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In this paper we study an approach for nanoscale spatially inhomogeneous excitation of quasistatic magnetic
fields by the plasmon-induced inverse Faraday effect (IFE) in graphene-covered semiconductors and we present
analytical and numerical results for the induced magnetic field distribution. The effective magnetic field is
predicted to reach about 1 T and the direction of the magnetic field can be switched by surface plasmon polaritons
propagating into the opposite direction. By electrically controlling the chemical potential of the graphene sheet
the spatial inhomogeneity of the magnetization near field can be broadly tuned. The response of the induced
magnetization to the plasmon propagation is manifested by a nonlinear phase shift which is measurable in the
far field. By using the Lorentz reciprocity theorem we analytically calculated the nonlinear susceptibility and the
nonlinear absorption coefficient in dependence on the chemical potential, the frequency, and the other material
parameters. The plasmon-induced IFE and the nonlinearity can be very strong by decreasing the chemical
potential which is flexibly controllable by using the graphene’s gate voltage. The studied system could pave
the way for an alternative approach for nanometer spatial all-optical magnetization control.
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I. INTRODUCTION

The inverse Faraday effect (IFE) provides a way for the
generation of quasistatic magnetic fields in a magneto-optical
material irradiated by free-space circularly polarized light.
Recently this effect has attracted much attention due to its
potential for ultrafast all-optical switching of magnetization
[1–3] by ultrafast laser pulses, which opens a route for mag-
netic data storage with unprecedented speed. Magneto-optical
effects can be enhanced in magnetoplasmonic structures due
to the field enhancement by localized plasmon modes (for a
review, see Refs. [4–9]). This method has also been used for
field enhancement of the IFE by nanostructured gratings illu-
minated by free-space circularly polarized light [10–13]. The
request to increase the recording density motivated studies
for nanoscale-confined all-optical switching of magnetic films
covered with gold double-wire antennas [14] and inside a
magnetoplasmonic microcavity [15]. The spatial localization
of coherent spin precession excitation within a magnetic plas-
monic nanostructure has been studied in Ref. [16]. Recently
we proposed a nanoscale version of all-optical magnetiza-
tion switching by counterpropagating or two-frequency pulses
using free-running surface plasmon polaritons (SPPs) [17].
The generation of magnetic fields by the IFE reacts to the
plasmon propagation leading to a nonlinear phase shift due
to a IFE-related third-order nonlinearity [18].

In the present paper we study the IFE induced by
free-running SPPs in graphene-covered semiconductors for
nanoscale spatially inhomogeneous excitation of magnetiza-
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tion and its response to the SPP propagation manifested by
a third-order nonlinearity. Wide applications for graphene in
many fields have been found, in particular terahertz to mid-
infrared applications [19–21]. SPPs supported by graphene-
covered structures undergo better confinement and lower
propagation loss compared to those by conventional metals
such as gold and silver in the terahertz frequency range
and are flexibly controllable by using the graphene’s gate
voltage [22]. Based on these advantages intensive and diverse
studies on controllable graphene plasmonic devices have been
reported (for a review, see Refs. [23,24]). In a recent study the
possibility to control the distribution of the magnetic field due
to the IFE in a graphene-dielectric-metal structure has been
reported [25].

II. NANOSCALE MAGNETIZATION BY THE
PLASMON-INDUCED INVERSE FARADAY EFFECT IN

GRAPHENE-COVERED SEMICONDUCTORS

We consider the plasmonic propagations in two typical
types of graphene-covered planar semiconductors as shown
in Figs. 1(a) and 1(b).

The effect of an external magnetic field on surface plas-
mons in semiconductors has been studied theoretically [29]
and experimentally [26]. Recently graphene plasmon modes
in graphene-covered semiconductors have been intensively
studied [30–34]. As shown in the previous studies, the per-
mittivity tensor of the semiconductors in an external magnetic
field Hext in the direction of the y axis is expressed as

ε̂ =
⎛
⎝ε1 0 −ig

0 ε⊥ 0
ig 0 ε1

⎞
⎠, (1)
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FIG. 1. Nanoscale magnetization by the plasmon-induced IFE in graphene-covered semiconductors. Panels (a) and (b) show the schemes
of two types of graphene-covered planar semiconductors: the graphene sheet surrounded by the air on one side and by a semiconductor on the
other side (a) and the graphene sheet suspended in a semiconductor (b). Panels (c) and (d) show the transverse distributions of the effective
magnetic field Heff in the graphene-covered planar semiconductors at a chemical potential of μc = 0.1 eV. Panels (c) and (d) correspond to
panels (a) and (b), respectively. (e) The peak strength of the effective magnetic field at the interface versus the chemical potential for a mode
power of 0.1 W/μm. Panels (f) and (g) show the 1/e decaying lengths of the effective magnetic field versus the chemical potential in the
directions of the z axis (f) and the x axis (g). The blue and the red curves and crosses are for the cases of panels (a) and (b), respectively. The
crosses have been calculated by Eq. (3) and numerical solutions of the dispersion relations of the transverse (TM) graphene plasmon mode
(see the dispersion relation in Appendix A). The curves have been obtained by using the analytical formulas (4)–(6). We used ε′

1 = 11.8 and
α = 6 × 10−7 m/A for the n-type InSb [26] at a frequency 10 THz. We assumed τ = 1/0.09ωp = 0.35 ps as the carrier relaxation time of
graphene. We note that values from 0.1 ps [27] to 1 ps [28] of τ are experimentally achievable at room temperature.

where

ε1 = ε∞

{
1 − ω2

p(ω + iγs)

ω
[
(ω + iγs)2 − ω2

c

]
}

,

ε⊥ = ε∞

[
1 − ω2

p

ω(ω + iγs)

]
,

g = ε∞
ω2

pωc

ω
[
(ω + iγs)2 − ω2

c

] .

Here ωp is the plasma frequency; ωc = eμ0Hext/meff is the cy-
clotron frequency, with e being the charge and meff the effec-
tive mass of the electron, respectively; ε∞ is the background
permittivity, which depends on the properties of the bound
electrons in the material; γs is the electron collision frequency
responsible for the material absorption. The off-diagonal com-
ponent of the permittivity tensor g = αHext is proportional
to the external magnetic field, which means that the per-
mittivity of semiconductors is formally similar to that in a
magneto-optical medium. Its magneto-optical susceptibility

has a great value when ω is comparable with ωp. As an
example, for the n-type InSb with ε∞ = 15.68, ωp = 3.14 ×
1013 rad/s, γs = 0.11ωp, and meff = 0.022me, where me is the
electron’s mass [26], at a frequency of 10 THz corresponding
to ω/ωp = 2, the magneto-optical susceptibility has a value
of α = 6 × 10−7 m/A which is of the order of the values in
typical magnetic materials; for example, the magneto-optical
susceptibility of Bi-substituted iron garnet has a value of
α = 5.5 × 10−7 m/A [12] at a wavelength near 800 nm and
has drastically smaller values at longer wavelengths [35]. The
infinite thin graphene layers exhibit a surface conductivity
σ . Since at room temperature the photon energy in the mid-
infrared wavelength range is always less than 2μc and the
intraband transition dominates the interband transition, σ can
be expressed by [36]

σ ≈ ie2μc/[π h̄2(ω + i/τ )], (2)

where μc, h̄, ω, and τ are the chemical potential, the reduced
Planck’s constant, the optical angular frequency, and the
carrier relaxation time, respectively. The quasistatic magnetic
field along the y direction parallel to the graphene sheet has no
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direct interaction with the graphene and directly modulates the
semiconductor’s optical property as shown in Eq. (1), while in
the case that it is in the direction perpendicular to the graphene
sheet the graphene’s optical property is directly modulated
[37].

Due to the inverse Faraday effect an effective magnetic
field is generated which is described by

�Heff = −iε0α �E × �E∗, (3)

where ε0 is the vacuum permittivity and α is the above-given
magneto-optical susceptibility. The rotating electric field vec-
tor of the SPP propagating in the graphene-covered planar
semiconductors exhibits a longitudinal component. Therefore
the vector product in Eq. (3) is nonzero and a quasistatic
magnetic field along the y direction in Figs. 1(a) and 1(b) is
generated.

Due to the strong confinement in the graphene waveg-
uide the relation k ≈ k1 ≈ k2 can be derived. Here, k is the
graphene plasmon wave number and k1 and k2 are the wave-
vector components perpendicular to the interface in the ε1 side
and the ε2 side, respectively. In the zero-order approximation
with respect to the magneto-optical effect

k ≈ k1 ≈ k2 ≈ π h̄2ω2ε0(ε1 + ε2)[1 + i/(τω)]

e2

1

μc
.

By using the TM modes of the SPPs in the graphene waveg-
uide we derive the following analytical formulas for the IFE-
induced effective magnetic field (see the detail derivation in
Appendix A):

Heff/P ≈ σp
8π2h̄4αε2

0ω
3(ε′

1 + ε′
2)

e4
(μc)−2

× exp (−x/dx ) exp (−|z|/dz ), (4)

dz ≈ e2

2π h̄2ε0ω2(ε′
1 + ε′

2)
μc, (5)

dx ≈ e2

2π h̄2ε0ω2(ε′
1 + ε′

2)

× 1

[1/(ωτ ) + (ε′′
1 + ε′′

2 )/(ε′
1 + ε′

2)]
μc. (6)

Here σp = s1 · s2, where s1 = x̂ · k̂ = ±1 and s2 = ẑ · ŝ =
±1. k̂ is the unit vector along the propagation direction
of the graphene plasmon and ŝ the unit normal vector of
the graphene sheet directed from the graphene sheet to a
semiconductor side. x̂ and ẑ are the unit vectors along the x
and z axes, respectively. P = |∫ 1/2Re( �E∗ × �H )x̂dz| is the
mode power of the graphene plasmon at x = 0. ε2 is the
permittivity of the upper medium, and ε2 = 1 in Fig. 1(a) and
ε2 = ε1 in Fig. 1(b). ε′ and ε′′ mean the real and imaginary
parts of the complex value ε, respectively, and dz and dx

are the 1/e decaying lengths of the effective magnetic field
in the directions of the z axis and the x axis, respectively.
Figures 1(c) and 1(d) show the near field distributions of the
effective magnetic field which is tightly confined near the
graphene sheet due to the strong confinement of the graphene
plasmons. Figures 1(e)–1(g) show the effective magnetic field
[panel (e)] and the decay lengths dz [panel (f)] and dx [panel
(g)] of the effective magnetic field which are broadly tunable

by changing the chemical potential. As seen the magnetic field
reaches values in the range of 1 T for a chemical potential
of 0.1 eV. The magnetic field decreases with increasing μc

because the decay length dz is proportional to the surface
conductivity of graphene σ (see Appendix A) and thus is
proportional to the chemical potential μc [see Eq. (2)], and
the smaller value of dz results in the larger magnitude of �E
for the same mode power. We note that the chemical potential
is electrically controllable in practice by using a gate voltage
of the graphene sheet. The simple and explicit dependence
of the effective magnetic field on the chemical potential, as
shown in the analytical formulas (4)–(6), agrees with the
numerical results [the crosses of Figs. 1(e)–1(g)] which have
been calculated by Eq. (3) and the numerical solutions of the
electric field of the transverse (TM) graphene plasmon mode.
As seen in Eq. (4) the sign of Heff is determined by the sign of
s1 = x̂ · k̂ = ±1 and can be reversed by the change of the SPP
propagation direction. In contrast to switching the direction
of the magnetic field by the helicity of free-space circularly
polarized pulses, the direction of the magnetic field in the
plasmon-induced IFE is determined by the SPP propagation
direction [17].

III. THIRD-ORDER NONLINEARITY BY THE
PLASMON-INDUCED INVERSE FARADAY EFFECT IN

GRAPHENE-COVERED SEMICONDUCTORS

The effective magnetic field in the magneto-optical mate-
rial induces the off-diagonal component of the permittivity
tensor g = αHeff , where Heff is the magnetic field due to
the plasmon-induced IFE [17,18]. Consequently, it leads to
a wave-number shift of the TM graphene plasmon mode
and therefore to a IFE-related third-order nonlinearity [18]
which differs from the optical Kerr effect. By substituting
the unperturbed backward-propagating field and the perturbed
forward-propagating field under the effective magnetic field in
the Lorentz reciprocity theorem [38], we derived an analytical
formula for the nonlinear complex-valued susceptibility γ

(see the detail derivation in Appendix B):

γ ≈ 4π3h̄6ε4
0c2α2ω5

e6
(ε′

1 + 1)

×
[

1 + i

(
3

2ωτ
+ ε′′

1

ε′
1 + 1

)]
(μc)−3 (7)

for the scheme of Fig. 1(a) and

γ ≈ 16π3h̄6ε4
0c2α2ω5

e6
ε′

1

×
[

1 + i

(
3

2ωτ
+ ε′′

1

ε′
1

)]
(μc)−3 (8)

for the scheme of Fig. 1(b). The real part of the nonlinear
susceptibility γ ′ describes a nonlinear wave-number shift
(or a nonlinear refraction index change) and the imaginary
part of the saturable absorption of the TM graphene plas-
mon mode. In Fig. 2(a) the curves represent φNL = γ ′PinLeff

with the analytical formulas (7) and (8), where Leff = [1 −
exp(−2k′′L)]/(2k′′). The analytical results are in good agree-
ment with the numerically calculated phase shift φNL =
φ(Pin = P) − φ(Pin → 0) [the circles in Fig. 2(a)], obtained
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FIG. 2. Third-order nonlinearity due to the plasmon-induced
IFE. (a) The nonlinear phase shift φNL at a propagation length of
L = 500 nm versus the incident mode power Pin. (b) The dependence
of the real part of the nonlinear coefficient γ ′ on the chemical
potential μc. The blue and the red curves and crosses are for the
cases of Figs. 1(a) and 1(b), respectively. The curves have been ob-
tained by using the analytical formulas (7), (8), and φNL = γ ′PinLeff ,
where Leff = [1 − exp(−2k′′L)]/(2k′′). The circles are calculated
from the entity φNL = φ(Pin = P) − φ(Pin → 0) and γ = [k(P) −
k(0)]/P calculated by numerical solutions of the Maxwell equation
in the frequency domain. Other parameters are the same as those in
Fig. 1.

by numerical solutions of the Maxwell equation in the fre-
quency domain. The explicit dependence of the nonlinear co-
efficient γ ′ on the chemical potential [the curves in Fig. 2(b)],
predicted in the analytical formulas (4) and (5), well agrees
with the numerical results of γ = [k(P) − k(0)]/P [the circles
in Fig. 2(b)]. In the numerical simulations the graphene layer
was treated as a very thin metal film with a thickness of 
 = 1
nm and the equivalent bulk permittivity εg = 1 + iση0/(k0
),
which has been widely validated [39,40]. More detail values
from the simulation results can be seen in Table I.

TABLE I. Values of the frequency f in THz, the propagation
length 1/2k′′ in μm, the electric field strength in the graphene
sheet along the direction parallel to the graphene sheet E in V/m,
the effective magnetic field Hext in T, the graphene-plasmon wave
number k′ in 1/μm, and the nonlinear wave-number shift 
k′ in
1/μm for P = 0.1 W/μm and μc = 0.1 eV.

f 1/2k′′ E Heff k′ 
k′

Fig. 1(a) 10 0.21 4.0 × 108 0.90 38 0.67
Fig. 1(b) 10 0.11 5.5 × 108 1.66 70 2.46

FIG. 3. Frequency dependency of the effective magnetic field
(a) and the real part of the nonlinear coefficient (b) due to the
plasmon-induced IFE. The blue and the red curves are for the cases
of Figs. 1(a) and 1(b), respectively. The curves have been obtained by
using the analytical formulas (4), (7), and (8) where the frequency-
dependent permittivity tensor of the n-type InSb [26] is used for ε1

and α. A chemical potential of μc = 0.1 eV for panels (a) and (b) and
a mode power of 0.1 W/μm for panel (a) have been assumed.

The effective magnetic field in Eq. (4) is proportional
to the third power of the frequency, but this dependence is
compensated by the strong frequency dependency of α which
is inversely proportional to the third power of the frequency in
semiconductors [26]. Figure 3(a) shows the effective magnetic
field does not strongly depend on the frequency and is almost
constant in the higher frequency range. The weak frequency-
dependency is only due to the frequency dependency of
ε1 which becomes significant in the lower frequency range
approaching the plasma frequency fp = ωp/(2π ) = 5 THz.
Figure 3(b) shows the real part of the nonlinear coefficient
γ ′ decreases with increasing the frequency because γ ′ is
proportional to the second power of α. γ ′ has a maximum near
a frequency of 10 THz and smaller values at lower frequencies
attributed to the decrease of ε1 with decreasing frequencies.

In the graphene-covered semiconductors a huge nonlinear
coefficient γ of the order of 10 W−1 is achievable at μc =
0.1 eV. For a mode power of P = 0.1 W/μm, 
k = γ P is
of the order of 0.1 μm−1, which is about 2 or 3 orders of
magnitude larger than 
kmp in Ref. [6] and 
k = γ P in
Ref. [18].

IV. DISCUSSION AND CONCLUSIONS

We investigated nanoscale spatially inhomogeneous exci-
tation of quasistatic magnetic fields by the plasmon-induced
IFE in graphene-covered semiconductors. Enhancement of
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the plasmon-induced IFE is attributed to tight transverse
confinement of the graphene plasmon and the slow light
effect due to a huge effective refractive index of the graphene
plasmon which are in dependence on the chemical potential
μc of the graphene sheet. The derived analytical formula
explicitly shows that the induced magnetic field is inversely
proportional to the square of the chemical potential μc which
is flexibly controllable by using the graphene’s gate volt-
age. For example, by changing μc from 1 to 0.1 eV, the
induced magnetic field is enhanced by 100 times and can
reach values of about 1 T for a mode power of 0.1 W/μm.
The IFE-induced magnetic field is strongly confined near
the surface of the graphene sheet. The sign of the magnetic
field is reversed for counterpropagating SPPs. By electrically
controlling the chemical potential of the graphene sheet the
magnitude and the spatial shape of the magnetization near
field can be broadly tuned. If a magnetized nanoscale ma-
terial is placed near the graphene sheet, its magnetization
can be controlled and switched into the opposite direction.
The plasmon-induced magnetic field leads to a reaction to
the SPP propagation by a third-order nonlinear effect which
differs from the traditional optical Kerr effect. We derived an
analytical formula for the IFE-related nonlinear susceptibility
which is inversely proportional to the third power of the
chemical potential. The numerical estimation of the nonlin-
ear susceptibility predicts a huge value which is orders of
magnitude larger than those of gold/ferromagnet structures.
The huge value of the IFE-related nonlinear susceptibility
at a small value of the chemical potential is attributed to
enhancement of magnetoplasmonic effect under the enhanced
IFE in the graphene-covered semiconductors. The predictions
by the analytical formulas are in good agreement with the
numerical solution of Maxwell equation in the frequency
domain. The studied approach for nanoscale magnetization by
the plasmon-induced IFE in graphene-covered semiconduc-
tors could pave the way for an efficient method for all-optical
magnetization switching in nanometer-scale systems.

APPENDIX A: DERIVATIONS OF EQS. (4)–(6)

We consider the plasmonic propagations in two typical
types of graphene-covered planar semiconductors as shown
in Figs. 1(a) and 1(b). The permittivity tensor of the semi-
conductor in a magnetic field in the direction of the y axis
is expressed by Eq. (1). The graphene surface conductivity σ

can be expressed by Eq. (2). The rotating electric field vector
of circularly polarized light induces an effective magnetic
field along the wave vector �k, which is called the inverse
Faraday effect (IFE). The rotating electric field vector of

TM graphene plasmon modes in the graphene-covered planar
semiconductors can act as an effective magnetic field along
the transverse y direction. In the zero-order of perturbation in
αHext/ε1, the TM graphene plasmon modes are expressed as

Hy2 = A2 exp (ikx) exp (−k2z),

Ex2 = iA2(η0k2/ε2k0) exp (ikx) exp (−k2z), (A1)

Ez2 = −A2(η0k/ε2k0) exp (ikx) exp (−k2z),
for z > 0, and

Hy1 = A1 exp (ikx) exp (k1z),

Ex1 = −iA1(η0k1/ε1k0) exp (ikx) exp (k1z), (A2)

Ez1 = −A1(η0k/ε1k0) exp (ikx) exp (k1z),

for z < 0. Here η0 is the vacuum wave impedance. ε2 is the
permittivity of the upper medium, and ε2 = 1 in Fig. 1(a) and
ε2 = ε1 in Fig. 1(b). From the requirement of the continuity of
Ex and Hy at the graphene layer z = 0 (Ex1 = Ex2 and Hy1 −
Hy2 = σEx1),

A1

A2
= −ε1k2

ε2k1
, (A3)

A2 =
(

1 + iση0k1

k0ε1

)
A1. (A4)

Combining the above equations, we can get the dispersion
relation as follows:

ε1

k1
+ ε2

k2
+ iη0σ

k0
= 0. (A5)

From Eq. (3) and the fact that the TM graphene plasmon mode
is under investigation, we find

Heff = −iε0α(E∗
x Ez − ExE∗

z ). (A6)

By substituting Eqs. (A1)–(A3) into Eq. (A6), we get

Heff = σp
2α|A1|2(k′k′

1 + k′′k′′
1 )

ω2ε0|ε1|2
exp(−2k′′x) exp(−2k′

1|z|).

Here σp = s1 · s2, where s1 = x̂ · k̂ = ±1 and s2 = ẑ · ŝ = ±1.
k̂ is the unit vector along the propagation direction of the
graphene plasmon, and ŝ is the unit normal vector of the
graphene sheet directed from the graphene sheet to a semicon-
ductor side under the investigation. x̂ and ẑ are the unit vectors
along the x and z axes, respectively. We note that a′ and a′′
mean the real and the imaginary parts of the complex value a,
respectively. From Eqs. (A1), (A2), and (A3), the mode power
at x = 0 P is

P =
∣∣∣∣
∫

1/2Re( �E × �H∗)x̂dz

∣∣∣∣ =
∣∣∣∣
∫

1/2Re
(
EzH

∗
y

)
dz

∣∣∣∣ = |A1|2Re(ε1k)

2ωε0|ε1|2
∫ 0

−∞
exp(2k′

1z)dz + |A2|2Re(ε2k)

2ωε0|ε2|2
∫ ∞

0
exp(−2k′

2z)dz

= |A1|2Re(ε1k)

4ωε0|ε1|2k′
1

+ |A2|2Re(ε2k)

4ωε0|ε2|2k′
2

= |A1|2Re(ε1k)

4ωε0|ε1|2k′
1

+ |A2|2Re(ε2k)

4ωε0|ε2|2k′
2

= |A1|2
4ωε0|ε1|2

k′
2(ε′

1k′ − ε′′
1 k′′)

(
k′

2
2 + k′′

2
2) + k′

1(ε′
2k′ − ε′′

2 k′′)
(
k′

1
2 + k′′

1
2)

k′
1k′

2

(
k′

2
2 + k′′

2
2) .
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Therefore,

Heff/P = σP
8α

ω

k′
1k′

2(k′k′
1 + k′′k′′

1 )
(
k′

2
2 + k′′

2
2)

k′
2(ε′

1k′ − ε′′
1 k′′)

(
k′

2
2 + k′′

2
2) + k′

1(ε′
2k′ − ε′′

2 k′′)
(
k′

1
2 + k′′

1
2) exp(−x/dx ) exp (−|z|/dz ), (A7)

where dx = 1/(2k′′) and dz = 1/(2k′
1). Due to the strong con-

finement in the graphene waveguide the relation k ≈ k1 ≈ k2

can be derived; thus Eqs. (2) and (A5) lead to

k ≈ π h̄2ω2ε0(ε1 + ε2)[1 + i/(τω)]

e2

1

μc
. (A8)

In the first-order approximation with respect to ε′′
1/ε

′
1, ε′′

2/ε
′
2,

and 1/(τω), Eqs. (A7) and (A8) lead to

Heff/P ≈ σp
8π2h̄4αε2

0ω
3(ε′

1 + ε′
2)

e4
(μc)−2

× exp (−x/dx ) exp (−|z|/dz ), (A9)

dz ≈ e2

2π h̄2ε0ω2(ε′
1 + ε′

2)
μc, (A10)

dx ≈ e2

2π h̄2ε0ω2(ε′
1 + ε′

2)

× 1

[1/(ωτ ) + (ε′′
1 + ε′′

2 )/(ε′
1 + ε′

2)]
μc. (A11)

APPENDIX B: DERIVATIONS OF EQS. (7) and (8)

We start from the Lorentz reciprocity theorem [38]

∂

∂x

∫
[ �E1(�r) × �H2(�r) − �E2(�r) × �H1(�r)] · x̂dσ

= iω
∫

[ �E1(�r) · �D2(�r) − �E2(�r) · �D1(�r)]dσ , (B1)

where ( �E1, �H1) and ( �E2, �H2) are two arbitrary guided modes.
Now we substitute for ( �E1, �H1) and ( �E2, �H2) the unper-
turbed backward-propagating field ( �E−, �H−) and the per-
turbed forward-propagating field ( �E p, �H p) under an external
transverse magnetic field, respectively. The external magnetic
field �Hext is applied to the transverse y direction and leads to a
perturbation for the mode distribution:

�E− = �E−(z) exp(−ikx),
(B2)�H− = �H−(z) exp(−ikx),

�E p = [ �E (z) + 
 �E (z)] exp[i(k + 
k)x],
(B3)�H p = [ �H (z) + 
 �H (z)] exp[i(k + 
k)x].

In the first order of perturbation, by using Eqs. (A1), (A2),
(B2), and (B3), the left side of Eq. (B1) leads to

∂

∂x

∫
[ �E−(z) × �H (z) − �E (z) × �H−(z)] · x̂ exp(i
kx)dσ.

(B4)

From a physical insight on backward- and forward-
propagating fields, the components of the electric field
and the magnetic field satisfy E−

x (z) = −Ex(z), E−
y (z) =

Ey(z), E−
z (z) = Ez(z), H−

x (z) = Hx(z), H−
y (z) = −Hy(z), and

H−
z (z) = −Hz(z).

Using the above relations, [ �E−(z) × �H (z) − �E (z) ×
�H−(z)] · x̂dσ = 2

∫
[ �E (z) × �H (z)] · x̂dσ .

The left side of Eq. (B1) is simplified as

2i
k exp(i
kx)
∫

[ �E (z) × �H (z)] · x̂dσ. (B5)

And the electric displacements are expressed as

�D1 = ε0ε �E−,
(B6)�D2 = ε0(ε �E p + iα �E p × �Hext ).

The right side of Eq. (B1) is

− k0

η0

∫
α �E− · ( �E p × �Hext )dσ

= −2k0

η0
exp(i
kx)

∫
αHextEx(z)Ez(z)dσ . (B7)

Combining Eq. (B5) and Eq. (B7), we find


k = ik0
∫

αHextExEzdσ

η0
∫

( �E × �H ) · x̂dσ
. (B8)

Here, ( �E , �H ) is the unperturbed mode. If we assume the
local magnetization response by the plasmon-induced IFE, by
substituting Eq. (A6) into Eq. (B8) the nonlinear coefficient
γ = 
k/P is expressed as

γ = 2k0
∫

α2ExEz(E∗
x Ez − ExE∗

z )dσ

η3
0

∫
( �E × �H ) · x̂ds

∫
Re( �E × �H∗) · x̂dσ

. (B9)

By substituting Eqs. (A1), (A2), and (A3) into Eq. (B9), we
get

γ = 4α2

η0k0

k2
1k3

2k′
1k′

2|k2|2(k∗
1 k + k1k∗)(

ε1k3
2 + k3

1

)
(k′

2|k2|2Re(kε∗
1 ) + k′2|k1|2)(k1 + k′

1)

(B10)

for the scheme of Fig. 1(a) and

γ = 2α2

η0k0ε1

k2
1k′

1(k∗
1 k + k1k∗)

Re(ε∗
1k)(k1 + k′

1)
(B11)
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for the scheme of Fig. 1(b). By substituting Eq. (A8) into
Eqs. (B10) and (B11), we get

γ ≈ 4π3h̄6ε4
0c2α2ω5

e6
(ε′

1 + 1)

×
[

1 + i

(
3

2ωτ
+ ε′′

1

ε′
1 + 1

)]
(μc)−3 (B12)

for the scheme of Fig. 1(a) and

γ ≈ 16π3h̄6ε4
0c2α2ω5

e6
ε′

1

[
1 + i

(
3

2ωτ
+ ε′′

1

ε′
1

)]
(μc)−3

(B13)

for the scheme of Fig. 1(b).
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