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Low-temperature annihilation rate for quasilocalized excitons in monolayer MoS2
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The strong Coulomb forces in monolayer transition metal dichalcogenides ensure that optical excitation of
band electrons gives rise to Wannier-Mott excitonic states, each of which can be conceptualized as a composite
of a wave packet corresponding to center-of-mass motion and an orbital state corresponding to the motion of the
electron and hole about the center-of-mass. Here we show that at low temperature in monolayer MoS2, given
quasilocalized excitons and consequently a significant interexciton spacing, the excitons undergo dipole-dipole
interaction and annihilate one another in a manner analogous to Auger recombination. To design our model, we
assume that each exciton is localized in a region whose length is on the same scale as the excitonic diameter,
thus causing the exciton to behave in a fermionlike manner, while the distance between neighboring excitons
is much larger than the exciton diameter. We construct the orbital ladder operators for each exciton and apply
Fermi’s golden rule to derive the overall recombination rate as a function of exciton density.
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I. INTRODUCTION

Recent advances in nanophotonic signal processing have
focused increasing attention on novel materials that could
provide strong and/or novel nonlinear optical properties
in near-planar structures [1–7]. Monolayer transition-metal
dichalcogenides (TMDs) are of particular interest in this
regard because of their direct band gaps [8–13] and substantial
optical nonlinearity relative to conventional bulk materials
[14–18]. The primary nonlinear susceptibilities of monolayer
TMDs are excitonic in nature, including Kerr-type nonlin-
earity associated with multiphoton transitions among exciton
internal states [18] and saturable absorption-type nonlinearity
associated with exciton-exciton interactions at high density.
Here we present a theoretical study connected to the latter
effect, which can in principle provide a basis for optical
bistability and thus all-optical switching [19].

Electron-hole binding energies in monolayer TMDs range
from 0.3 to 1 eV [20–24], resulting in the formation of
Wannier-Mott excitons in such materials. One important topic
of research involves the calculation of the excitonic decay
rates through various channels, which play an essential role
in determining the dynamic optical response of a mono-
layer TMD near the exciton resonance. To this end, recent
theoretical and phenomenological studies have derived the
radiative loss rate for excitons in MoS2 [18,25] and for other
TMDs [26,27], as well as for other low-dimensional systems
such as plasmons in graphene nanoribbons [28]. In addition,
the nonradiative decay rate due to exciton-phonon scattering
has been numerically and phenomenologically derived as a
function of temperature for WS2 and MoSe2 [27].
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At sufficiently low temperatures in high quality crystals,
the nonradiative decay consisting of exciton-phonon inter-
actions is minimal (due to lack of significant phonon pop-
ulation) compared to the exciton-exciton interaction. This
interaction can potentially take the form of either annihilation
(via a process analogous to Auger recombination, in which
Coulomb interaction between neighboring excitons causes
one to be annihilated and the other to be excited) or scat-
tering (direct or exchange). Given two bright ground-state
excitons spaced significantly apart, only the recombination
process will occur (the reasoning for this will be discussed
later). Intuitively, the rate of this decay process should vary
with the excitonic spatial density, which can be modulated
via the intensity of the incident electromagnetic field. On
the theoretical front, Auger recombination of excitons has
been previously analyzed in tightly confined one-dimensional
(1D) systems such as carbon nanotubes [29]. Experimentally,
recent measurements have demonstrated the presence of rapid
exciton-exciton annihilation in monolayer MoS2 [30], as well
as in other monolayer TMDs such as WSe2 [31] and MoSe2

[32]. Here we will analytically derive the corresponding rate
in monolayer MoS2 as a function of the exciton density, in
the quasilocalized regime. Although most recent experiments
with monolayer TMDs would seem to take place outside the
quasilocalized regime, we note that our results nonetheless
appear to be consistent with measured exciton annihilation
rates. We discuss interpretations of this apparent agreement
in the Discussion.

This paper is organized as follows: In Sec. II we derive
the exciton-exciton coupling energy as a function of the
relative electron to hole positions for a pair of excitons,
under the assumption that the spacing between neighboring
excitons is much greater than their diameters. This suppo-
sition is supported by the fact that for MoS2, the ground
state excitonic diameter is about 0.67 nm [18], whereas the
experimental data shows rapid Auger recombination even at a
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nearest-neighbor exciton spacing greater than 10 nm [30],
while measurements on MoSe2 (a TMD with properties simi-
lar to MoS2) demonstrate a saturation of the excitonic density
at a nearest-neighbor spacing of 4 nm [32]. In Sec. III we
calculate the matrix elements of the hole-to-electron vectors
in the basis of the respective ladders of orbital states and thus
obtain the exciton-exciton interaction Hamiltonian in terms of
the ladder operators for the two excitons. In Sec. IV we apply
Fermi’s golden rule to derive the annihilation rate as a function
of excitonic density. Finally, in Sec. V we evaluate these
expressions and discuss the results. Specifically, we focus on
the effect of the localization of the excitonic centers-of-mass
and the saturation density of excitons on the annihilation rate.

II. EXCITON-EXCITON INTERACTION ENERGY

We set up this problem by separately considering the cou-
pling of the electron and the hole, respectively, with another
exciton. As shown in Fig. 1, we apply the assumption that the
spacing between neighboring exciton centers is much larger
than the hole-electron distance for each exciton. Since the
hole-electron distance resembles the monolayer MoS2 film
thickness of 0.65 nm [33,34], the Rytova-Keldysh potential
energy at the range of the exciton-exciton spacing can be
considered to approximately equal the three-dimensional (3D)
Coulomb potential energy [35,36]. Labeling the constant fac-
tor in the Coulomb energy as C, the electron-exciton potential
energy is written in terms of spatial coordinates as follows:

Ve-ex = C

(
1

|re − re′ | − 1

|re − rh′ |
)

. (1)

The hole-exciton potential energy is similar, except with the
electron coordinate re replaced by hole coordinate rh and the
sign of the energy flipped since the hole carries a positive
charge:

Vh-ex = −C

(
1

|rh − re′ | − 1

|rh − rh′ |
)

. (2)

Since the spacing between electron and hole for each exciton
is minimal compared to the distance between the excitons, we
can use the well-known dipole-dipole approximation to deter-
mine the sum of the above two potential energies [37]. We
label the exciton-exciton vector as �r = rCM − rCM′ (where
rCM and rCM′ represent the center-of-mass positions of the
excitons) and the hole-to-electron vector for the unprimed
(primed) exciton as d = re − rh (d ′ = re′ − rh′ ). We find that
the interaction energy varies linearly with both d and d ′, as

FIG. 1. Diagram of the two interacting excitons. The green ar-
rows depict the Coulomb coupling between the two excitons that
generates the interaction energy, and the purple arrows depict the
hole-to-electron vectors for the excitons (d and d ′, respectively).
Note that the interexciton spacing is much greater than the size of
each exciton.

desired:

Vex-ex = − C

(�r)3

(
3�r · d
(�r)2

�r − d
)

· d ′. (3)

Labeling the ratio of electron mass to total mass as Ce =
me

me+mh
and the corresponding ratio for the hole as Ch = mh

me+mh

(where me and mh are positive constants denoting the electron
and hole masses, respectively), we note that rCM = Cere +
Chrh and rCM′ = Cere′ + Chrh′ .

It is worth analyzing �r, d, and d ′, since we will pro-
mote these variables to operator form later. In general, the
Hilbert space spanned by the plane wave states of the two
constituent charge carriers (electron and hole) of an exciton is
also spanned by a tensor Hilbert space of the center-of-mass
degree of freedom and the orbital degree of freedom. This is
mathematically demonstrated by the fact that we can express
the Schrödinger equation for a single exciton in both of these
position bases. The following is the Schrödinger equation in
the electron-hole position basis:

Hex = − h̄2

2me
∇2

e − h̄2

2mh
∇2

h + Vint(re − rh). (4)

Here ∇e and ∇h represent the spatial gradients with respect
to re and rh, respectively. The convenience of converting the
electron-hole basis to the basis consisting of the center-of-
mass position and the hole-to-electron vector derives from
the fact that the electron-hole electrostatic potential energy
Vint is specifically a function of the displacement between the
electron and hole positions while being otherwise invariant in
the individual positions themselves. In that second basis, the
Hamiltonian is therefore separable into a center-of-mass part
HCM and an orbital part Horb:

Hex = − h̄2

2M
∇2

CM − h̄2

2μ
∇2

orb + Vint(d )

= HCM + Horb. (5)

Here ∇CM and ∇orb denote the spatial gradients with respect
to rCM and d, respectively, and M and μ represent the total
electron-hole mass and reduced electron-hole mass, respec-
tively. Note that Vint is entirely included in the orbital part Horb,
thus ensuring the separability of the Hamiltonian.

Introducing interaction between excitons, we find that the
Schrödinger equation for an unprimed exciton and a primed
exciton interacting with each other takes the following form:

H = Hex + Hex′ + Hex-ex. (6)

Here Hex-ex denotes the perturbation to the total Hamiltonian
due to exciton-exciton interaction and is given by the interac-
tion energy from Eq. (3):

Hex-ex = Vex-ex(rCM − rCM′ , d, d ′). (7)

For the Auger process, the fact that we start with two bright
excitons from the lowest excitonic state (since both were
optically excited to that level) implies that we finish with a
higher-energy bright exciton. As a result, we only consider
cases for which the center-of-mass state is centered at zero
momentum. If the excitonic center-of-mass were fully delo-
calized, this would reduce the composite wave function to
only the orbital part, multiplied by the normalization factor
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FIG. 2. Visualization of the layout of the excitonic regions in
position space given partial filling. Each circle forms the boundary of
a localization region, which contains either 0 or 1 exciton. The area
of each region will be labeled as A, the density of regions as σr , and
the excitonic density as σ . Note that if σ < σr , then the occupation
probability for a given region is σ

σr
.

1/
√

Abeam, where Abeam represents the cross-sectional area of
the beam generating the excitons. In reality, defects will con-
strain the diffusion range [38,39], and quantum dots can also
be artificially synthesized in order to generate the same effect
(as will be discussed in Sec. V). We will solve the annihilation
rate specifically for the case in which each exciton is localized
to a unique region (the valid range of localization areas will be
analyzed in Sec. V).

Figure 2 depicts the layout of these regions. We will label
the effective area of each region as A, the density of the
localization regions as σr , and the actual excitonic density as
σ . The fact that each region contains either 0 or 1 exciton
implies that σ � σr and that the occupation probability for
any region is σ

σr
. For an exciton in the orbital state β localized

to a region centered at a generic position R′′, we will use
a stationary wave packet fR′′ centered at R′′ to model the
zero-point momentum excitonic center-of-mass, leading to the
following composite wave function:

�β,0(rCM, d ) = fR′′ (rCM)ψβ (d ). (8)

We will label the center of the wave packet for the unprimed
(primed) exciton as R (R′). The lack of overlap between
neighboring wave packets, as well as the separability of the
center-of-mass part and the orbital part, imply that the matrix
elements for �r, d, and d ′ can be determined by expanding
these variables in different Hilbert subspaces, i.e., the center-
of-mass position basis for the two excitons for �r, the orbital
states of the unprimed exciton for d, and the orbital states of
the primed exciton for d ′.

III. INTERACTION HAMILTONIAN MATRIX ELEMENTS

In deriving the matrix elements, we will restrict the range
of our summation to bright excitonic states centered at zero
center-of-mass momentum. It is worth explaining how such

a reduction is physically valid. Given two generic excitons,
there are three possible interaction processes that can occur:
annihilation (which preserves CM momentum), direct scat-
tering (which alters CM momentum), or exchange. Though
direct scattering has recently been theoretically analyzed [40],
it is forestalled if both of the excitons are initially bright
and in the ground states of their respective orbital ladders.
This is because the scattering process must lower the energy
of one exciton while increasing the energy of the other,
and since both excitons are at the minimum possible energy
level, neither can decrease in energy while still maintaining
coherence.

In addition, the large spacing between the excitons ensures
that the decay rate is unaffected by exchange. Single-particle
exchange (electron or hole) is hindered by the fact that the
ground-state orbital restricts the electron-hole separation to a
distance far closer than the separation between the localization
region centers. Similarly, two-particle (full-exciton) exchange
is hindered by the negligible overlap between the wave pack-
ets corresponding even to neighboring localization regions.

The only relevant exciton-exciton decay process is thus
Auger recombination, for which center-of-mass momentum
conservation requires that the nonannihilated exciton be ex-
cited to another bright state. Due to the large distance between
neighboring wave packet centers relative to the exciton size
and the lack of overlap between the wave packets, the �r
operator simplifies to the corresponding C number, i.e., the
displacement between the coordinate centers of the respective
excitons. Henceforth, we will use �R to label the constant
R − R′.

Next, we consider the expansion of the hole-to-electron
vectors d and d ′ in the basis of the ladder of orbitals for their
respective excitons. Knowing that each exciton is initially
in the ground state |ν〉 and summing over all possible final
bound states (|ν f 〉), unbound states (|φq〉), and the vacuum
state (| f s〉), d |ν〉 〈ν| takes the following form:

d |ν〉 〈ν|

=
( ∑

ν f

|ν f 〉 〈ν f | +
∑

q

|φq〉 〈φq| + | f s〉 〈 f s|
)

d |ν〉 〈ν|

= 〈 f s|d|ν〉 Bν +
∑
ν f

〈ν f |d|ν〉 B†
ν f

Bν

+
∑

q

〈φq|d|ν〉 D†
qBν . (9)

Here Bν ′′ denotes the annihilation operator corresponding to
the bound state |ν ′′〉, whereas Dq′′ represents the annihilation
operator for the unbound state |φq′′〉. We consider the first
matrix element in this expression, which couples the ground
excitonic state with the vacuum state, by decomposing the
excitonic state into the electronic band states of the lattice, per
the Keldysh formalism. Specifically, a bright excitonic state
|ν ′′〉 can be conceptualized as a superposition across wave
vectors k′′ of composite electron-hole states, with the elec-
tron deriving from the lowest conduction band and the hole
from the same wave vector at the highest valence band. The
wave vectors are weighted by the Fourier envelope function
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ψν ′′ (k′′), which has been previously derived for MoS2 [41]:

|ν ′′〉 = ∑
k′′ ψν ′′ (k′′) |c(k′′)v(k′′)〉 . (10)

Using this representation, we calculate the matrix element
representing the transition from the initial excitonic state |ν〉
to the vacuum state | f s〉:

〈 f s|d|ν〉 = ∑
k ψν (k) 〈 f s|d|c(k)v(k)〉 . (11)

Physically, the process described by the right-hand-side inner
product corresponds to the electron at |c(k)〉 dropping to
|v(k)〉 and annihilating the hole there [18]:

〈 f s|d|ν〉 = ∑
k ψν (k) 〈v(k)|re|c(k)〉 . (12)

Next, we examine the matrix element connecting the ground
state to another bound excitonic state |ν f 〉. The most conve-
nient and physically intuitive method for solving this is by
expanding in the spatial basis d instead of in the band basis:

〈ν f |d|ν〉 =
∫

lat
d2dψ∗

ν f
(d )dψν (d ). (13)

Finally, we analyze the matrix element connecting |ν〉 to an
unbound state denoted by |φq〉. This state can be considered as
a composite of the free electron plane wave with momentum
h̄q and the free hole plane wave with momentum −h̄q (the
opposite values of the electron and hole momenta derive from
the fact that the center-of-mass momentum must equal 0):

φq(d ) = 1√
A

eiq·re e−iq·rh = 1√
A

eiq·d . (14)

Similarly, we calculate the matrix element representing the
transition from the ground state to a generic unbound state
by expanding in d:

〈φq|d|ν〉 =
∫

lat
d2dφ∗

q (d )dψν (d )

= 1√
A

∫
lat

d2de−iq·ddψν (d ). (15)

Since one of the excitons drops to the Fermi sea from the low-
est excitonic state in the annihilation process, the other exciton
must be excited by an energy equaling the gap between the
lowest excitonic state and vacuum. Based on our tight-binding
calculations, we know that the gap between conduction and
valence band at the K/K ′ points (which equals the maximum
bound exciton energy) is approximately 2.2 eV, and it has
been shown that the electron-hole binding energy reduces
the ground state exciton energy to approximately 1.9–2.1 eV
[42,43]. Therefore, if one ground state exciton is annihilated,
then the other must rise to an energy of 3.8–4.2 eV, thus
exceeding the maximum bound exciton energy and creating
an unbound exciton. Applying the exciton-exciton interaction
energy derived in Eq. (3) to a pair of excitons in the lowest
excitonic state and substituting the operator representations of
d and d ′ derived above, we obtain the following column of
matrix elements for the perturbation Hex-ex to the Hamiltonian
due to exciton-exciton interaction:

Hex-ex |ν, ν〉 〈ν, ν| = − C

(�R)3

∑
q

[(
3�R · 〈 f s|d|ν〉

(�R)2
�R − 〈 f s|d|ν〉

)
· 〈φq|d|ν〉 BνD′†

q B′
ν

+
(

3�R · 〈φq|d|ν〉
(�R)2

�R − 〈φq|d|ν〉
)

· 〈 f s|d|ν〉 D†
qBνB′

ν

]
δωq,2ων

. (16)

Here h̄ων denotes the energy of the lowest excitonic state
|ν〉, while h̄ωq denotes the energy of the generic unbound
state |φq〉. Note that this summation consists of two parts: one
corresponding to the annihilation of the unprimed exciton and
excitation of the primed exciton to an unbound state, and the
other corresponding to the converse process. Henceforth, we
will reduce the summation over q to only include the wave
vectors which satisfy the condition ωq = 2ων as required by
the energy conservation condition encapsulated by the Kro-
necker delta function. Also note that we have replaced d ′ with
d in the inner products, since the hole-to-electron position
operator acts on the states of the corresponding exciton in the
same manner.

IV. CALCULATING THE ANNIHILATION RATE

We calculate the overall annihilation rate for a single
exciton as a function of spatial excitonic density using Fermi’s
golden rule [44]. We assume that the excitonic localization
regions form a closely packed (triangular) lattice resembling
the layout of the TMD itself, though it is worth noting that the
overall annihilation rate for a grid (square) layout would differ

by less than 15 percent. The spacing l0 between the centers of
nearest-neighbor regions relates to the area density of regions
(i.e., the saturation excitonic density) σr as follows:

σr = 2

l2
0

√
3
. (17)

In order to determine the total annihilation rate for a given
exciton, we will use series summation over the annihilation
rates of the exciton upon interaction with all possible primed
excitons (i.e., all other excitonic locations). We start by deriv-
ing the transition amplitude for a single exciton-exciton axis l̂ ,
where �r = l l̂ , using the Hamiltonian column from Eq. (16):

〈 f s, φq|Hex-ex|ν, ν〉 = −C

l3
(3 〈 f s|l̂ · d|ν〉 〈φq|l̂ · d|ν〉

− 〈 f s|d|ν〉 · 〈φq|d|ν〉). (18)

The rate �single,drop(l, q) at which the unprimed exciton drops
from the lowest excitonic state |ν〉 to the Fermi sea upon
interacting with a single primed exciton that jumps to a state
|φq〉 is calculated through Fermi’s golden rule:

�single,drop(l, q) = 2π

h̄
ρ(q)| 〈 f s, φq|Hex-ex|ν, ν〉 |2. (19)
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FIG. 3. Simplified three-level diagram representing the exciton-
exciton annihilation process. Note that the excited exciton decays to
the vacuum state upon interacting with phonons, as shown by the
curved green arrow.

Here ρ(q) denotes the unbound excitonic density of states at
the orbital wave vector q. Note that all unbound states |φq〉
for a given magnitude q are degenerate. In order to find the
total rate �single,drop(l ) at which an exciton drops from |ν〉
to the Fermi sea due to the interaction with another exciton
at a distance l , we therefore need to sum over the transition
rates to all possible final wave vectors q on a ring of radius q.
This is equivalent to replacing the density of states at a single
value q with the total density of states for the ring, which we
label ρ(Eq ), and averaging the amplitude-squared term over
all possible directions q̂:

�single,drop(l ) = 2π

h̄
ρ(Eq )〈| 〈 f s, φq|Hex-ex|ν, ν〉 |2〉q̂

= 2π

h̄
ρ(Eq )

C2

l6
〈|3 〈 f s|l̂ · d|ν〉 〈φq|l̂ · d|ν〉

+ 〈 f s|d|ν〉 · 〈φq|d|ν〉 |2〉q̂. (20)

In addition, it is important to consider how the newly gener-
ated unbound exciton relaxes. Since the constituent electron
and hole feature the same wave vector in reciprocal space,
the electron can radiatively decay into the hole. However, due
to the weak oscillator strength corresponding to the transition
between conduction and valence bands at a particular wave
vector (relative to the exciton-vacuum oscillator strength), this
process is inefficient compared to the radiative decay of an
exciton from the lowest excitonic state. A faster decay channel
is by multiphonon relaxation, as previously analyzed in linear
molecular aggregates [45,46]. Due to the very small value of
the transition dipole moment connecting the lowest excitonic
state to a generic unbound state [18], the unbound exciton
is eventually annihilated to vacuum by such a process (as
depicted in Fig. 3) instead of returning to the original lowest
excitonic state. As such, the actual annihilation rate for a
single exciton upon interaction with another exciton �single(l )
is double that of �single,drop(l ):

�single(l ) = 4π

h̄
ρ(Eq)

C2

l6
〈|3 〈 f s|l̂ · d|ν〉 〈φq|l̂ · d|ν〉

− 〈 f s|d|ν〉 · 〈φq|d|ν〉 |2〉q̂. (21)

The density of states ρ(Eq) can be derived by envisioning a
circular ring of free-particle states in a two-dimensional recip-
rocal space. In this space, each state occupies a reciprocal area
of (2π )2

A . The fact that each of the two charge carriers (electron
and hole) is propagating at a wave vector of magnitude q
results in the following relationship between the unbound

state energy and q:

Eq = Egap + h̄2q2

2

(
1

me
+ 1

mh

)
. (22)

Here Egap represents the lattice band gap energy, equaling
the sum of the ground state excitonic energy and the exciton
binding energy. Defining the region of the reciprocal space
enclosed by a circle of radius q as aq = πq2, we calculate the
density of states as follows:

ρ(Eq ) = dN

daq

daq

dq

dq

dEq

= A

(2π )2
2πq

1

h̄2q

(
1

me
+ 1

mh

)−1

= memh

2π h̄2(me + mh)
A. (23)

Next, we determine the total annihilation rate for a given
exciton. Note that the probability of interaction between two
excitons separated by a distance l is proportional to l−6,
and therefore for a given exciton, the interaction with the
nearest-neighbor excitons should dominate. Establishing the
unprimed exciton as the origin of a two-dimensional (2D)
coordinate system, we label the reduced coordinates for a
generic localization region as (n, m), where n and m are
integers and the horizontal and vertical coordinates (h and v,
respectively) equal the following:

hn,m = n + m cos
π

3
= n + 1

2
m,

vn,m = m sin
π

3
=

√
3

2
m. (24)

For the case in which every localization region is occupied
by an exciton, the distance between nearest-neighbor exci-
tons equals l0. We aim to obtain the ratio between the total
annihilation rate for the unprimed exciton to the annihilation
rate with a single nearest-neighbor primed exciton. To do so,
we use the following summation over the localization regions
indexed by (n, m):

∑
n,m

(
l0

ln,m

)6

=
∑
n,m

1[(
n + 1

2 m
)2 + (√

3
2 m

)2]3

=
∑
n,m

1

(n2 + nm + m2)3
. (25)

We simplify this sum by only applying it to a single π
3 slice.

Due to the sixfold rotational symmetry of the excitonic layout,
the result for a single slice will apply to every other quadrant
and axis, respectively. For the first slice (starting from the
positive horizontal axis, inclusive, and ending just short of
the π

3 axis), we obtain
∑∞

n=1

∑∞
m=0

1
(n2+nm+m2 )3 ≈ 1.0626. The

result of Eq. (25) is calculated by multiplying these results
by 6:

∑
n,m

1

(n2 + nm + m2)3
≈ 6 × 1.0626 ≈ 6.4. (26)

We determine the total decay rate for a single exciton given
full filling of the localization regions �total,full by multiplying
the expression from Eq. (21) by the ratio from Eq. (26)
and substituting the density of states from Eq. (23), while
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averaging over all possible exciton-exciton axis orientations l̂:

�total,full = 12.8memh

h̄3(me + mh)

C2A

l6
0

〈|3 〈 f s|l̂ · d|ν〉 〈φq|l̂ · d|ν〉 − 〈 f s|d|ν〉 · 〈φq|d|ν〉 |2〉l̂,q̂

= 8.3memh

h̄3(me + mh)
C2Aσ 3

r 〈|3 〈 f s|l̂ · d|ν〉 〈φq|l̂ · d|ν〉 − 〈 f s|d|ν〉 · 〈φq|d|ν〉 |2〉l̂,q̂. (27)

For the general case including full or partial filling, i.e., σ �
σr , Eq. (27) must be weighted by the occupation probability
of any given localization region, i.e., σ

σr
. This yields an anni-

hilation rate �total for a single exciton that varies linearly with
the excitonic density σ :

�total(σ ) = σ

σr
�total,full

= 8.3memh

h̄3(me + mh)
C2Aσ 2

r σ 〈|3 〈 f s|l̂ · d|ν〉 〈φq|l̂ · d|ν〉

− 〈 f s|d|ν〉 · 〈φq|d|ν〉 |2〉l̂,q̂. (28)

V. RESULTS AND DISCUSSION

The final step in the remaining process of obtaining the
exciton-exciton annihilation rate is to substitute numerical
values into the matrix elements and coefficients in Eq. (28).
The matrix element 〈 f s|d|ν〉, corresponding to the annihi-
lation of an exciton at the ground state |ν〉, was previously
determined (via decomposition into the band basis [18]) as
proportional to the square root of the localization region
area A:

〈 f s|d|ν〉 ≈ x̂(0.1425i)
√

A. (29)

Here we have defined x̂ as the direction of the vector 〈 f s|d|ν〉.
Another element used in Eq. (28) is 〈 f s|l̂ · d|ν〉, i.e., the l̂
component of 〈 f s|d|ν〉. Labeling the angle between x̂ and l̂ as
φl , we obtain the following expression for that inner product:

〈 f s|l̂ · d|ν〉 = l̂ · 〈 f s|d|ν〉
≈ (0.1425i)

√
A cos φl . (30)

We calculate the inner product 〈φq|d|ν〉, corresponding to the
excitation of a ground state exciton to the unbound state ex-
hibiting an energy twice that of the ground state, by expanding
in the hole-to-electron vector position basis and integrating:

〈φq|d|ν〉 = 1√
A

∫
lat

d2de−iq·ddψν (d )

= −q̂
8i

√
2πa3

0q(
a2

0q2 + 4
)2√

A
. (31)

Here a0
2 represents the expectation value of the electron-hole

distance, which approximately equals 0.67 nm for MoS2 [18].
Labeling the angle between x̂ and q̂ as φq, the l̂ component of
the inner product is solved as follows:

〈φq|l̂ · d|ν〉 = l̂ · 〈φq|d|ν〉

= − i
8
√

2πa3
0q(

a2
0q2 + 4

)2√
A

cos (φl − φq). (32)

Since l̂ and q̂ can take any direction relative to x̂, we need
to average over φl and φq. Substituting the matrix elements
into Eq. (28), and averaging over the two angle variables, we
obtain the following expression for the total annihilation rate
as a function of the excitonic density σ :

�total(σ ) = 8.3memh

h̄3(me + mh)
C2Aσ 2

r σ

∣∣∣∣ (−8i)(0.1425i)
√

2πa3
0q(

a2
0q2 + 4

)2

∣∣∣∣
2

×〈〈|3 cos φl cos (φl − φq) − cos φq|2〉φl 〉φq

= 27πa6
0q2

(
a2

0q2 + 4
)4

μ

h̄3 C2Aσ 2
r σ. (33)

Here μ denotes the reduced mass of the electron-hole pair, de-
fined as μ = (1/me + 1/mh)−1. Figure 4 provides a schematic
of the relevant excitonic energy levels (Fermi sea, ground
state, and unbound states) and the gaps between those levels.
Recall that the excited exciton gains an energy of Eν , equaling
that of the ground state exciton relative to the Fermi sea. Some
of this energy is spent in overcoming the exciton binding
energy EBE in order to reach the conduction band energy,
while the remainder is used in reaching the unbound state |φq〉,
which exhibits an energy (relative to the conduction band)
corresponding to a free electron and free hole carrying wave
vectors of magnitude q. In quantitative terms, the binding
energy, wave vector magnitude, and ground state energy are
related by the following expression:

EBE + h̄2q2

2μ
= Eν . (34)

Note that the annihilation rate varies with the reduced mass μ

(which is defined by the effective electron and hole masses

FIG. 4. Depiction of excitonic energy levels. The energy gap
between the excitonic ground state |ν〉 and the excited unbound state
at wave vector q equals the gap Eν between |ν〉 and the vacuum state
| f s〉. Note that μ represents the reduced mass of the electron-hole

pair, given by ( 1
me

+ 1
mh

)
−1 ≈ m

2 , where m ≈ me ≈ mh.
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and is always smaller than the smallest effective mass of
composite particles), as evidenced from Eqs. (33) and (34).
In a previous study [18], we determined me and mh each
as 0.55 times the actual electron mass m0, EBE as 0.31 eV,
and Eν as 1.92 eV. It is worth mentioning that values for
mh and me equaling 0.65m0 and 0.49m0, respectively, have
been determined in other analysis [47], yielding the same
reduced mass as the case in which both carriers have a mass of
0.55m0. Substituting these values into the above expression,
we find that q = 3.4 nm−1. Given this value for q, along
with a0 = 1.34 nm and me ≈ mh ≈ 5.0 × 10−31 kg, our last
computational step is to obtain C. This constant simply equals

e2

4πε0εr
, where εr represents the ambient dielectric constant for

the monolayer MoS2 film. For a free-standing film, the di-
electric constant equals 1, yielding C = 2.3 × 10−28 kg m3

s2 and
reducing the annihilation rate from Eq. (33) to a function of
effective sample area, density of regions, and exciton density:

�ex-ex(σ ) ≈
(

1.7 × 10−22 m4

s

)
Aσ 2

r σ. (35)

Note that this represents the decay rate for a single exciton.
From this expression, we derive the rate of change of density
due to the annihilation process, labeling the total sample area
being measured as Atotal and the total number of excitons as
N :

dσ

dt
= 1

Atotal

dN

dt
= − N

Atotal
�ex-ex = −ασ 2. (36)

Here α represents the annihilation rate constant, given by the
following value:

α ≈
(

1.7 × 10−22 m4

s

)
Aσ 2

r . (37)

It is worth determining a feasible range for α by analyzing A
and σr . As previously mentioned, A represents the localization
area of each charge carrier wave function, while σr represents
the exciton saturation density. Assuming that the localization
regions approximately fill the position space of the sample, we
find that σr ≈ 1

A , yielding the following value for α in terms
of A:

α ≈
(

1.7 × 10−22 m4

s

)
1

A
. (38)

Next, we aim to find a feasible range for A, starting with
a consideration of the defects that give rise to exciton and
charge carrier localization. Since the grain boundaries of
graphene were mapped by Kim et al. [48], the characterization
of inhomogeneities in 2D materials has remained an active
field. To this end, the high concentration of defects in TMD
samples obtained by mechanical exfoliation or grown epitaxi-
ally has been well established by experimental measurements.
For mechanically exfoliated monolayer MoS2, Wang et al.
[49] determined a defect density ranging from 0.3 × 1012

to 2 × 1013 cm−2 through a pump-probe measurement, while
Vancso et al. [50] used a similar method to obtain a defect
density of 5 × 1012 to 5 × 1013 cm−2. Similarly, Liu et al.
[51] measured an average defect density of 8 × 1012 cm−2 on
monolayer MoS2 grown on epitaxial graphene. CVD-grown
TMDs exhibit an even greater density of inhomogeneities,

although a recent study by Rogers et al. [52] has shown that
laser annealing can remove some of the impurities and reduce
the strain gradient.

The range of defect densities gives rise to an array of
possible excitonic coherence lengths. For a particular region
of a sample, the local value of A can be inferred via the
fundamental A dependence of the excitonic radiative decay
rate. We use the following well-known expression based on
the Einstein coefficients [53] to calculate the radiative loss rate
from the excitonic state |ν〉 to the vacuum state | f s〉:

�rad = ω3

3πε0 h̄c3
| 〈 f s|ed|ν〉 |2. (39)

Substituting the excitonic energy h̄ω = 1.9 eV and the dipole
matrix element | 〈 f s|d|ν〉 | = 0.1425

√
A [see Eq. (29)] into

this expression, we find that the radiative decay rate varies
linearly with the localization area A:

�rad =
(

5.0 × 1025 1

m2 s

)
A. (40)

Note that the linear relationship between the radiative decay
rate and localization area agrees with Wang et al. [25]. For
excitons with large localization areas, the radiative lifetime
drops to the femtosecond range and will be far shorter than
the exciton-exciton annihilation lifetime (even observations
of rapid annihilation in molybdenum-based TMDs yield life-
times in the tens of picoseconds [30,32]), thus rendering the
latter process negligibly slow.

Next, we resolve the range of localization areas that fit
our assumption that each localization region contains up to
one exciton. To this end, it is important to note that although
delocalized excitons act in a bosonic manner, the behavior be-
comes fermionlike given significant localization (on the scale
of the excitonic size). For example, Ohtsu [54] shows that
for an sufficiently small exciton localization region indexed
by n, the commutator between the excitonic annihilation and
creation operators takes the following form:

[Bn, B†
n] = 1 − 2B†

nBn. (41)

The fact that the formation of more than one exciton in a
single narrow localization region is not favored is further
supported by experimental evidence of phase space filling,
e.g., the absorption saturation measured in GaAs by Hunsche
et al. [55]. For 2D materials, the seminal theoretical analysis
by Schmitt-Rink et al. [56] showed that the effects of Pauli
exclusion result in a blocked area of 8.5πa2 around each
exciton (where a represents the exciton size) [57], indicating
a diameter of 5.8a for the blocked zone. For molybdenum-
based TMDs, the exciton size approximately equals 0.7 nm
as previously mentioned, leading to a blocked zone diameter
of about 4 nm. This is confirmed by recent measurements on
monolayer MoSe2 by Kumar et al. [32], which suggest that
the excitonic density saturates at a nearest-neighbor spacing
of 4 nm.

Given a diameter of less than about 8 nm for each localiza-
tion region, the formation of more than one exciton in a single
region is hindered since a region of such size cannot fit more
than one blocked zone. On the other hand, if the localization
region diameter is less than the blocked zone diameter of
about 4 nm, then the orbital wave function for an exciton
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FIG. 5. Plot of the decay rates for a single exciton due to radiative
recombination (red) and exciton-exciton annihilation (blue) given
maximal filling of the excitonic localization regions, as functions of
the localization area A for the range 13 � A � 50 nm2. Note that the
radiative recombination rate is more than an order of magnitude less
than the exciton-exciton annihilation rate for all values of A in this
range.

formed in that region would start to experience distortion due
to the effects of strong localization. As a result, our model
of quasilocalized excitons behaving in a fermionlike manner
within their respective regions specifically applies for the
range of areas given by 13 � A � 50 nm2. For this range,
the density of regions σr (≈1/A) represents the excitonic
saturation density and thus serves as the upper bound for
σ . As a result, the maximum value of the annihilation rate
from Eq. (35) (which applies when the localization regions
are saturated with excitons) becomes a function solely of the
localization area:

�ex-ex,max ≈
(

1.7 × 10−22 m4

s

)
1

A2
. (42)

Figure 5 depicts the radiative recombination and maximum
exciton-exciton annihilation rates based on Eqs. (40) and (42),
respectively. For the entire range, the annihilation process
given maximal excitonic density is more than an order of
magnitude faster than the radiative process, with the effect
especially pronounced at smaller localization areas. This im-
plies that if a sufficient pump fluence is applied to the sample
such that the localization regions become saturated, the initial
radiative recombination rate will be negligible compared to
the exciton-exciton annihilation rate.

We now return to the general case in which the excitonic
density σ is decoupled from the density of localization regions
σr (i.e., the excitonic density is a variable with an arbitrary
value less than or equal to the region density) in order to
determine the range for the rate constant α for the relevant
range of localization areas. From Eq. (38), it is apparent that
α decreases with A. This value is maximized (minimized)
when the localization area A is minimized (maximized), which
applies when A ≈ 13 nm2 (50 nm2):

3.4 × 10−6 � α � 1.3 × 10−5 m2

s . (43)

It is useful to compare this result to experimental findings
demonstrating rapid exciton-exciton annihilation. In this re-
spect, the predicted range for the annihilation rate constant for

quasilocalized excitons at low temperatures resembles values
measured at room temperature. For example, Sun et al. [30]
determined a rate constant of 4.3 × 10−6 m2/s for MoS2, well
within the span shown in Eq. (43). Similarly, Kumar et al.
[32] measured a rate constant of 3.3 × 10−5 m2/s, slightly
exceeding our predicted range. Although it is difficult to glean
the localization areas from the radiative decay rate in these
experiments since the radiative lifetime measurements were
performed on a thermal ensemble consisting of both bright
and dark excitons, the similarities between our predictions and
the experimental results suggest that the rate constant might
be similar for localized and delocalized excitons. A similarity
between the annihilation rates of localized and delocalized
excitons would imply that the exchange interaction between
delocalized excitons is much weaker than the dipole-dipole
interaction that gives rise to annihilation in both the localized
and delocalized cases.

One possible means of testing our predictions is through
an experimental method that exploits the narrow (micron-
ranged) spot size of the pumping beam relative to the to-
tal area of the 2D sample. Due to the uneven distribution
of inhomogeneities across the sample (as evidenced by the
wide range of defect densities discussed above), the excitonic
localization area should differ from one beam-sized region
to the next. The localization area for each region can be
gleaned by measuring the radiative decay rate for the region
under cryogenic conditions. Of course another method would
be to test on samples synthesized using different techniques.
As shown in Fig. 5, our calculations will apply specifically
when the radiative decay rate falls in the range 6.5 × 108 �
�rad � 2.5 × 109 s−1. It is worth noting that such long ra-
diative lifetimes have already been observed in superacid-
treated TMD samples [58,59]. The best strategy for obtaining
a consistent localization area across the sample, however, is
likely to break up the lattice into quantum dots. Fabrication
techniques for patterning quantum dots into monolayer TMDs
have been rapidly advancing in terms of both precision and
miniaturization, with Wei et al. [60] generating nanodots as
small as 15 nm, and more recently Ding et al. [61] reducing
the size to the single nanometer range.

VI. CONCLUSION

We have derived the annihilation rate for optically gener-
ated excitons in monolayer MoS2 as a function of density,
given large interexciton spacing (significantly exceeding the
excitonic size) and quasilocalization of individual excitons.
To start, we derived the exciton-exciton interaction energy
as a function of exciton spacing, using the dipole-dipole
approximation to show that the energy is linear in the hole-to-
electron vector for each exciton. We then promoted the hole-
to-electron vectors to orbital ladder operators and demon-
strated that the center-to-center vector approximately takes
a single value, thus enabling the center-of-mass states to be
abstracted out and reducing the dimensionality of the Hilbert
space. Finally, we employed Fermi’s golden rule to calculate
the exciton-exciton annihilation rate, using energy conserva-
tion to determine the final state in the orbital ladder reached
by the excited exciton. We obtained a rate that varies inversely
with the localization area and linearly with the total excitonic
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density. The rates measured in experimental observations of
rapid annihilation resemble our predicted range, even though
the experimental data was obtained at room temperature.

Our findings present both theoretical and experimental
applications. On the theoretical side, they can be expanded
to other 2D materials by reevaluating the numerical results
for the matrix elements as well as the energy levels. On the
experimental side, when conducting measurements of nonra-
diative decay rates on samples with low excitonic densities,
the results of this paper can be used to account for the loss
rate due to exciton-exciton annihilation. Most importantly,
since the annihilation rate varies with exciton density, the
process introduces a nonlinearity in the transient behavior
of the excitons and knowledge of the rate thus represents a

critical step toward assessing the utility of this material in the
context of cavity nonlinear optics.
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