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The energy conversion efficiency of solar cells based on multicrystalline silicon is greatly deteriorated by
dislocations. However, an in-depth understanding on the dislocation motion dynamics down to atomic scale is
still lacking. In this paper, we propose a novel atomistic approach to simulate the kink migration and kink-pair
formation which govern dislocation motion in silicon, namely the kinetic activation-relax technique (k-ART).
With this method, long timescale events can be simulated and complex energy landscapes can be explored. Four
mechanisms for kink migration are observed, with total activation energy of 0.16, 0.25, 0.32, and 0.25 eV. New
nontrivial kink structures that participate in kink migration are identified due to the open-ended search algorithm
for saddle points in k-ART. In addition, a new pathway for kink-pair formation, with a minimum activation
energy of 1.11 eV is discovered. The effect of shear stress on kink migration is also investigated. It shows that
shear stress shifts the energy barriers of available events to lower energies, resulting in a change of the preferred
kink-migration mechanism and a reduction of kink-pair formation energy.
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I. INTRODUCTION

Single-crystal and multicrystalline silicon (mc-Si) are
widely used for solar cell applications. Production of the
former results in an almost defect-free crystalline material at
the expense of low productivity and high energy consumption,
whilst the latter exhibit various crystalline defects and impuri-
ties with lower production costs and higher potential for large
production scale. The presence of defects in mc-Si greatly
reduces the overall conversion efficiency and there are still a
large room for improvements [1,2]. Dislocations, in particular,
are proven to be especially detrimental to the lifetime of
minority charge carriers [3,4]. However, atomistic details of
the dislocation dynamics are still lacking, and an in-depth
understanding on the underlying mechanisms responsible for
the nucleation and migration of dislocations can potentially
lead to better material quality and subsequently increase the
conversion efficiency of silicon solar cells.

Silicon crystals have a diamond structure with two sets of
{111} planes: the narrowly spaced plane (glide set) and the
widely spaced plane (shuffle set). At high temperature and low
stress, dislocations are either screw dislocations or 60◦ dislo-
cations, the former of which dissociates into two 30◦ Shockley
partials, while the latter into 30◦ and 90◦ Shockley partials [5].
Large experimental efforts have been devoted to character-
ize the dislocations in this regime [6–8], and the common
conclusion is that they are positioned in the narrowly spaced
glide set, and slip in the same set. In the low-temperature and
high-stress conditions, experimental studies also show that the
dislocations prefer their undissociated state [9,10]. Whether
the dislocations are located in the glide or shuffle set is not yet

firmly established [11,12], but the general consensus is that in
the low-temperature and high-stress regime, the dislocations
are positioned in the widely spaced shuffle set, and slip in the
same set.

In silicon, kink-pair formation and kink migration govern
the dislocation motion, and can be described as a sequence of
bond breaking and creation. The covalent nature of bonds in
silicon leads to a high activation energy for dislocation motion
in comparison to metals [5,13]. Theoretical estimations of
kink formation energy Fk and kink migration energy Wk

have been done for the partial dislocations [14–21], while
there only exist a few studies on the undissociated disloca-
tion [22,23]. Despite numerous simulation studies, results are
not conclusive due to the large scatter of calculated energies,
possibly related to the myriad existence of kink configura-
tions [24].

Dislocation motion in silicon is considered as a rare event
due to the steep Peierls valleys; thus, the timescale limitation
of conventional molecular dynamics makes this method not
well-suited to simulate such mechanisms. Therefore most
calculations of the kink-pair formation energy and kink mi-
gration energy have been based on the nudged elastic band
(NEB) method [25,25] in combination with either density
functional theory (DFT) or interatomic potentials. NEB simu-
lation require knowledge of the initial and final states, and an
initial guess for the connecting pathway. This means that only
the pathway closest to the initial guess is explored, leaving
other possible pathways unexplored. This can be problematic
with complex energy landscapes, where nontrivial but relevant
pathways may be present.
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Core structure of kinks on dislocations and their role in
dislocation motion in silicon have been considered to be of
high complexity [26]. To thoroughly sample the energy land-
scape around such complex structures and reveal new possible
nontrivial structures, an open-ended search algorithm is a
necessity. In principle, such a method can perform an unbiased
exploration of the energy landscape, and potentially find all
possible transitions from the initial configuration. Together
with a kinetic Monte Carlo (KMC) scheme, nonintuitive kink
structures and new energy pathways may present themselves
as the system evolves.

In this study, we present a novel approach to simulate the
kink migration and kink-pair formation in silicon. A kinked
undissociated screw dislocation placed in the shuffle set is in-
vestigated with k-ART, an off-lattice KMC algorithm. A topo-
logical approach is utilized to classify local off-lattice config-
urations present in systems involving dislocations. Transitions
are found by an open-ended search for saddle points. Using k-
ART, new intermediate kink structures that participate in kink
migration were revealed; furthermore, with the comprehen-
sive search for saddle points, a new minimum energy pathway
for kink migration and kink-pair formation is presented.

The paper is organized as follows. First, the methodology
is described, including a description of k-ART, the model
employed and the computational details. The results and
discussion section is divided into three parts. In the first part,
overall time evolution for all three stress levels are presented.
The second part goes into the atomic details of kink migration,
whilst the third part concerns the kink-pair formation. In
particular, we mainly focus on the atomic details for both
mechanisms, identifying which energy pathways are favored
for kink migration and kink-pair formation and the associated
atomic configurations. The effect of shear stress on the energy
barriers is also presented. In the end, key findings in this study
are summarized with conclusions and outlook.

II. METHODOLOGY

A. Kinetic activation-relaxation technique

K-ART is an off-lattice kinetic Monte Carlo (KMC) based
method with an open-ended search for saddle points and on-
the-fly cataloguing. K-ART can be divided into three parts:
a topological classification, a searching method for saddle
points and, the analysis and selection of the events according
to transition state theory. All events that are generated are
cataloged on-the-fly as the system evolves and can be reused
throughout the simulation. A workflow of the k-ART algo-
rithm is illustrated in Fig. 1 and the general steps are described
in the following sections. For more in-depth details of the
method, the reader is referred to the following papers [27–30].

1. Topological classification

K-ART classifies the atomic structure through graph the-
ory, which provides the possibilities to categorize complex
and off-lattice atomic arrangements while taking into account
long- and short-range elastic interactions.

Graphs are constructed by considering a sphere with a
predefined radius around each atom in the system as illustrated
in Fig. 2. The sphere radius depends on the system under
investigation, but is typically selected to be between 5 and
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FIG. 1. Flowchart of the k-ART structure.

7 Å, a region that counts between 40 and 80 atoms. The atoms
within the sphere are connected by considering a neighbor
prescription, e.g., first neighbor distance cutoff, which results
in a truncated connectivity graph. This graph is then ana-
lyzed by NAUTY, a topological analysis library developed by
McKay [31]. NAUTY provides a unique automorphic group
identifier for each atom with an associated table linking the
vertices of a reference graph.

Geometrical information is lost during the topological
classification. However, a complete reconstruction from a
topological graph is possible since we know the positions
of all atoms surrounding the local graph, which allows the
algorithm to reconstruct a unique and fully relaxed geometry

[ 973883 ]

(a) (b) (c)

NAUTY

FIG. 2. Schematic illustration of the topological classification
procedure where the red atom is in the center of the local graph.
(a) is the initial configuration with the topology sphere, and (b) is
the cluster of atoms within the sphere. A connectivity graph is
extracted and analyzed by NAUTY, which returns (c) a unique label
characteristic of the graph’s topology.
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FIG. 3. Illustration of a complex energy landscape. The searches
for saddle require random displacements followed by relaxation of
the orthogonal forces in the hyperplane until the first-order saddle
point is reached. The dashed circles represents the configuration on
the energy surface before relaxation and the solid circles represent
configuration after relaxation.

that takes into account short- and long-range interactions,
including elastic deformations.

2. Saddle point search: ART nouveau

Open-ended search algorithms for saddle points make it
possible to explore all transitions surrounding a local mini-
mum in complex structures, schematically illustrated in Fig. 3.
K-ART uses the ART nouveau [32,33] algorithm to search
for saddle points that included a Lanczos-based approach for
efficiently finding the lowest eigenvalues and corresponding
eigenvectors of the Hessian matrix.

Several independent searches for saddle points are
launched from each unique topology in the system following
a three-step procedure: random displacements, following the
path of negative curvature, and relaxation into a new mini-
mum.

The initial displacement is introduced by pushing a given
atom, or a set of atoms, in an arbitrary direction. The system
is considered to be out of the harmonic well when the lowest
eigenvalue of the Hessian matrix, computed using the Lanczos
algorithm, becomes negative. Once outside the harmonic well,
the system is pushed along the direction of negative curva-
ture represented by the dashed circles in Fig. 3. Forces are
minimized in the hyperplane orthogonal to this direction after
each push (solid circles). This step is repeated until the total
force becomes less than a preset threshold, indicating that a
first-order saddle point is reached. The configuration is then
pushed over the saddle point and relaxed into a new energy
minimum.

The initial, saddle and final configurations are identified
by means of topology, thus providing a unique label for each
event that is used to create a catalog of possible events in the
system. It is assumed that all atoms that share the same topol-
ogy will have access to the same set of events, called generic
events. To ensure a complete catalog of events, searches for
events are not limited to new topologies; additional searches

are launched proportional to the logarithm of the frequency
for which a topology is encountered during the simulation.

3. Analysis and selection of the events

Once the catalog of events is up-to-date, all events are
analyzed. The associated rates ri of the events i is given as

ri = �0 exp

(
− �E

kBT

)
, (1)

where �E = Esaddle − Einitial is the energy barrier; kB is the
Boltzmann’s constant; T is the temperature; �0 is a prefactor
described by the transmission coefficient and the attempt
frequency, which is fixed to 1013 s−1 at the onset of the
simulation [30].

All generic events are ordered according to their energy
barrier. The lowest-energy barrier events that make up to
99.9% of the total rate are fully reconstructed and their
structure relaxed to a local energy minimum or converged to
the saddle point, resulting in what we call specific events. The
remaining events, that contribute very little to the rate, are
cloned which means that the events are not fully reconstructed
and the short- and long-range elastic interactions for these
unlikely events are not fully accounted for. At this point, an
event is chosen following the standard KMC algorithm. The
elapsed time t is computed as

t = − ln μ

ri
, (2)

where μ is a random number and ri is the rate of the associated
events. If the total time is reached the code stops, otherwise it
goes back to the topology analysis step as seen in Fig. 1.

To sum up, k-ART makes use of a unique topology classifi-
cation coupled with an unbiased, open-ended search for saddle
points, while considering short- and long-range interactions
due to elastic effects. An extensive catalog of the events
are created on-the-fly which speeds up the simulation as the
system evolves. In the past, k-ART has been used in various
systems to describe diffusion of point defects in metals and
semiconductors [34–36] and more complex systems with
grain boundaries and amorphous silicon [37,38].

There exists another off-lattice KMC code, based
on the dimer method, the self-evolving atomistic KMC
(SEAKMC) [39,40] which has been found to show compara-
ble performances to k-ART [41]. We selected k-ART because
of its topological classification, that provides more flexibility
to classify disordered systems, although the implementation
of activation volume in SEAKMC gives a speed-up in perfor-
mance in near-crystalline environments.

B. Model

The simulated system contains a kinked screw disloca-
tion in the diamond lattice structure. The kink is created
by stacking two substructures containing a 10b long screw
dislocation which is shifted one Burgers vector in respect
to the other, where b represents the length of the Burgers
vector. The initial atomic positions for each substructure are
created by calculating the displacement field based on elastic
theory for screw dislocations [5]. The left and right dislocation
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FIG. 4. (a) Schematic illustration of simulation box with two
dislocation segments of length 10b. The atoms are represented by
the gray area, which is surrounded by a vacuum layer of 10 Å along
x and y surfaces. Dislocation segment 1 lies in position A, while
segment 2 lies in position A′, resulting in a kink positioned in position
B (mixed shuffle/glide set). The periodic boundary condition along
z direction results in a kink pair (top and bottom kink). In (b), the
atomic structure projected along [101̄] is shown, while (c) shows
the atomic structure in the bottom kink projected along [12̄1]. The
red atom represents an overcoordinated atom, connecting the two
opposing dimers.

segments are placed in the shuffle set denoted A and A′,
respectively. The two segments are displaced 1b along the slip
direction, resulting in two dimers tilted in opposite directions
relative to the [1̄01] direction, as illustrated in Fig. 4(a). Each
kink consists of a 5-coordinated atom positioned at B, which
corresponds to the mixed shuffle/glide set. The overcoordi-
nated atom connects the opposing dimers, thus connecting the
dislocations segments lying in the A and A′ positions.

The simulation box has dimensions 152 × 151 × 77 Å and
contains 67 200 atoms. It is oriented such that the x, y, and
z axes correspond to [12̄1], [111], and [101̄], respectively.
The lattice parameter a0 is set to 5.430 Å based on the
experimental value found at 300 K [42]. Vacuum is added
on the surfaces with the x and y axes as normal. The surface
normal to the x axis is free to relax to minimize surface effects.
However, the surface normal to the y axis is rigidly shifted
and held fixed to maintain the stress field due to shearing. The
simulation cell is sufficiently large so that any surface effects
on the core structure and the dislocation motion is negligible.
Periodic boundary conditions is applied along [101̄], which
means the system is an infinite kinked screw dislocation with
10b separation between the kinks, which is sufficiently large
that any kink-kink interactions can be neglected.

C. Simulation details

Atomic interactions are modeled using the environmental-
dependent interatomic potential (EDIP) [43,44] as imple-
mented in the Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) [45]. LAMMPS is coupled to k-ART
as a library and is used as a force calculator. K-ART is used
to explore the energy pathways and to simulate the evolution

of the system. A sphere containing 47 ± 2 atoms with a radius
of 6.0 Å is used for the topological classification. The cluster
size variation is due to local distortions. During the search for
saddle points, the total forces (

√∑N
i F2

i ) are relaxed with a
convergence criterion of 0.05 eV/Å, while each minimum is
relaxed to a convergence of 0.0005 eV/Å. Events with energy
barriers higher than 2.7 eV are ignored, which corresponds
to events with very low rates occurring on timescales out of
interest. For all newly encountered topologies, the search for
new saddle points is launched 10 times. The atomic structures
are visualized in Open Visualization Tool (OVITO) [46].

Because of the covalent nature and high activation energy
for dislocation movement in silicon, slip is expected to occur
at elevated temperatures, or with high external stresses. It
is well known that the activity of dislocations in silicon
decreases substantially when reducing the temperature. This
work is related to investigation of dislocation evolution during
solidification; therefore, the temperature is set to 900 K for all
simulations when calculating the transition rate. Furthermore,
900 K is already low compared to the melting temperature of
silicon, which is as high as 1690 K.

In mc-Si, atoms are subjected to external stresses which
affects the dislocation motion. Sources of stress can be grain
boundary interfaces and thermal stresses generated during
heating and cooling. External stress can affect the energy
barriers and mechanisms for dislocation motion, and to inves-
tigate the effect of shear stresses, the model is subjected to a
shear stress before the onset of the simulation. The shear stress
is applied on the surface parallel to the {111} planes, which
promotes motion of screw dislocations along [12̄1]. After the
application of the shear stress, the forces are minimized with
a convergence criterion of 0.0005 eV/Å. To ensure a constant
shear stress, application of shear stress is repeated after each
KMC step together with a relaxation of the forces to ensure
the configuration is still kept in an energy minimum.

III. RESULTS AND DISCUSSION

A. Time evolution

Utilizing a KMC scheme gives us the possibility to ex-
plore mechanisms at timescales unattainable for conventional
molecular dynamics. In Fig. 5, the time evolution (left axis)
and the cumulative topologies (right axis) for kink migration
and kink-pair formation is presented for all three stress lev-
els. The kinetics is divided in three regions: kink migration
(green), kink-pair formation (yellow), and creation of defects
along the dislocation line without creating a stable kink (gray).

Kink migration at 900 K occurs on the femtosecond scale,
and the plateaus in time evolution for 0.0 and 0.5 GPa,
indicates that kink migration does not significantly contribute
to the time evolution. However, with 1.0-GPa applied shear
stress, kink migration, formation and the creation of defects
occurs on the same timescale of femtoseconds. The major
contribution to the time at 0.0 and 0.5-GPa shear stress is the
creation of defects along the straight dislocation, where these
events are at the nanoscale. However, oscillations between
various defects can occur if the simulation does not find
a stable kink configuration, which indeed happened in the
nonstress simulation.
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FIG. 5. Simulated time (solid line) and cumulative topologies
(dashed line) as a function of KMC step for (a) 0.0, (b) 0.5, and
(c) 1.0 GPa.

Cumulative topologies (dashed lines) for all stress levels
are shown in Fig. 5. For shear stress of 0.0, 0.5, and 1.0 GPa,
k-ART identifies 4974, 12 458, and 3545 topologies in total,
respectively. Among these topologies, the number of unique
topologies visited for the respective stress levels are 242, 367,
and 176. The majority of the events are either unstable kinks
during migration and formation of other point defects along
the dislocation line.

There are two main features of the cumulative topology
plot, which can be described as exploration of new topologies
or oscillations between already encountered topologies. The
exploration of new topologies is illustrated by the increase in
cumulative topologies, where the simulation visits unexplored
configurations. Plateaus on the topology curve indicates recy-
cling of topologies already encountered.

B. Kink migration

1. Atomic structure

Kink migration from the initial kinked screw disloca-
tion described in Sec. II B is first studied. The initial kink

contains one 5-coordinated atom in position B, which is con-
sidered to be the ground state. K-ART identified four different
mechanisms leading to kink migration, denoted mechanism
Mm

1 , Mm
2 , Mm

3 , and Mm
4 . Several stable configurations that

participate in the kink migration are observed, illustrated in
Fig. 6. Mechanism Mm

1 (solid lines) visits one intermediate
configuration, Mm

2 (dashed-dotted lines) is a direct transition,
while Mm

3 (dashed lines) and Mm
4 (long-dashed lines) visit

three intermediate configurations. Their associated forward
energy barriers for each intermediate step during the kink
migration are marked along their corresponding pathway. The
intermediate kink structures, which can be described as one,
three or five 5-coordinated atoms within the kink, are marked
as the red atoms in Fig. 6. For simplicity, we denote these
overcoordinated kink structures as (m,n) kinks, where m is
the number of atoms that are n-coordinated, e.g., (1,5) kink
represents the configuration with one 5-coordinated atom in
the kink.

The bond length is sketched with the color gradient (blue,
white, red) in Fig. 6. The bonds associated with the overcoor-
dianted atom(s) are characterized by a length of 2.53 Å which
is stretched compared to bulk length of 2.35 Å. For the (3,5)
and (5,5) kinks, the bond lengths between the overcoordinated
chain of atoms is in the range of 2.53 and 2.57 Å, where the
higher end of the range is observed in the middle of the chain.
The atoms exhibiting these stretched bonds are the most active
during kink migration.

All four kink migration mechanisms can be described as
a sequence of bond breaking and creation. Mechanism Mm

1 is
initiated by movement of atoms 3 and 9 toward each other
to create a bond resulting in three overcoordinated atoms.
This results in the intermediate (3,5)-kink configuration. To
complete the kink migration, atoms 1 and 9 move in opposite
directions, breaking the bond between them and resulting in
the (1,5) kink, which has migrated a distance of 1b along
[101]. Mm

3 is similar to Mm
1 , where the first intermediate kink

structure is the (3,5)-kink structure and second intermediate
step results in the (5,5)-kink structure by movement of atoms
5 and 7 toward each other. Two subsequent events occur with a
similar mechanism as Mm

1 where a single bond is broken due
to two atoms moving apart from each other. Mm

2 is a direct
transition where the bond between atoms 1 and 9 is broken
simultaneously that a bond between atoms 3 and 9 is created.
Mechanism Mm

4 is initiated by movement of atoms 2 and
9 move towards each other, resulting in overcoordination of
atoms 1, 2, and 9. This kink is termed the (3, 5)′ kink. The next
event consists of repulsion between atoms 1 and 9 resulting
in overcoordination on atom 3, named the (1, 5)′ kink. The
next event consists of an attraction of atoms 3 and 9, forming
a quasisymmetrical (3, 5)′ kink. The structure appears to be
symmetrical, but due to local variation of the strain, the energy
pathway is asymmetrical, which is shown in the next section
in Fig. 7. To complete the kink migration, atoms 2 and 9 move
apart from each other resulting in the a new (1,5) kink, which
have migrated a distance of 1b along [101].

The (1,5) kink is considered to be the ground state, where
the (3,5) kink has an energy that is 0.09 eV higher compared
to the ground state, which is similar to the reported value
based on NEB simulations with EDIP [22]. However, two new
kink structures emerge here: the (3, 5)′ kink, which has a core
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FIG. 6. Atomistic representation of stable kink structures projected along [12̄1]. The solid, dashed-dot, and dashed lines correspond to
mechanism Mm

1 , Mm
2 , and Mm

3 , respectively. The color bar represents the bond length, and red atoms are overcoordinated atoms.

energy of 0.08 eV above the ground state; the (1, 5)′ kink,
which has a core energy of 0.10 eV above the ground state.
Because the energy differences between the stable kink struc-
tures are very small, there would be an oscillation between the
kink structures at finite temperature. The (1,5)-kink and (3,5)-
kink structures have been described by Pizzagalli et al. [22]
as narrow and wide kinks, respectively; while the authors also
observed a kink structure with a dangling bond with DFT
calculations. The core energy was degenerated according to
their DFT calculations. Due to the size restriction with DFT,
no conclusions was made based on which core is the most
stable. However, since the energy difference is small, the kink

should not be confined to a single geometry for a very long
time [22].

In our study, a (5,5) kink is observed to participate in
kink migration acting as an intermediate configuration, which
has not been previously described. The core energy of the
(5,5) kink has an energy 0.28 eV higher than the ground
state. Interestingly, a (7,5) kink is also observed during the
simulation, however, this kink does not participate in kink
migration but acts as a metastable structure with an energy
of 0.4 eV higher than the ground state. In fact, these wide
kinks can be described as dislocation segments in position B.
Calculations based on the EDIP and Tersoff potentials [47],

FIG. 7. The minimum energy pathway for the different mechanisms is shown, where the circles and crosses represent minimum and saddle
points, respectively. The saddle point energy relative to the ground state is indicated by the dashed horizontal line. The labels correspond to
their respective kink configuration as shown in Fig. 6. The lines act as a guide for the eye.
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TABLE I. Comparison of the total activation energy for kink
migration found in this study. Three methods are considered: K-ART,
dimer method and NEB. The force calculations of the different sim-
ulations are based on various interatomic potentials (EDIP, Tersoff
and Lenosky) and DFT.

Method Potential Activation energy (eV)

This work K-ART EDIP 0.16a

0.25
0.32b

0.25b

Pedersen et al. [23] Dimer Lenosky 0.07
Dimer EDIP 0.17a

0.25
0.33a

Dimer Tersoff 0.18a

Pizzagalli et al. [22] NEB DFT 0.075
NEB EDIP 0.158a

aOne intermediate configuration.
bThree intermediate configurations.

show that straight dislocations lying in position B are unstable.
Nevertheless, there is a study suggesting that dislocations in
position B could act as intermediate steps in core transforma-
tions from shuffle to glide character and dissociation of the
glide dislocation [48]; however, this transition pathway would
be more complicated in comparison to a direct transition from
shuffle to glide [49].

2. Energy pathways

The energy pathways for the kink migration mechanisms
are shown in Fig. 7, with the same line style as the top panel.
The first step of mechanism, Mm

1 , has an energy barrier of
0.15 eV followed up with an transition of 0.06 eV to complete
the kink migration. Mechanism Mm

2 is a direct kink migra-
tion which includes crossing of a single barrier of 0.25 eV.
Mechanism Mm

3 is the mechanism which follows the highest
energy pathway, with two initial steps with energy barriers
of 0.16 and 0.22 eV. The two subsequent events completes
the kink migration with energy barriers of 0.05 and 0.07 eV.
The first three events of mechanism Mm

4 have energy barriers
of 0,17, 0.13, and 0.15 eV, and the event that completes the
kink migration has a barrier of 0.07 eV. Figure 7 shows an
asymmetrical minimum energy pathway for mechanism Mm

4 .
Among these four kink migration mechanisms, Mm

1 is the
mechanism that exhibits the lowest maximal energy barrier,
which makes mechanism Mm

1 the most probable. However,
mechanism Mm

4 exhibit similar barriers compared to Mm
1 , thus

is also considered to be a highly probable mechanism for kink
migration.

The total activation energy is considered to be the maxi-
mum increase of energy along the energy pathway in compar-
ison to the ground state. For the mechanism Mm

1 , Mm
2 , Mm

3 ,
and Mm

4 , the activation energy is calculated to be 0.16, 0.25,
0.32, and 0.25 eV, respectively. A comparison between the
values calculated by the present simulations and the results by
Pizzagalli et al. [22] and Pedersen et al. [23] are summarized
in Table I. An excellent compliance between the various meth-
ods based on the EDIP (NEB and dimer method) and Tersoff

potential (dimer method) is observed. However, simulations
based on DFT calculations with NEB method and based on
the Lenosky potential together with the dimer method show
lower kink migration barriers in comparison with the other
potentials. Simulations based on DFT calculations and the
Lenosky potential are reported to prefer undercoordination of
the atoms in the kink structure, leading to a dangling bond
in the kink; whilst, the EDIP and Tersoff potentials prefer
overcoordination [23].

Despite the discrepancies in atomic structure with the
different potentials, the mechanisms for kink migration are
comparable; that is, kink migration consists of a sequence of
breaking and creation of bonds for all potentials and methods.

3. Effect of thermal expansion

Simulations based on KMC usually neglect temperature
effects like thermal expansion on the energy barriers. The
impact of omitting the thermal expansion has been investi-
gated by running additional k-ART simulations with initial
structures based on experimental lattice parameters at 900 K
(a0 = 5.437 Å) and 1500 K (a0 = 5.457 Å) [42]. Showing a
difference of less than 0.01 eV, the energy barrier for kink
migration is only weakly influenced by thermal expansion.
Noteworthy, the deviation cannot only be correlated to thermal
expansion. Local deformations and elastic interactions, due to
the kink-kink or kink-surface separation are not necessarily
equal in all instances, can contribute to the small deviation.
However, the atomistic details of the migration mechanisms
are left unchanged. Furthermore, an increase in temperature
gives higher entropic contribution to the free energy, affecting
the dislocation motion; however, this effect is not investigated
in this study.

4. Effect of shear stress

The effect of shear stress on energy barriers related to kink
migration is illustrated in Fig. 8, which shows the cumula-
tive distribution of available events during kink migration.
Events with an energy barrier above 0.6 eV are omitted,
since these barriers are never selected during kink migration.
Energy barriers for each mechanism are marked with the
black arrows. For mechanism Mm

3 and Mm
4 , which have several

barriers of similar value, the arrow indicates the energy region
where these events occur. In the nonstressed condition, all
events associated with mechanism Mm

1 , Mm
3 , and Mm

4 exhibit
energy barriers lower than the energy barrier for mechanisms
Mm

2 , where the latter is the least probable mechanism, as
discussed in Sec. III B. Interestingly, the shear stress decreases
the energy barrier for the event associated with mechanism
Mm

2 , while the energy barriers for mechanism Mm
1 , Mm

3 and
Mm

4 remains the same or increases. For shear stresses of
0.5 and 1.0 GPa, the energy barrier for mechanism Mm

2 is
calculated to be 0.16 and 0.13 eV, respectively; therefore,
Mm

2 becomes the dominating mechanism for kink migration.
Noteworthy, with the application of shear stress, the energy
pathway for mechanism Mm

1 was explored only once, while
the higher energy pathways for mechanism Mm

3 and Mm
4 were

left unexplored.
To explain the shift in energy barriers, we look at the

atomic bonds in the kink. The shear stress slightly change
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FIG. 8. Cumulative distribution of the energy barriers of the
available events during kink migration. The associated energy bar-
riers for kink migration is marked with the black arrows. A shift in
energy barriers for mechanism Mm

2 is observed with application of
shear stress, changing the preferred mechanism for kink migration to
mechanism Mm

2 .

the bond lengths between the atoms directly connected
to the overcoordinated atom. In the top kink, the bond
above the overcoordinated atom is slightly reduced in length
from 2.53 Å in the nonstressed condition to 2.52 and 2.50 Å
with shear stresses of 0.5 and 1.0 GPa, respectively. Below
the top-kink, the bond is slightly extended from 2.53 Å for the
nonstressed condition, to 2.54 and 2.56 Å for shear stress of
0.5 and 1.0 GPa, respectively. The opposite effect is observed
for the bottom kink. As described in Sec. III B 1, kink migra-
tion is described as creating and breaking bonds; the extended
bonds would require less energy to break resulting in greater
attraction between the kink pairs, and a higher diffusion rate
for kink migration.

C. Kink-pair formation

After a kink has successfully migrated and annihilated,
a 20b long straight dislocation is created. From a straight

FIG. 9. Two mechanisms are encountered, Mf
1 (solid and dashed-

dotted lines) and Mf
2 (dashed line), the former is observed in the

nonstressed and stressed conditions, while the latter is observed
only with 0.5-GPa shear stress. The ball-stick models illustrates
the atomic configurations with same color scheme as Fig. 4. The
numbers indicates the atoms that participate in kink-pair formation.
The forward barriers for each mechanism is indicated between the
configurations.

kink-free dislocation, the kink-pair formation is studied within
the same simulations with an applied shear stress of 0.0 and
0.5 GPa, respectively.

In the nonstressed simulation, no stable kink pair is created
due to the asymmetric energy landscape, that is, a very high
forward barrier and very low backward barrier. The reversed
energy pathway for kink-pair formation, i.e., annihilation
of kink pairs is reported instead. K-ART imposes detailed
balance when finding events, i.e., all reverse events are au-
tomatically added to the catalog. Therefore the atomic details
of kink-pair formation in the nonstressed condition are still
valid.

For the simulation with 1.0 GPa, several point defects
are generated along the dislocation line resulting in a very
distorted dislocation line. Due to the distortions, derivation of
a minimum energy pathway with well-defined kink structures
was not possible, and is thus not included in the following
sections.

1. Atomic structure

The atomic details of each mechanism with a shear stress of
0.0 and 0.5 GPa are illustrated in Fig. 9. A single mechanism,
Mf

1, leading to stable kink pairs, is observed for both stress
levels, resulting in the formation of a pair of (1,5) kinks. A
second mechanism, Mf

2, is explored in the simulation with a
shear stress of 0.5 GPa, resulting in a pair of a (1,5) kink and
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FIG. 10. Minimum energy pathway for kink-pair formation with
shear stress of 0.0 and 0.5 GPa. Two mechanisms are observed,
named Mf

1 and Mf
2, where the latter is only observed for the 0.5 GPa

simulation. The labels correspond to their respective kink configura-
tion as shown in Fig. 9. The lines act as a guide for the eye.

a (3,5) kink. A stable kink pair is fully developed when the
opposing tilt direction of the stacked {111} plane is observed
in between the overcoordinated atoms, as shown in Figs. 9(c)
and 9(e).

The initial step in the kink-pair formation for both Mf
1 and

Mf
2 is initiated by movement of atoms 2 and 3 toward each

other, creating a bond between the two atoms. The result is a
(2,5) half-kink, which is an intermediate configuration where
the dislocation has not fully slipped from one Peierls valley to
a neighboring valley, resulting in a small dislocation segment
lying in position B. A complete kink formation of the (1,5)-
kink pair occurs by simultaneously breaking the bond between
atoms 3 and 4, whilst creating a bond between atoms 4 and
5. Mechanism Mf

2 exhibit similar kinetics as Mf
1. However,

Mf
2 includes a second intermediate configuration, which can

be characterized as a (4,5) half-kink. Once created, the kink
pairs can either annihilate each other or migrate further apart
as described in Sec. III B.

2. Energy pathways

The energy pathways are shown in Fig. 10. The first
step of mechanism Mf

1 and Mf
2 are interchangeable. With

a shear stress of 0.0 and 0.5 GPa, the initial step has an
energy barrier of 0.60 and 0.43 eV, respectively. The sub-
sequent event to finish the kink-pair formation is calculated
to have an energy barrier of 0.52 and 0.38 eV. For mech-
anism Mf

2, two subsequent events are required to complete
the kink-pair formation, with barriers calculated to be 0.24
and 0.33 eV.

The mechanisms reported in this paper are mostly similar
to the pathway described by Pizzagalli et al. [22] based on
NEB and EDIP, where mechanism Mf

1 starts and ends with the
same configuration; however, the intermediate configurations
are somewhat different. The pathway found by NEB with
EDIP follows (a) → (b) → (d) → (c) in Fig. 10, whilst
k-ART finds an energy pathway which follows the config-
urations (a) → (b) → (c). In our simulations, the kink-pair
formation energy, i.e., the total activation energy, is calculated
to be 1.11 and 0.74 eV for the systems subjected to 0.0
and 0.5 GPa of shear stress, respectively. In comparison,
the authors of Ref. [22] reported a total activation energy
of 0.91, 0.88, 0.83, and 0.79 eV for stress levels of 0.0,
0.31, 0.61, and 0.92 GPa, respectively. However, they used
configuration (a) and (d) to calculate the kink-pair formation,

which is an intermediate metastable half-kink and not a fully
developed kink.

The energy pathway for mechanism Mf
2 in our simulation

visits configuration (d), i.e., the (4,5) half-kink. The activation
energy with the (4,5) half-kink as the final configuration is
0.65 eV with 0.5 GPa applied shear stress, which is substan-
tially lower than the estimated value of 0.83 eV with 0.61 GPa
shear stress as reported in Ref. [22]. The boundary conditions
used in this work and in the work in Ref. [22] are similar, and
is based on the same interatomic potential; thus, the method is
likely the reason for the difference.

The dimer calculations based on the Lenosky potential
performed by Pedersen et al. [23] gives a total activation
barrier of 1.19 eV, similar to the activation barrier found in this
study of 1.11 eV. However, the dimer method as implemented
in the study by Pedersen et al. [23] is not coupled to a KMC
algorithm; therefore, the energy landscape from nonintuitive
configurations could have been left unexplored, and pathways
with lower activation energy containing such configurations
could be missed.

In addition to the EDIP and NEB calculations, Pizzagalli
et al. performed DFT calculations with NEB identified a
total activation energy of 1.36 eV [22], which is higher than
all calculated values based on other potentials independent
of method. Because of the surface constraints, the authors
concluded that the value obtained from DFT calculations
serve as an upper limit, while their EDIP calculations serve
as an lower limit. Thus the kink-pair formation should be in
the range of 0.9 to 1.36 eV, which is in agreement with our
work.

IV. SUMMARY

In this study we deploy a novel approach to simulate the
mechanisms related to dislocation motion in silicon, that is,
kink migration and kink-pair formation. Four mechanisms for
kink migration are observed. The activation energies for the
four mechanisms are calculated to be 0.16, 0.25, 0.32 and
0.25 eV, respectively. With the application of shear stress, the
preferred mechanism for kink migration changes to mech-
anism Mm

2 by lowering the energy barrier in comparison
with the other mechanisms. Several new kink structures are
explored, characterized as the (1, 5)′, (3, 5)′, (5,5), and (7,5)
kinks; where the three former participates in kink migration.
In particular, the (1, 5)′ and (3, 5)′ kinks are the part of a
new kink migration mechanism. Two energy pathways for
kink-pair formation are identified, resulting in a pair of two
(1,5) kinks and a pair of (1,5) and (3,5) kinks. The former
of the two mechanisms follows a pathway with a lower
total activation energy than those previously described in the
literature. The latter contains a higher energy pathway, and is
only sampled at a shear stress of 0.5 GPa. At a temperature
of 900 K, kink migration takes place on the femtosecond
scale; whilst, kink-pair formation takes place after hundreds of
nanoseconds.

To conclude, this study demonstrates that k-ART is a
viable method to simulate the complex kinetics related to
dislocation motion in silicon. A good agreement is found
between the kink migration energies and kink-pair formation
energies calculated with k-ART and the results obtained by
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other methods, e.g., the NEB and dimer methods. In addi-
tion, new kink structures and unexplored energy pathways
relevant for both kink migration and kink-pair formation are
observed. With k-ART, the time step restriction associated
with conventional molecular dynamics is relieved. Together
with an unbiased search for saddle points, the complex energy
landscape surrounding kink structures in silicon is thoroughly
explored where new nontrivial and relevant structures have
been presented.

These mechanisms are relevant for studying nucleation
of dislocations from various dislocation sources, e.g., grain
boundary junctions, k-ART can thus be used to fill in the
missing information from nucleation of dislocation to char-
acterization performed postmortem. Furthermore, k-ART has
the potential to be applied to simulate the interactions between
grain boundaries and dislocations. Future work in this direc-
tion can improve our understanding of the mechanisms behind

dislocation generation in systems containing grain boundaries
which can in turn help to increase material quality and the
pursuit of a higher conversion efficiency in solar cells based
on mc-Si.

The saddle point search algorithm ART nouveau is freely
distributed [50]. K-ART and development ART nouveau are
available upon request from Normand Mousseau.
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