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Long-range entangled-plaquette states for critical and frustrated quantum systems on a lattice

Jérôme Thibaut, Tommaso Roscilde, and Fabio Mezzacapo
Université Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France

(Received 30 April 2019; revised manuscript received 30 September 2019; published 30 October 2019)

We explore a variational Ansatz for lattice quantum systems—named long-range entangled-plaquette state—
in which pairs of clusters of adjacent lattice sites are correlated at any distance. The explicit scale-free
structure of correlations built in this wave function makes it fit to reproduce critical states with long-range
entanglement. The use of complex weights in the Ansatz allows for an efficient optimization of nonpositive
definite states in a fully variational fashion, namely without any additional bias (arising, e.g., from pre-imposed
sign structures) beyond that imposed by the parametrization of the state coefficients. These two features render
the Ansatz particularly appropriate for the study of quantum phase transitions in frustrated systems. Moreover,
the Ansatz can be systematically improved by increasing the long-range plaquette size, as well as by the
inclusion of even larger adjacent-site plaquettes. We validate our Ansatz and its optimization procedure in
the case of the XX and Heisenberg chain, and further apply it to the case of a simple, yet paradigmatic
model of frustration, namely the J1 − J2 antiferromagnetic Heisenberg chain. For this model we provide clear
evidence that our trial wave function faithfully describes both the short-range physics (particularly in terms of
ground-state energy) and the long-range one expressed by the Luttinger exponent, and the central charge of
the related conformal field theory, which govern the decay of correlations and the scaling of the entanglement
entropy, respectively. Finally we successfully reproduce the incommensurate correlations developing in the
system at strong frustration, as a result of the flexible representation of sign (phase) structures via complex
weights.
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I. INTRODUCTION

Knowing the equilibrium state of quantum many-body
systems is one of the central problems of modern theoretical
physics. Similar to the classical case, this problem can be
generally cast in the form of the evaluation of a statistical
sum over a number of configurations growing exponentially
with the number of degrees of freedom, and addressed with a
stochastic approach, defining the general strategy of quantum
Monte Carlo (QMC) techniques [1,2]. In contrast to the
classical case, however, the statistical sum may have weights
which are not positive definite (or may even be complex)
leading to the so called sign (or phase) problem [3]; the
latter imposes the price of an exponentially large statistics
(in the system size or in the inverse temperature) for reliable
results to be obtained. Such a fundamental limitation currently
impairs significantly our understanding of strongly correlated
fermionic systems (from models of electrons in solids to
models of elementary particles in relativistic quantum field
theory), frustrated quantum magnetism, and bosonic quantum
particles in gauge fields, to cite a few examples.

In this context, a general alternative strategy is offered by
the variational approach [2], mostly focusing on the ground
state of the many-body problem of interest, and consisting
of a chosen parametrization (Ansatz) of the ground-state
wave function in terms of a reduced number of parameters
(polynomial in the system size). In the following we shall
specialize our discussion to S = 1/2 quantum spin models
on a lattice, and to the corresponding bosonic or fermionic
Hamiltonian that they can be mapped onto. Hence, the general

form of the wave function reads

|�〉 =
∑

σ

ψ (σ)|σ〉, (1)

where, for a lattice of N sites, |σ〉 = |σ1, . . . , σN 〉 is the eigen-
vector of, e.g., the Sz

i operator at each site i (σi = ±1/2). Pro-
viding a variational wave function ultimately means choosing
a suitable form of the wave function coefficients (or weights)
ψ (σ) → ψ (σ;C) depending on a set of adjustable parameters
C = {Cl}, where the index l is here used to enumerate the
elements of C. Over the last decades many variational Ansätze
have been formulated to describe the ground-state physics
of lattice spin models escaping the reach of unbiased QMC
approaches. A few examples are matrix product states (MPS)
[4,5], various tensor network states (TNS) [6,7], resonating
valence bond (RVB) states [8,9], neural network quantum
states (NNQS) [10], as well as entangled-plaquette states
(EPS) [11], which are also known as correlated-product states
(CPS) [12], and constitute the focus of this work. The crucial
aspect for the success of a variational Ansatz is its ability to
reproduce the entanglement and correlations expected for the
ground state of the Hamiltonian of interest. The entanglement
content and correlation properties of MPS and different TNS
have been extensively characterized [5] and recognized as
one of their main limitations, while other variational states
are more flexible on the entanglement content [13]. An im-
portant bias, common to any variational form, is offered by
the specific parametrization of the wave function coefficients
ψ (σ), and in particular of their sign structure, which generally

2469-9950/2019/100(15)/155148(13) 155148-1 ©2019 American Physical Society

https://orcid.org/0000-0002-6794-5573
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.155148&domain=pdf&date_stamp=2019-10-30
https://doi.org/10.1103/PhysRevB.100.155148


THIBAUT, ROSCILDE, AND MEZZACAPO PHYSICAL REVIEW B 100, 155148 (2019)

becomes nontrivial when dealing with the ground state of
a frustrated spin model [2]. In the case of RVB states the
sign structure of the coefficients is inherited from that of
a fermionic state projected onto the spin Hilbert space to
provide the Ansatz [2]; only a few studies have dealt so far
with the sign structure of NNQS, either imposing it a priori
[10,14] or modeling it using an auxiliary neural network [15].

In this work we introduce the long-range entangled-
plaquette states (LR-EPS) which offer a very flexible
parametrization of highly entangled quantum spin wave func-
tions. The major strength of EPS in general relies on the
possibility of explicitly correlating different groups of lattice
sites into plaquettes, expressing ψ (σ) as a product of plaquette
coefficients Cp(σ p), where p is the plaquette index and σ p

is the plaquette configuration. Designing the EPS Ansatz by
considering overlapping (i.e., entangled) plaquettes consti-
tutes a fundamental aspect which will be discussed in the
following section. LR-EPS are a natural generalization of the
entangled-plaquette wave functions based on plaquettes of
adjacent sites (hereafter referred as A-EPS) mostly adopted
in previous works on the subject [11,16–23]. The idea of
the LR-EPS Ansatz is to consider plaquettes directly corre-
lating clusters of adjacent lattice sites at arbitrary distances.
This results in a potentially scale-invariant wave function
which can accurately capture long-range entanglement and
effectively describe critical ground states (associated with
quantum critical points, gapless ordered phases, or extended
critical ones). Moreover the use of complex plaquette coef-
ficients Cp(σ p) allows one to reproduce various sign/phase
structures, turning the latter into a feature that can be fully
optimized variationally. Hence, the LR-EPS Ansatz marries
the relative simplicity of the EPS concept with a high degree
of flexibility in coding the correlations and the sign structure
of a quantum state. Moreover, as any EPS wave function, it
can be systematically improved by increasing the size of the
(long-range) plaquettes, as well as by combining adjacent-site
and long-range plaquettes. We first validate our Ansatz in the
case of the S = 1/2 XX chain. Remarkably the ground state
of this model, along with that of other exactly solvable ones
[24], is a LR-EPS, whose form our optimization algorithm
is able to accurately reconstruct without any bias except
for the constraint of translational invariance. This is proven
by our variational results being able to reproduce the exact
correlations and entanglement structure of the S = 1/2 XX
chain with excellent precision.

We then move on to the frustrated J1 − J2 chain, for
which our Ansatz is shown to successfully reproduce the most
challenging traits of the physics, namely the quantum phase
transition from gapless spin liquid to valence-bond crystal;
and the appearance of incommensurate correlations as the
degree of frustration is increased. In particular, we provide
extensive results for the evolution of entanglement properties
across the above cited transition.

The paper is structured as follows. Section II briefly recalls
the basics of the EPS wave function, presents in detail the
form of the LR-EPS Ansatz, its parametrization of the sign
structure, the optimization strategy, and the observables rele-
vant to this study; Sec. III shows a validation of the Ansatz
in the case of the exactly solvable XX chain while Sec. IV
discusses our results for the J1 − J2 chain; conclusions and
perspectives are presented in Sec. V.

(b) 2A-EPS

(c) 3A-EPS

(a) cluster MF

(d) 2LR-EPS

(e) 4LR-EPS

(f) 2LR-3A-EPS

FIG. 1. Sketch of the variational Ansätze of interest to this work.
Here the colorful ellipses indicate plaquettes made of adjacent sites;
arcs indicate plaquettes composed of sites at arbitrary distance; and
ellipses linked by arcs indicate plaquettes composed of two nonover-
lapping clusters, each made of adjacent sites. The various Ansätze
represented here are: the cluster mean-field one (a); the adjacent-site
EPS (A-EPS) with plaquettes of size n = 2 (b), and n = 3 (c); the
long-range EPS (LR-EPS) with plaquettes of size n = 2 (d) and
n = 4 (e); and the nLR-n′A-EPS Ansatz with n = 2 and n′ = 3 built
via the combination of LR and adjacent-site plaquettes of size n and
n′, respectively (f).

II. LONG-RANGE ENTANGLED-PLAQUETTE STATES:
FORM, OPTIMIZATION, AND OBSERVABLES

A. Structure of the Ansatz

The EPS Ansatz amounts to parametrizing the wave func-
tion weights as

ψEPS(σ) =
∏

p

Cp(σ p), (2)

where Cp(σ p) are coefficients associated with plaquettes in-
dexed with p and of size np, and σ p = (σ1,p, . . . , σnp,p) is
the plaquette configuration in the computational basis ( j, p
is the index of the jth site of the pth plaquette). In gen-
eral terms, the plaquettes may have a completely arbitrary
geometry, although their size np is necessarily limited to
∼O(10), due to the exponential growth of the parameter space
with np. Assuming for simplicity that all plaquettes have the
same size np = n and that the wave function contains M of
them, the number of variational parameters Cp(σ p) is M × 2n.
If nonoverlapping (i.e., disentangled) plaquettes with n > 1
are considered, one recovers a cluster mean-field Ansatz in
which interplaquette correlations and entanglement are fully
neglected [see, e.g., Fig. 1(a) for plaquettes of two adjacent
sites]. The crucial aspect of EPS is that plaquettes can be
overlapped (i.e., entangled), introducing entanglement and
correlations over distances larger than the plaquette size.
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Most of the literature on EPS [11,16,18–22,25] has consid-
ered Ansätze based on M � N overlapping plaquettes of n ad-
jacent sites (nA-EPS), and improved them systematically by
increasing n [Figs. 1(b) and 1(c)]. While the nA-EPS Ansatz
is asymptotically exact in the large n limit, and any finite-n
A-EPS is a valid variational choice, convergence of the results
in the plaquette size is often not achievable, as a result of the
mentioned exponential cost of increasing n. This aspect be-
comes particularly serious in the vicinity of a quantum phase
transition. For instance, as numerically found in Ref. [25], an
nA-EPS Ansatz with partially overlapping uniform plaquettes
generally exhibits a finite correlation length (proportional to
n), preventing the correct description of the critical regime at
fixed n. In general, the extrapolation of the results to the large-
n limit is necessary to correctly determine the ground-state
phase boundaries of a given model of interest [19,20].

An extremely simple alternative to the above scheme
consists of fixing the size of the plaquettes while playing
with their geometry, which can be promoted to include
(clusters of) sites at arbitrary distances [12,18]. In this way
correlations can be established directly among arbitrarily
distant sites. This is the strategy underlying the long-range
EPS Ansatz that we consider here in order to tackle systems
that develop a diverging correlation length in their ground
state. In particular, we shall focus on plaquettes with an even
number of sites n and establish their geometry as composed of
two clusters of n/2 adjacent sites at an arbitrary distance from
each other: this ultimately defines the nLR-EPS wave function
as illustrated in Figs. 1(d) and 1(e). The nLR-EPS clearly
extends the nA-EPS, explicitly incorporating dominant
n-site correlations at all length scales. Such an improvement
occurs at a computational price now independent of n, and
polynomial in the system size.

In general, the nLR-EPS Ansatz is systematically
improvable upon increasing n, similarly to the A-EPS Ansatz.
However, unlike in the A-EPS Ansatz, this improvement
procedure is not a priori crucial, since the long-range
physics of a given Hamiltonian can be well captured already
with n = 2 (see Secs. III and IV). Another strategy for the
improvement of the Ansatz that we shall pursue here is to
combine both adjacent-site as well as long-range plaquettes,
to give rise to the nLR-n′A-EPS [where n (n′) is the size
of the long-range (adjacent-site) plaquettes, with n′ > n]
exemplified in Fig. 1(f). The wave function coefficients of
this Ansatz are defined via

ψnLR-n′A-EPS(σ) = ψnLR-EPS(σ) ψn′A-EPS(σ). (3)

The latter strategy allows one in principle to faithfully
describe n point correlations at all distances, also improving
on local properties such as the energy of short-range
interacting models.

In the particular case of the 2LR-EPS Ansatz and S = 1/2
spins, for a N-site lattice M = N (N − 1)/2 plaquettes are
formed by each pair of sites i and j, i.e., p = (i j) in Eq. (2),
and the wave function coefficients can be explicitly rewritten
as

ψ2LR-EPS(σ) =
∏
i< j

Ci j (σi, σ j ),

Ci j (σi, σ j ) = exp
(
ai j + b(1)

i j σi + b(2)
i j σ j + ci jσiσ j

)
, (4)

establishing a link with what goes under the name of
spin-Jastrow Ansatz in the previous literature [26]. Therefore,
our approach generalizes systematically spin-Jastrow states,
both in terms of the size of the plaquettes that are explicitly
correlated in the form of the Ansatz; as well as via the use
of complex plaquette coefficients (see detail in Sec. II C). It
goes without saying that the EPS Ansatz applies to any lattice
geometry and to any number of spatial dimensions without
requiring particular modifications. The explicit correlations
introduced within all pairs of clusters allows one to describe
long-range entanglement in any such situation.

B. Variational energy minimization

Given the Hamiltonian H, the variational optimum is
searched via imaginary-time evolution projected onto the
space of states compatible with the variational Ansatz via the
time-dependent variational principle [27]—this approach is
equivalent to the so-called stochastic reconfiguration scheme
[2,10]. The variational energy to be minimized reads

〈H〉 = 〈E (σ;C)〉 =
∑

σ

E (σ;C)P(σ;C), (5)

where

P(σ;C) = |ψ (σ;C)|2∑
σ ′ |ψ (σ ′;C)|2 (6)

and E (σ;C) is the energy estimator

E (σ;C) =
∑
σ ′

〈σ|H|σ ′〉ψ (σ ′;C)

ψ (σ;C)
. (7)

Introducing the logarithmic derivatives with respect to the lth
variational parameters of the wave function coefficients

Ll (σ;C) = 1

ψ (σ;C)

∂ψ (σ;C)

∂Cl
, (8)

the gradient

gl = 〈L∗
l E〉 − 〈L∗

l 〉〈E〉, (9)

as well as the covariance matrix

Sl,m = 〈L∗
l Lm〉 − 〈L∗

l 〉〈Lm〉, (10)

the projected imaginary-time dynamics of the variational
Ansatz is then described by the equation

Ċ = −S−1g. (11)

The simple form of the EPS Ansatz in Eq. (2) allows for
a straightforward calculation of the Ll ’s, whose expression
reduces, for C = {Cp(σ p)}, to

LCp(σ̄ p) = δσ p,σ̄ p

Cp(σ p)
. (12)

Statistical sums over the configurations σ, contained in
Eqs. (5), (9), and (10), are sampled via a Monte Carlo scheme
which makes use of Metropolis updates based on the exchange
of spins with opposite σz. Hence, the total spin along z, set to
0 in the initial state, is conserved along the simulation. Further
details on optimization strategies will be described in the next
paragraph.
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C. Complex wave function coefficients

In order to search for the ground state of frustrated mag-
netic models with a real-valued Hamiltonian, it is crucial to
be able to account for weights ψ (σ) of the wave function with
positive as well negative sign [2]. The function sgn[ψ (σ)]
defines the so-called sign structure of the state, and it is
in general unknown. In fact, one can argue that knowing
it a priori would result in being able to solve the ground-
state problem by using QMC techniques based on ground-
state projection (such as Green’s function Monte Carlo [2])
with fixed-node constraints. Indeed, the sign structure of the
ground state is known to be trivial (all positive weights) when
the off-diagonal elements of the Hamiltonian matrix 〈σ ′|H|σ〉
are seminegative definite (Perron-Frobenius theorem), or can
be made so by an unitary transformation. This is the case
for instance of antiferromagnetic Hamiltonians defined on
a bipartite lattice, namely containing only antiferromagnetic
interactions between sites belonging to different sublattices (A
and B): in that case the unitary transformation (amounting to
a π -angle spin rotation on all A spins) leads to a sign struc-
ture determined by the Marshall sign rule [28]: sgn[ψ (σ)] =
(−1)NA,↑(σ) (where NA,↑(σ) is, for the generic configuration σ,
the number of ↑ spins on the A sublattice).

In order to tackle generic systems, in which the ground-
state signs are completely unknown, an ideal variational
Ansatz should therefore be able to reproduce a wide variety of
possible sign structures, and to do so in a continuous manner,
so that the sign structure can be a subject of variational
optimization. In the EPS Ansatz the sign of ψ (σ) is simply
given by the product of the signs of the plaquette coefficients
Cp(σ p), introducing a fundamental bias on the possible sign
structures that the Ansatz can realize. Nonetheless it is a
simple exercise to prove that the Marshall sign structure can
indeed be reproduced by the EPS Ansatz, as discussed in
Appendix A. From the point of view of the numerical op-
timization, an EPS Ansatz with real plaquette parameters
[obeying the dynamics governed by the equation Eq. (11)]
should in principle lead to changing the signs of the wave
function weights, so as to explore nontrivial sign structures
in a purely variational way. However, in practice, a real coef-
ficient Cp(σ p) approaching zero (necessary for a sign change)
entails that the weight ψ (σ) of all the configurations σ com-
patible with σ p on the pth plaquette also approaches zero, due
to the multiplicative structure of the EPS Ansatz. This in turn
makes the appearance of the σ p configuration in the update
very rare, so that an enormous statistics has to be accumu-
lated in order to properly sample the corresponding gradient
[Eq. (9)] and covariance matrix [Eq. (10)]. A very simple
strategy to circumvent this issue is to extend the weights to
the complex plane by considering complex-valued Cp(σ p) so
that sign changes (or π phase shifts) can be made without
ever crossing the origin: this allows then for a full variational
optimization of the phase structure of the Ansatz, which is
the strategy that we pursue in this study. The use of complex
Cp(σ p) should be seen as an extension of the variational
space in order to be able to recover the correct variational
optimum which, for a real-valued Hamiltonian matrix, should
also be real up to a global phase. Our variational optimization
procedure indeed leads to states consistent with this scenario.

From a technical point of view, it is convenient to
parametrize the plaquette coefficients in their polar decom-
position Cp(σ p) = Ap(σ p)eiθp(σ p). This allows, for example,
to optimize the amplitude A and phase θ as independent
variables. Also, one can optimize the phases at first while
keeping the amplitudes fixed and equal to one: in doing so
one produces a Monte Carlo dynamics for the sampling of the
statistical sums of Eqs. (5), (9), and (10), where all configu-
rations are equally probable. After a possible preoptimization
of the phases (achieved when the variational energy ceases to
decrease), the amplitudes are left free to vary (i.e., to depart
from their initially unit value) and optimized alongside with
the phases. In this way any nodal and sign structure com-
patible with the Ansatz may emerge from the optimization
in an unbiased fashion. Moreover, the introduction of spatial
symmetries in the plaquette parameters can be done separately
for the amplitude and phase variables, namely the functions
Ap and θp can be made to depend on the plaquette p index in a
different way. Explicit examples will be provided in Sec. IV.

D. Correlation functions and entanglement entropies

The main focus of our present work is on the ability of
the nLR-EPS Ansatz to correctly capture the correlation and
entanglement properties of quantum spin states with small (or
even minimal, i.e., n = 2) plaquette size. All of the findings
presented in this study concern one-dimensional (1D) S =
1/2 quantum spin models, described by spin operators Sα

i ,
where α = x, y, z and the index i runs on the lattice sites of
a linear chain. In the following we shall present results for the
spin-spin correlation function

Cαα (r) = 1

N

∑
i

〈
Sα

i Sα
i+r

〉
(13)

and the related structure factor

Sαα (k) = 1

N

∑
r

Cαα (r)eikr ; (14)

as well as for the dimer order paremeter defined as in Ref. [1]
as

DN = [D(N/2) − D(N/2 − 1)]/2, (15)

where

D(r) = 1

N

∑
i

[〈(Si · Si+1)(Si+r · Si+r+1)〉 − 〈Si · Si+1〉2]

(16)

is the dimer-dimer correlation function. Moreover, we will
concentrate on the 2-Rényi entanglement entropy R2(A) =
− log(Trρ2

A), where ρA = TrB|�〉〈�| is the reduced density
matrix describing the subsystem A after having traced out the
degrees of freedom of its complement B. The purity Trρ2

A
can be conveniently calculated as the expectation value of
the SWAP operator of the configuration of the A subsystem
between two replicas of the whole system [29]. Denoting with
σA and σB the configurations of the subsystems A and B in a
state σ = (σA, σB) of the computational basis, one has

Trρ2
A = 〈SWAPA〉2 =

〈
ψ (σ ′

A, σB)ψ (σA, σ ′
B)

ψ (σA, σB)ψ (σ ′
A, σ ′

B)

〉
2

, (17)
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where the two-replica statistical average 〈· · · 〉2 is defined as

〈· · · 〉2 =
∑
σA,σB

∑
σ ′

A,σ ′
B

|ψ (σA, σB)|2|ψ (σ ′
A, σ ′

B)|2(· · · ). (18)

E. Alternative variational Ansätze for quantum spin models
and comparison with LR-EPS

In this section we briefly review some of the most popular
variational states for lattice spin models, and contrast their
properties with those of our LR-EPS Ansatz.

The most successful example of a variational Ansatz is
represented by matrix-product states (MPS), which represent
the variational Ansatz optimized by the density-matrix renor-
malization group (DMRG) algorithm as well as other related
techniques [4]. The MPS capture with impressive precision
the physics of one-dimensional quantum systems with entan-
glement entropies obeying an area-law scaling with subsystem
size, including possible logarithmic corrections. Indeed the
maximum subsystem entanglement entropy that the Ansatz
can allow for is given by log D where D is the linear dimension
of the matrices composing the Ansatz and allows for its
systematic improvement. In this framework, only logarithmic
scalings of the entanglement entropy with subsystem size
are tolerable in order to achieve a polynomial scaling of the
number of variational parameters with system size.

The direct application of MPS to models in higher spatial
dimension is in principle problematic. In fact, in this case,
the D parameter scales exponentially with the subsystem size
even in the case of area-law states [30]. This issue can be
circumvented by generalizing MPS to tensor-network states
(TNS) [6], which are suited to study the physics of area-
law states in two and higher dimensions. Like MPS, TNS
can be systematically improved by enlarging the number of
parameters with a concomitant polynomial scaling in the
computational cost; nonetheless TNS generally exhibit a finite
correlation length [31]; in several formulations (such as the
celebrated projected entangled-pair states [7]) they do not
allow for an efficient exact calculation of the wave func-
tion coefficients [32] nor for an efficient representation of
quantum states with faster than area-law entanglement scal-
ing. Many Ansätze offer valuable alternatives to MPS/TNS
with rather complementary properties. A famous example is
given by resonating valence-bond (RVB) states [8], efficiently
parametrized as projected Bardeen-Cooper-Schrieffer (pBCS)
states [33]. Their sign structure descends from that of a
fermionic determinant which provides the ground state of a
BCS-like Hamiltonian, and as such it can be highly nontrivial.
As a consequence the pBCS states have been successfully ap-
plied to several frustrated models of quantum magnetism [2];
nonetheless they cannot be systematically improved in their
sign structure—although one may argue that they could be
combined, e.g., with complex-valued Jastrow factors altering
both the amplitude and sign structure of the coefficients. More
recently the ability of neural networks to reproduce a function
of many variables has been exploited to parametrize in this
form the weights ψ (σ;C), defining the Ansatz called neural-
network quantum states (NNQS) [10]. The latter proves to be
very effective both for unfrustrated [10] as well as frustrated
models of magnetism, with a fixed sign structure [14] or

by using complex coefficients [32]. Reference [15] recently
explored the possibility of parametrizing the signs by using
a dedicated neural network, but without complexification of
the coefficients. NNQS as formulated in Ref. [10] can be
systematically improved by increasing the depth of the neural
network, although networks beyond single-layer ones do not
allow for an efficiently calculable form of the coefficients (see
Ref. [14] for a multilayer convolutional network representa-
tion). LR-EPS with complex coefficients appear as a valuable
alternative to all the above variational schemes, because of the
relative simplicity of their structure and the flexibility of their
formulation, with correlations and long-range entanglement
explicitly built in. EPS come with a large variety of improve-
ment schemes (e.g., extension of the plaquette sizes, combi-
nation of long-range and adjacent-site plaquettes) as well as
with the possibility to achieve a full variational optimization
of the sign structure (within the structures compatible with the
Ansatz) by generalizing it to the phase structure of a complex
wave function, as described above.

III. VALIDATION OF THE ANSATZ: XX CHAIN

A first validation of our approach comes from the case of
the S = 1/2 XX chain, with Hamiltonian

H = −J
∑

i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
, (19)

which is exactly solvable by mapping it to free fermions via
the Jordan-Wigner transformation [34]. Here and through-
out the rest of the paper we consider chains with periodic
boundary conditions. This Hamiltonian is not frustrated and
satisfies the Perron-Frobenius theorem, so that its ground-state
wave function has all positive-defined coefficients. One can
therefore search for its ground state in the form of a LR-EPS
with real coefficients. In the context of LR-EPS, the case of
the XX chain is in fact extremely special, because the exact
coefficients of the fermionic ground state, given by the Slater
determinant, can be recast, in the form of a Vandermonde
determinant [24], as

ψXX (σ) = N
∏
i< j

sin

[
π

N
( j − i)

](2σi+1)(2σ j+1)/4

, (20)

where N is a normalization factor. It is immediate to recog-
nize that the above expression is fully compatible with that
of the 2LR-EPS Ansatz, Eq. (4). In fact the 2LR-EPS form
encompasses an entire family of many-body wave functions,
such as the exact ground state of one-dimensional bosons or
fermions with inverse-square interaction potential [35], the
exact ground state of the Haldane-Shastry model [36,37],
or the Laughlin wave function [12], to cite a few relevant
examples.

In the specific case of the XX chain, the ground-state
physics features a critical Luttinger-liquid phase with alge-
braically decaying correlations Cxx(yy) ∼ r−1/(2K ) with Lut-
tinger liquid exponent K = 1 [38], and a logarithmic scaling
of the entanglement entropy of a subsystem of linear size l:

R2(l ) = c

4
log(l ) + c1 + · · · , (21)
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FIG. 2. Ground-state spin-spin correlation function of an XX
chain with N = 62 sites (upper panel). The error of the 2LR-EPS
estimates relative to the exact ones is shown in the lower panel. Lines
are guides to the eye.

with c1 a nonuniversal constant and c = 1 giving the central
charge of the related conformal field theory [39] (the miss-
ing terms are subdominant corrections). These traits are in
fact universal to many one-dimensional systems admitting
a description as a Luttinger liquid [38], whose scale-free,
critical nature is nicely captured by the spatial structure of
correlations inscribed in the LR-EPS Ansatz. Indeed Jastrow
wave functions (to which a real-valued 2LR-EPS can be
specialized) have already been assessed in the past as very
efficient descriptions of Luttinger-liquid phases of both inter-
acting bosons and fermions [40,41].

Here we use the simplest form of the Ansatz, namely a
2LR-EPS, where we enforce translational symmetry, so that
only O(N ) variational parameters are required. A very high
accuracy can be obtained for both the off-diagonal spin-spin
correlation function Cxx(r) (Fig. 2) and the 2-Rényi entropy
(Fig. 3). In particular it is remarkable to see that, for the
energy, the error relative to the exact results is less than
10−8; in fact slightly lower than the statistical error that we
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FIG. 3. Ground-state 2-Rényi entanglement entropy as a function
of the subsystem size l for a XX chain with N = 62 sites (upper
panel). The error of the 2LR-EPS estimates relative to the exact ones
is shown in the lower panel. Lines are guides to the eye.

have on the energy estimator itself. This means that, for
all purposes, our optimization algorithm finds the absolute
minimum of the variational energy, and that our accuracy
on the reconstruction of the ground state is only limited by
the statistical uncertainty. The relative accuracy of the LR-
EPS predictions remains rather good (�10−3 for correlations,
�10−4 for the entanglement entropy) when looking at long
distances, without any significant degradation of our estimates
being observed for increasing r or l .

IV. J1 − J2 CHAIN

A. Model and phase diagram

A more stringent test of our Ansatz is provided by the
frustrated antiferromagnetic J1 − J2 chain whose Hamiltonian
is

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2. (22)

This model features a very rich phase diagram upon changing
the degree of frustration α = J2/J1. At low frustration, its
ground state realizes a gapless phase (described as a Luttinger
liquid) continuously connected to its unfrustrated limit J2 = 0.
When α = αc = 0.241167 . . . [42] the system undergoes a
quantum phase transition to a gapped, valence-bond crystal
(VBC) with spontaneous dimerization. Beyond the exactly
solvable Majumdar-Ghosh (MG) point α = 1/2 [43], corre-
lations start developing an incommensurate structure [44–47]
with a pitch vector that evolves continuously towards π/2
as α increases. After its seminal numerical investigations via
DMRG [44–46], Eq. (22) has been successfully investigated
in the more recent past with RVB states [48], as well as with
NNQS [15].

In order to capture the rich phenomenology correctly with a
variational approach, it is crucial to use a wave function with a
flexible, continuously adjustable sign structure. This is clearly
evidenced by the fact that correlation functions can exhibit
different sign patterns, going from the staggered one (related
to a pitch vector φ = π ) for small α to incommensurate sign
patterns for α > 0.5. Indeed the sign pattern of off-diagonal
correlations Cxx(yy)(r) is related to the mutual signs of coeffi-
cients corresponding to configurations connected by two spin
flips at distance r. Indeed,

〈S+
i S−

i+r + S−
i S+

i+r〉 =
∑

σ

ψ∗(σ)ψ (σ i,i+r ), (23)

where σ i,i+r corresponds to the σ configuration with flipped
ith and (i + r)th spins. Therefore, off-diagonal correlations
with a nontrivial sign pattern are a consequence of the sign
structure of the wave function coefficients. A closer look at the
ground-state sign structure of model (22) has been offered in
Ref. [49], pointing out that a Marshall sign for a two-sublattice
structure ABAB . . . appears at weak frustration α 	 1, while a
Marshall-like sign with sublattice structure ABBA . . . emerges
in the opposite limit α 
 1. For intermediate values α ∼
O(1) a definite sign structure could not be identified, and
most likely it evolves with α along with the incommensurate
correlations.
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It is instructive to remind the reader that the mean-field
(MF) solution of the problem gives a wave function

|�MF〉 = ⊗ j (|↑ j〉 + eiQr j |↓ j〉), (24)

where Q = π for α < 1/4 and Q = cos−1[−1/(4α)] for α >

1/4. Therefore dressing the MF wave function with a real
correlation term (e.g., of the Jastrow type) would already
produce nontrivial incommensurate correlations. Nonetheless,
the exact solution of the ground-state problem of a time-
reversal invariant Hamiltonian (such as the one under in-
vestigation) is given by a state |�0〉 that can only possess
a time-reversal invariant total momentum—namely, under a
translation Tδ of a distance δ, Tδ|�0〉 = eiPδ|�0〉 with P = 0
or π . On the other hand, projecting the above mean-field
state onto the sector at zero total magnetization PSz=0|�MF〉
produces a state which has a momentum P = NQ/2 [because
upon translation of δ sites the N/2 ↓ spins produce a phase
factor exp(iNQδ/2)]. This situation, however, results in a
ground-state wave function leading to both incommensurate
correlations and an unphysical breaking of the time-reversal
symmetry (i.e., the ground state remains complex valued).
Conversely, since our optimized Ansatz is essentially real
(see discussion in Secs. IV B, IV C 2, and Appendix B) the
emergence of incommensurate correlations discussed in this
work cannot be due to the above scenario.

B. Validation of the Ansatz: Comparison with exact results

In light of the above observations, the 1D J1 − J2 model
offers a rather challenging testbed for our variational Ansatz.
In the following we shall check the accuracy of our re-
sults against exact ones by comparing ground-state energies
and correlation functions. First of all, in the case of the
unfrustrated Heisenberg chain (J2 = 0) the optimization of
complex-valued LR-EPS reproduces faithfully the physics of
the system: when, for instance, the calculation starts from a
state with random coefficients of unit norm (i.e., Cp(σ p) =
Ap(σ p)eiθp(σ p) with θp(σ p), and Ap(σ p) initially chosen as a
random phase between 0 and 2π , and 1, respectively), the op-
timization algorithm is capable of finding efficiently the Mar-
shall sign structure, as witnessed by the correct sign pattern
reconstructed for the correlation function C(r) = ∑

α Cαα (r)
in Fig. 4. This shows that the variational search of the sign
structure, when compatible with the LR-EPS multiplicative
form, can indeed be efficiently performed. Moreover, our
estimates are in very good agreement with numerically exact
QMC results based on the stochastic series expansion [1]. We
note that, by means of a nA-EPS wave function explicitly
including the Marshall signs, one may achieve for the present
model and system size an accuracy on the ground-state energy
similar to that obtained with the 2LR-EPS, when n is as
large as 12–14 sites (i.e., via a considerably larger number
of variational parameters than in the 2LR-EPS case).

Results at finite frustration compared with exact diago-
nalization ones are reported in Figs. 5 and 6. In particular,
Fig. 5 (upper panel) shows the α dependence of the variational
energy of different LR-EPS states for a N = 16 chain with
periodic boundary conditions. The simplest Ansatz that we
test is the 2LR-EPS one, where we do not impose any sym-
metry, namely we optimize 2N (N − 1) independent complex
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2LR−EPS

FIG. 4. Ground-state spin-spin correlation function for a chain of
N = 40 sites governed by the J1 − J2 Hamiltonian in the unfrustrated
case (i.e., J2 = 0). The dashed line is a guide to the eye.

coefficients. We observe that the 2LR-EPS Ansatz remains
very accurate (with relative errors in the 0.1% range) up to
α  0.5. For larger values of α the precision degrades, with
relative errors rising to the 1% level)—yet the Ansatz can
be systematically improved by moving to the 4LR-EPS or
to the mixed long-range/adjacent-site 2LR-8A-EPS Ansatz
(i.e., by increasing, if no symmetries are considered, the
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FIG. 5. Ground-state energy estimates obtained with various
EPS Ansätze (upper panel), and their error relative to the exact result
(lower panel) as a function of α. The system size is N = 16. Lines
are guides to the eye.
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FIG. 6. Ground-state spin-spin correlation function for a chain of
N = 16 sites governed by the J1 − J2 Hamiltonian, and for various
values of the frustration parameter α. Lines are guides to the eye.

number of variational parameters by a factor of about 3.5 or
9.5, respectively). Nonetheless, the minimal 2LR-EPS wave
function is already capable of reproducing the nontrivial and
α-dependent sign pattern of the correlations as shown in
Fig. 6. In our view, this offers valuable evidence of the fact that
our simplest wave function can describe the different physical
regimes of the model in question, without the need to further
enrich its parametrization. Therefore we shall focus on this
wave function for the study of larger system sizes, further
reducing its variational parameters by imposing symmetries
(see below).

A further significant test of the quality of our results is
offered by the real vs complex nature of the wave func-
tion coefficients. Randomly choosing pairs of basis states
|σ〉 and |σ ′〉 we find that the ratio of their coefficients
ψ2LR-EPS(σ)/ψ2LR-EPS(σ ′) is a real number (whenever both
coefficients are larger than machine precision in modulus).
This is a direct proof that the variational optimization of the
complex Ansatz is able to eventually align the phases of all the
wave function coefficients (modulo π ), returning a real valued
wave function up to an irrelevant global phase. This offers
additional evidence that the strategy of producing nontrivial
sign structure by optimizing a complex wave function is
successful.

C. Correlations and entanglement on larger lattices

Having validated our Ansatz for the frustrated J1 − J2

chain for a small lattice size, we move on to studying the
physics of the same chain for larger lattices (up to N = 80).
Our goal is to show that the LR-EPS Ansatz is a very good
tool to study fundamental features of the correlations and the
entanglement of the ground state of the system, and their evo-
lution across the phase diagram of the model. Throughout this

section we specialize our attention to a 2LR-EPS Ansatz with
coefficients Ci j (σi, σ j ) = Ai j (σi, σ j )eiθi j (σi,σ j ) where, without
loss of generality, we consider i < j. We parametrize the
spatial dependence of both amplitudes Ai j and phases θi j in
terms of the coordinate i of the first site and of the distance
between the sites d = j − i. In order to reduce the number of
variational parameters, we chose the dependence on (i, d ) to
be periodic of period (pi, pd ). All the results for lattices of size
N > 16 and in particular those in the following sections are
obtained via wave functions with periods (pi, pd ) = (2, N )
for the amplitudes (allowing us to reproduce correlations at all
distances, and a possible spontaneous dimerization of the lat-
tice) and (N, 2) for the phases (allowing us to describe relevant
sign patterns with a number of phase parameters linear in N ,
as discussed in Appendix A). Further insight into the accuracy
of the 2LR-EPS Ansatz on large lattices can be obtained by
comparing our estimated ground-state energies for the J1 − J2

model with DMRG results. As an example, here we focus on
a chain of 80 sites and α = 0.7, i.e., in the parameter region
where the Ansatz is quantitatively less accurate (see Fig. 5).
In the mentioned case we find that the 2LR-EPS Ansatz yields
a ground-state energy characterized by an error relative to
the DMRG estimate [50] of approximately 0.76%. When the
2LR-EPS Ansatz is improved by means of the 10A-EPS one
resulting in the 2LR-10A-EPS Ansatz such a relative error
decreases to approximately 0.37%.

1. Spin-spin correlations in the gapless phase

Throughout the gapless phase α � αc, two-point corre-
lations exhibit a power-law decay as d (r|N )−1 [with the
chord length d (r|N ) = (N/π ) sin(πr/N )]. The latter is the
only one compatible with SU(2) symmetry for a gapless
Luttinger liquid. Indeed, when mapping the spin model to
a hardcore boson chain, the predictions of Luttinger liquid
theory for the decay of the off-diagonal correlation func-
tion 〈S+

i S−
i+r〉 = 〈b†

i bi+r〉 ∼ d (r|N )−1/(2K ), and of the diagonal
correlation function 〈Sz

i Sz
i+r〉 = 〈(ni − 1/2)(ni+r − 1/2)〉 ∼

d (r|N )−2K [51] must coincide in the presence of SU(2) sym-
metry, hence the value K = 1/2 for the Luttinger exponent. A
more detailed analysis [42] points out the existence of a mul-
tiplicative logarithmic correction to the power-law decay, in
the form

√
log(r/r0)λ0, where r0 and λ0 are coefficients con-

tinuously depending on α. Both coefficients vanish as one ap-
proaches the critical point with the constraint −λ0 ln r0 → 1,
so that the logarithmic correction disappears in the same
limit. Figure 7 shows the absolute value of the spin-spin
correlation multiplied by the chord length for α = 0, and
α = αc, as a function of the square root of the logarithm
of the chord length. The expected logarithmic correction is
evident for α = 0, and essentially absent at the transition
point: hence the simple 2LR-EPS Ansatz is fully capable of
capturing this subtle aspect. Furthermore, a power-law fit of
the correlations as a function of the chord length for α = αc

(see inset of Fig. 7) leads to a value of the Luttinger parameter
in agreement with the theoretical expectation. Indeed, our
estimated value of K is 0.497(5). For α > αc, correlations
turn to an exponential decay, albeit with an exponentially
divergent correlation length for α → α+

c [45], introducing
very significant finite-size effects.
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versus d (r|N = 80); the line is a fit to the corresponding numerical
data (see text). Estimates are obtained with the 2LR-EPS Ansatz.

2. Incommensurability in the correlations for α > 1/2

The incommensurability developing in the correlations for
α > 1/2 is best seen in the structure factor S (k) = ∑

α Sαα (k)
plotted in Fig. 8. There, one clearly observes that the peak
at π , characteristic of Néel-like correlations dominant up to
α = 1/2, splits into two peaks for α > 1/2, and the twin
peaks move continuously towards the values π/2 and 3π/2
as α increases. In Fig. 9 we compare the pitch vector of
correlations φ namely the position of the left peak in Fig. 8
obtained in this work with previous DMRG results from
Refs. [45,46] as well as with the MF prediction. The agree-
ment between our estimates and the DMRG ones is accept-
able, taking into account that the DMRG results are obtained
with open boundary conditions and different system sizes than
ours. In general, we consider the successful description of the
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FIG. 8. Ground-state spin structure factor for different values of
the frustration parameter α. Estimates obtained via the 2LR-EPS
variational wave function for a chain with N = 80. Lines are guides
to the eye.
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FIG. 9. Pitch vector of correlations as a function of α. Estimates
obtained via the 2LR-EPS variational wave function for a chain with
N = 80 are compared with DMRG results from Refs. [45,46] and
with the classical result φ = arccos[−1/(4α)].

development of incommensurate helimagnetism at short range
as a significant achievement of our Ansatz, considering that it
is not accompanied by an obvious breaking of time-reversal
invariance. Testing that the phases of all coefficients in the op-
timized wave function are equal modulo π is prohibitive when
considering the system sizes of interest in this section. There-
fore we opt for an alternative test based on spin currents Ji j =
i〈S+

i S−
j − S−

i S+
j 〉, whose average value should be zero on a

time-reversal invariant wave function, and finite otherwise.
Our optimized wave functions give a null value of the currents
(within the statistical error bar) for all values of α, strongly
suggesting the real valuedness of all coefficients. This test is
highly nontrivial, as it clearly indicates that the variational
optimization exploits the complex nature of coefficients of
our Ansatz to introduce incommensurate correlations beyond
the reach of a MF-based Ansatz (see Fig. 9 and previous
discussion in Sec. IV A).

3. VBC order

The appearance of VBC order for α > αc can be effi-
ciently captured by the dimer order parameter DN , defined in
Eq. (15).

We show DN for various system sizes as a function of
α in Fig. 10, observing that it marks quite clearly the VBC
transition. In particular the dimer-dimer correlation function
exhibits a decay as D(r) ∼ r−1 at long distances in the gapless
phase, so that we expect that DN ∼ N−1 in this phase: this is
indeed observed in the inset of Fig. 10 for α = αc, whereas for
α = 0.3 > αc one observes that DN extrapolates to a small but
finite value.

4. Scaling of the entanglement entropy

We conclude our analysis of the 2LR-EPS results for the
J1 − J2 chain with a study of the Rényi entanglement entropy.
Considering a total system of size N , in the gapless phase α <

αc the entanglement entropy of a subsystem of linear size l is
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are fits to the corresponding numerical data.

expected to scale as

R2(l; N ) = c

4
log d (l|N ) + c1 + · · · , (25)

where again c = 1, and c1 is a nonuniversal constant
[39]—extending Eq. (21) to account for finite-size effects.
On the other hand, in the gapped VBC phase the en-
tanglement entropy saturates to a constant [which takes a
value ≈ (c/4) log(ξ ) close to the critical point], exhibiting
therefore an area law. In particular the correlation length is
minimal at the MG point, where R2(l ) → log 2. Figure 11
shows that all these features are very well captured by the
2LR-EPS Ansatz, and in particular the universality of the
central charge throughout the gapless phase.

In order to further contrast the gapless and gapped regime
using the entanglement entropy, we concentrate on the
difference RN ′−N

2 = R2(N ′/2) − R2(N/2)  (c/4) log(N ′/N ),
which allows one to obtain a finite-size estimate of the central
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FIG. 11. 2-Rényi entanglement entropy for an 80-site chain as
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the subsystem size. The dashed (dotted-dashed) line is a fit to the
numerical data with α = αc and α = 0. Data shown are obtained with
the 2LR-EPS wave function.
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charge as

cN ′,N = 4RN ′−N
2

log(N ′/N )
(26)

while eliminating the size-independent subleading corrections
to the dominant logarithmic scaling [in the gapless phase, see
Eq. (25)] [52]. Figure 12 shows c80,40 as a function of the
frustration parameter. The transition between the gapless and
the gapped phase is clearly signaled by the drop of the central
charge estimator from values close to unity to vanishing
values. On the other hand, the estimator increases again for
large α, consistent with the fact that, in the limit α → ∞, the
J1 − J2 model reproduces two decoupled Heisenberg chains
with c = 1.

V. CONCLUSIONS

We have discussed a very flexible variational Ansatz (the
long-range entangled-plaquette state or LR-EPS) for strongly
interacting quantum lattice models, in which explicit quantum
correlations within (clusters of) sites are introduced coupling
them at all distances into overlapping plaquettes. This Ansatz
generalizes both the well-known Jastrow Ansatz (including
two-site correlations) [26] as well as the adjacent-site EPS
Ansatz, and offers the possibility of combining both forms of
overlapping plaquettes in the same wave function. Moreover,
the use of complex coefficients opens the possibility of repro-
ducing nontrivial sign (phase) structures emerging naturally
from the variational optimization without any explicit bias.
We have demonstrated the effectiveness of this Ansatz in
the case of the frustrated J1 − J2 quantum spin chain: there
we show that it captures both the universal long-wavelength
features of the gapless phase of the model (central charge and
Luttinger exponent of the corresponding field theory); as well
as the appearance of incommensurate short-range correlations
at strong frustration.

As it currently stands, our Ansatz can be systematically
improved by increasing the size of the plaquettes (either
long-range ones or adjacent-site ones)—this improvement
strategy is limited, as it introduces a concomitant exponential
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growth of the variational parameters. However, our findings
show that improving the Ansatz is not crucial to capture the
long-range physics, which is already accounted for by using
minimal (two-site) long-range plaquettes. Further approaches
making the Ansatz systematically improvable with a poly-
nomial growth of the parameters are currently under inves-
tigation. Additionally, the success of our wave function in
reconstructing nontrivial sign structures variationally suggests
its potential application to other models of frustrated quantum
magnetism, especially focusing on quantum critical points for
which a scale-free variational form is particularly well suited.
It would also be very tempting to apply this Ansatz to lattice
models of strongly correlated fermions, whose nodal surface
becomes the object of variational optimization when using
complex coefficients.
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APPENDIX A: EPS ANSATZ AND MARSHALL-LIKE SIGNS

In the following we show that our simplest Ansatz (namely
the 2LR-EPS one) is fully compatible with Marshall-like sign
structures, namely sign structures depending uniquely on the
parity of the number of ↑ spins on one of two (arbitrary)
sublattices A and B of equal size in which the lattice has been
decomposed. A Marshall sign rule with ABAB . . . sublattice
structure is exact in the J2 → 0 limit. Yet a Marshall-like sign
with a sublattice structure of the kind ABBA . . . – or with a
longer period—is also reproducible with the LR-EPS Ansatz;
such structures are indeed relevant for the J1 − J2 chain under
investigation for sufficiently large J2, as pointed out in [49]. It
is also important to stress that our Ansatz is compatible with
sign structures that are richer than Marshall-like ones.

Marshall-like signs can be represented within the 2LR-EPS
Ansatz in several different ways: as the sign/phase of each
weight in the wave function results from the sum of the phases
of the plaquette coefficients—similar to the relationship be-
tween a vector potential and the flux of the resulting magnetic
field—different parametrizations of Marshall-like signs can
be viewed as different gauge choices.

The simplest scheme representing Marshall-like signs
within a 2LR-EPS amounts to considering that the phase of
each plaquette θi j (σi, σ j ) only depends on the configuration
of one spin, and it reads

θi j (σi, σ j ) = π

Ni

σi + 1

2
(A1)

if site i belongs to sublattice A or θi j (σi, σ j ) = 0 otherwise;
here and in the following of this Appendix σi = ±1 is two
times the eigenvalue of the Sz

i operator, and Ni is the number
of (i j) plaquettes for which site i is chosen as reference site.
This requires therefore the phase of the plaquette to depend
on the absolute position of at least one of its sites, leading to
∼O(N ) parameters. Such a requirement is fully compatible

with the choice of modularity of the phases that we made in
the study of our largest lattices.

Alternatively Marshall-like signs can be enforced at the
level of each pair:

θi j (σi, σ j ) = πN (i j)
A,↑ = π

2
[(σi + 1)δi,A + (σ j + 1)δ j,A], (A2)

where N (i j)
A,↑ = π

2 [(σi + 1)δi,A + (σ j + 1)δ j,A] is the number
of ↑ spins on the sites of the (i j) plaquette belonging to
sublattice A (δi,A = 1 if i belongs to A and 0 otherwise). Then
one can easily show that, up to a global phase factor:

sgn[ψ (σ)] = ei π
2

∑
i< j (σiδi,A+σ jδ j,A ) = ei π

2 (N−1)(2NA,↑−N )

= e−iπNA,↑eiπN2/2, (A3)

which is precisely the Marshall sign (up to the constant phase
factor eiπN2/2). Here we have used the fact that N , being
composed of two sublattices, is even, so that πNA,↑N is an
integer multiple of 2π . We then observe that, in order to
reproduce the Marshall-like sign, the phase of the coefficient
eiθi j must be able to distinguish between AA plaquettes (both
sites belonging to A) and BB plaquettes (both sides belonging
to B); and between AB and BA plaquettes. For arbitrary
geometries of the A and B sublattices, this requires the phases
θi j to depend on the absolute positions of both sites, increasing
substantially the number of parameters to ∼O(N2). We have
therefore not pursued this parametrization for the largest
lattices studied here.

APPENDIX B: EMERGENCE OF THE SIGN STRUCTURE
AND OF REAL WAVE FUNCTION COEFFICIENTS

DURING THE OPTIMIZATION

In order to quantitatively exemplify how the 2LR-EPS
wave function is able to reproduce the correct ground-
state sign structure (when the latter is compatible with the
parametrization of the Ansatz) we discuss in detail the case
of the J1 − J2 model for α = 0. Indeed, in this situation, the
signs of the coefficients of the exact ground state are known,
as they are dictated exactly by the Marshall sign rule, and
they can be exactly reproduced by optimizing our Ansatz.
To elucidate how such a sign structure emerges along the
optimization procedure we closely examine the evolution with
the number of optimization steps of the fraction of wave
function coefficients possessing the expected Marshall sign.
Hence we define the quantity

M= 1

NC

∑
σ

1

2

∣∣∣∣sgn

[
Re

(
ψ (σ)

ψ (σREF)

)]
+ (−1)NA,↑(σ)

(−1)NA,↑(σREF )

∣∣∣∣,
(B1)

where NC is the total number of σ configurations, σREF is a ref-
erence configuration (here taken as the Néel state ↑↓↑↓ · · · ),
and the term in the sum is 1 (0) if the sign of the coefficient of
the generic configuration σ follows (breaks) the Marshall sign
rule. Figure 13 clearly shows how the desired sign structure
is fully reconstructed (i.e., M reaches 1) by our optimization
procedure within a few thousand steps.

Another important point of our work is that our optimized
2LR-EPS Ansatz is essentially real (up to a global phase
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FIG. 13. Fraction of the wave function coefficients M fulfilling
the Marshall-sign rule (see text) as a function of the number of
optimization steps, for N = 16, and α = 0. Data are obtained with
the 2LR-EPS Ansatz. The dashed line is a guide to the eye.

factor), recovering a fundamental property of the ground state
of the J1 − J2 chain. This aspect can be elucidated by ana-
lyzing the phase relationship between, e.g., the wave function
coefficient of all allowed configurations and that of a reference
one (here taken again to be the Néel state). If the state is real
up to a global phase, then the following quantity

I (σ, σREF) = Im[ψ (σ)/ψ (σREF)] (B2)
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FIG. 14. I (σ, σREF ) (see text) as a function of the number of
optimization steps, for N = 16, α = 0, and three (different symbols)
randomly chosen wave function coefficients. Data are obtained with
the 2LR-EPS Ansatz. Dashed lines are guides to the eye.

is vanishing. The evolution of I (σ, σREF) along the optimiza-
tion procedure is shown in Fig. 14 for the same system
parameters of Fig. 13, and for three randomly chosen wave
function coefficients. I (σ, σREF) is seen to approach a null
value (i.e., <10−15) after a few thousand optimization steps.
The same behavior can be verified for all the wave function
coefficients, and this despite the complex form of the initial
state.
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