy
[43]. We write

T (ω)v = f (ω),

for the coupled system given by Eqs. (1) and (2), where
T (ω) ∈ Cn×n is the system matrix resulting from the FEM
discretization and v ∈ Cn is the vector corresponding to
E(r, ω) and Jhd(r, ω). The dimension n results from the
spatial mesh and from the degrees of the polynomial ansatz
functions of the FEM discretization. The right-hand side
f (ω) corresponds to the impressed current density J(r, ω)
and incoming source fields. In this notation, T (ω̃k )ṽk = 0
holds for an eigenfrequency ω̃k and an eigenmode ṽk . Solv-
ing T (ω)v = f (ω) with f (ω) �= 0 corresponds to solving a
scattering problem.

B. Modal expansion of sesquilinear quantities

Typical physical quantities are quadratic forms associated
with a sesquilinear map q(v, v∗) for solution fields v and their
complex conjugates v∗. Examples include the electromag-
netic absorption and the electromagnetic energy flux. For two
reasons, the construction of a meaningful modal expansion
of sesquilinear forms q(v, v∗) is not straightforward. First,
the missing orthogonality q(ṽk, ṽ

∗
l ) �= 0 yields cross terms

in the expansion. Secondly, the conjugation v∗(ω0) renders
q(v(ω0), v∗(ω0)) nonholomorphic and the evaluation of this
expression for complex eigenfrequencies ω̃k is problematic.

To derive a modal expansion of sesquilinear quantities with
well-defined expansion coefficients, we extend the framework
of the RPE. The method is based on an analytical continuation
of the sesquilinear form q(v(ω0), v∗(ω0)) from the real axis
ω0 ∈ R into the complex plane ω ∈ C. We remark that v∗(ω0)
is the solution to T ∗(ω0)v∗(ω0) = f ∗(ω0). The system matrix
T ∗(ω0) and the right-hand side f ∗(ω0) have analytical contin-
uations, which we denote by T ◦(ω) and f ◦(ω). Consequently,
the analytical continuation of v∗(ω0) reads as

v◦(ω) = T ◦(ω)−1 f ◦(ω). (3)

Finally, this gives the analytical continuation q(v(ω), v◦(ω))
into the complex plane and the modal expansion can be
computed.

Note that if a solution of the coupled system given by
Eqs. (1) and (2) has a pole in ω = ω̃k , then its complex
conjugate has a pole in ω = ω̃∗

k . Thus, q(v(ω), v◦(ω)) has
poles in ω̃k and also in ω̃∗

k . This has to be taken into account for
the RPE. The calculation of a modal quantity corresponding to
a specific ω̃k involves the summation of the Riesz projections
for ω̃k and ω̃∗

k .
As the derivation of v◦(ω) is given formally, we remark, for

a better physical understanding, that the complex conjugation
of the system matrix and the right-hand side corresponds to

solving the coupled system for ω = −ω0 with sign-inverted
radiation conditions.

III. RESONANCES OF A NANOWIRE

We consider a specific setup, a cylindrical metal nanowire
which has also been investigated in the literature, to study
HDM-based effects theoretically [17]. For typical nanoplas-
monic applications, a quantity of interest is the extinction
cross section. In the following, we first compute eigenfrequen-
cies and eigenmodes of the nanowire. Based on this, we then
investigate the extinction cross section in a modal sense, i.e.,
it is shown which of the eigenmodes scatter and absorb an
incoming source field and which of the modes do not interact
with the light source. When the nonlocal HDM is replaced by
a local Drude model, only a single resonance is observed in
the extinction cross section [17,22,31].

The investigated sodium nanowire of radius R = 2 nm, in-
finitely extended in the z direction [see Fig. 1(a)], is described
by ε∞ = 1, ωp = 8.65 × 1015 s−1, γ = 0.01 ωp, and εloc =
ε0ε∞. The Fermi velocity is given by vF = 1.07 × 106 ms−1.
The nanowire is surrounded by free space with refractive
index equal to one. The source field is a y polarized plane wave
with unit amplitude propagating in the x direction. For the
FEM discretization, a mesh containing about 2000 triangles
with edge lengths from about 0.05 to 1 nm is applied. The
polynomial degree of the finite elements is set to p = 3.

The frequency range 0.4 ωp < ω0 < 1.4 ωp is selected for
the modal analysis. To compute eigenmodes ṽk using BEYN’S

ALGORITHM, an integration contour around this range is de-
fined. The parameters for the algorithm are N = 160 inte-
gration points, l = 200 random vectors, and, for the rank
drop detection within the SVD, a tolerance of tolrank =
10−8 is chosen. The SVD and the solution of the resulting
small linear eigenproblem are performed within MATLAB. We
obtain 118 eigenfrequencies inside the integration contour.
The imaginary parts of these eigenfrequencies are Im(ω̃k ) =
−0.0050 ωp, except for ω̃1 = (0.7313 − 0.0054i)ωp. We note
that the eigenmodes corresponding to eigenfrequencies with
Im(ω̃k ) = −0.0050 ωp are localized in the nanowire material,
which is modeled with a constant damping γ . Other loss
channels are not significant for these modes. This results in
the very similar imaginary parts of the eigenfrequencies. To
numerically assess the quality of the approximations of the
eigenfrequencies and eigenmodes, we compute the residu-
als res(ω̃k ) = ||T (ω̃k )ṽk||2/||T (ω̃k )||F , where ||ṽk||2 = 1. The
residuals for eigenfrequencies within the integration contour
are smaller than 6 × 10−15. The residuals for computed eigen-
frequencies outside the integration contour increase with the
distance to the contour. The integration points, all computed
eigenfrequencies, and the residuals are shown in Fig. 2(a).
Plots of the electric field intensity of an exemplary selection of
eigenmodes corresponding to eigenfrequencies in frequency
ranges below and beyond the plasma frequency are shown
in Figs. 2(b) and 2(c), respectively. Note that these eigen-
frequencies are semisimple with an algebraic and geometric
multiplicity of two. The chosen indicies of the eigenfrequen-
cies and eigenmodes are increasing with increasing real parts
of the eigenfrequencies and are intended to guide the reader
through the figures.
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(a)

(b)

(c)

FIG. 2. Eigenfrequencies ω̃k and eigenmodes ṽk of the
nanowire. (a) Eigenfrequencies, integration points, and residuals
res(ω̃k ) = ||T (ω̃k )ṽk ||2/||T (ω̃k )||F , where ||ṽk ||2 = 1. Inside of
the integration contour, 118 eigenfrequencies are located (including
multiplicities). (b) Plots (a.u.) of the electric field intensity
of an exemplary selection of eigenmodes corresponding to
eigenfrequencies below the plasma frequency, ω̃1 = (0.7313 −
0.0054i)ωp, ω̃2=(0.7585−0.0050i)ωp, ω̃3=(0.7857−0.0050i)ωp,
ω̃4=(0.8138 − 0.0050i)ωp, ω̃5 = (0.8429 − 0.0050i)ωp, and
ω̃6 = (0.8729 − 0.0050i)ωp. (c) As above, for eigenfrequencies
beyond the plasma frequency, ω̃7 = (1.1341 − 0.0050i)ωp,
ω̃8=(1.1373−0.0050i)ωp, ω̃9=(1.1434−0.0050i)ωp, ω̃10=(1.1453
− 0.0050i)ωp, ω̃11 = (1.1651 − 0.0050i)ωp, and ω̃12 =
(1.1654 − 0.0050i)ωp. Color scale from zero (black) to one
(white).

(a) (b)

(c)

(d)

FIG. 3. Modal analysis of the extinction cross section σ (ω0)
of the nanowire. (a) σ (ω0) for the frequency range 1.12 ωp <

ω0 < 1.17 ωp. Modal extinction cross section σ̃10(ω0) correspond-
ing to the eigenfrequency ω̃10 = (1.1453 − 0.0050i)ωp and the
sum

∑12
k=7,k �=10 σ̃k (ω0) corresponding to the remaining eigenfre-

quencies in the frequency range. Total extinction cross sec-
tion σtot (ω0) for comparison. (b) Classification parameter nϕ (ω̃k )
for the eigenfrequencies ω̃k in the frequency range 0.4 ωp <

Re(ω̃k ) < 1.4 ωp. (c) Plots (a.u.) of the electric field inten-
sities of the eigenmodes with nϕ (ω̃k ) = 2. Color scale from
zero (black) to one (white). (d) Modal expansion of the ex-
tinction cross section

∑
M σ̃k (ω0), M = {k | nϕ (ω̃k ) = 2}, corre-

sponding to the six eigenfrequencies ω̃1 = (0.7313 − 0.0054i)ωp,
ω̃13 = (1.0301 − 0.0050i)ωp, ω̃14 = (1.0788 − 0.0050i)ωp, ω̃10 =
(1.1453 − 0.0050i)ωp, ω̃15 = (1.2267 − 0.0050i)ωp, and ω̃16 =
(1.3202 − 0.0050i)ωp. The total extinction cross section σtot (ω0) is
plotted as a reference solution.
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Based on the computed spectrum, we investigate the ex-
tinction cross section,

σ (ω0) = 1

Ppw

[∫
δ�

1

2
Re(E∗(r, ω0) × H(r, ω0))dS

+
∫

�nw

1

2
Re(E∗(r, ω0) · Jhd(r, ω0))dV

]
,

where the first term is the power flux across the boundary
of the entire computational domain, denoted by δ�, and the
second term is the energy loss in the domain where the
nanowire exists, denoted by �nw [31]. The incoming plane
wave with real frequencies ω0 is normalized so that the power
flux through the geometrical cross section of the nanowire
is Ppw = 4 × 10−9 W. To quantify the coupling of the light
source to specific eigenmodes, the RPE is applied. This re-
quires the holomporphic evaluation of sesquilinear quantities
from Eq. (3) and yields the modal extinction cross section
σ̃k (ω0) corresponding to an eigenfrequency ω̃k . The direct
solution of the coupled system given by Eqs. (1) and (2) yields
the total extinction cross section σtot (ω0).

First, we investigate the modal extinction cross section in
a small frequency range including ω̃7, . . . , ω̃12. Figure 3(a)
shows σ̃7(ω0), . . . , σ̃12(ω0), and σtot (ω0). The eigenmode ṽ10

has a significant contribution to σtot (ω0). The contributions of
the eigenmodes ṽ7, ṽ8, ṽ9, ṽ11, and ṽ12 are negligible.

Secondly, in order to understand why a specific eigenmode
couples to the incoming plane wave, a fast Fourier transform
of the electric field intensities of the eigenmodes on a circle
inside the nanowire is performed. This yields the number of
intensity maxima of the eigenmodes along the boundary of
the nanowire, which we denote by nϕ (ω̃k ). In this way, it is
possible to classify the eigenmodes. Figure 3(b) shows nϕ (ω̃k )
for the frequency range 0.4 ωp < Re(ω̃k ) < 1.4 ωp. The field
intensities of the six eigenmodes with nϕ (ω̃k ) = 2 are plotted
in Fig. 3(c). It can be seen that these modes are dipolelike.
Due to the relation of the radius of the nanowire and the
wavelength of the plane wave, R 	 λ0, the overlap integral of
source field and eigenmode field has a significant contribution
only for these modes.

Finally, the modal extinction cross sections σ̃k (ω0)
for the eigenfrequencies with nϕ (ω̃k ) = 2 are computed.
Figure 3(d) shows the sum of the modal extinction cross sec-
tions

∑
M σ̃k (ω0), M = {k | nϕ (ω̃k ) = 2}. For the investigated

scattering of a plane wave, the agreement of the expansion
with the total extinction cross section σtot (ω0) demonstrates
that the complex scattering behavior of the HDM-based

nanowire is governed by a few eigenmodes only. Note that
the total extinction cross section is in agreement with results
from the literature [17,31].

For illumination with different types of source fields, e.g.,
dipole sources, also the remaining eigenmodes of the rich
spectrum can be excited.

IV. CONCLUSIONS

We investigated the light-matter interaction in nanoplas-
monic systems described by the HDM. We presented a
contour-integral-based framework for modal analysis, which
enables the direct computation of the spectrum of nonlocal
material systems. We introduced an approach for the modal
expansion of sesquilinear quantities. This opens the possibil-
ity to investigate typical physical observables, e.g., the energy
flux, the energy absorption, and overlap integrals for extrac-
tion efficiencies. Due to the generality of this approach, we
expect that it will prove useful also in other fields of physics.
Resonant states and the modal extinction cross section of
a metal nanowire were calculated. While the spectrum of
this system consists of many eigenfrequencies, only a few
resonant states have a significant contribution to the extinction
cross section. These resonant states were identified and used
to expand the quantity of interest.

As demonstrated, nanoplasmonic systems on small length
scales exhibit a large number of additional resonant states
described by the HDM. A typical feature of these states is their
high local field energy concentration. With precisely defined
source fields, specific states can be excited. We expect that
this will allow for additional degrees of freedom in tailoring
light-matter interactions. A modal picture is a prerequisite
for the understanding and for the design of corresponding
nanoplasmonic devices.
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