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We examine the perennial quantum spin liquid candidate S = 1
2 Heisenberg antiferromagnet on the kagome

lattice. Our paper is based on achieving Lanczos diagonalization of the Hamiltonian on a 48 site cluster in
sectors with dimensions as large as 5 × 1011. The results reveal intricate structures in the low-lying energy
spectrum. These structures by no means unambiguously support a Z2 spin liquid ground state, but instead appear
compatible with several scenarios, including fourfold topological degeneracy, inversion symmetry breaking,
and a combination thereof. We discuss finite-size effects, such as the apparent absence of the eigenstate
thermalization hypothesis, and note that, while considerably reduced, some are still present for the largest cluster.
Finally, we observe that an XXZ model in the Ising limit reproduces remarkably well the most striking features
of finite-size spectra.
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I. INTRODUCTION

The S = 1
2 kagome Heisenberg magnet is arguably the

best studied, yet most enigmatic, candidate spin liquid, iden-
tified as such in the very early works of the field of highly
frustrated magnetism [1,2]. Many different numerical ap-
proaches have been applied to this magnet: exact diagonal-
ization (ED) [1–10], resonating valence bond (RVB) physics
inspired methods [11–19], variational Monte Carlo [20–25],
coupled cluster treatments [26], contractor renormalization
(CORE) [27–29], series expansions [30,31], density-matrix
renormalization group (DMRG) [32–37], and tensor network
algorithms [38–42].

These have yielded an enigmatic phenomenology, with ev-
idence for the following features: (a) all correlations are short
ranged; (b) the singlet gap, if nonvanishing, is numerically
tiny; (c) there exists a huge number of (near-)degenerate states
apparently not related by symmetry; (d) these spectral features
are remarkably stable for classes of perturbations around the
Heisenberg point. On general grounds, it is not clear how to
reconcile these, in particular (a) with (b), and (c) with (d).

Given these confusing signals, it is perhaps not surprising
that confidence in various pictures of the behavior of this mag-
net has ebbed and flowed, with new technologies providing
invaluable new insights which in turn generate new scenarios
of varying shelf life. An important breakthrough was a DMRG
tour de force by Yan and coworkers [33] and a number
of follow-up studies using that method [34,35], as it turns
into a tool for the study of two-dimensional magnets. Taken
together, these suggested as the most likely scenario a Z2

gapped spin liquid, based on the observation that correlations
appear to be short ranged, with candidate ordering patterns
imposed at the boundaries decaying swiftly into the bulk.
Evaluations of the universal contribution to the entanglement
entropy show, with differing degrees of confidence, the value
expected for this topological state [34,35].

A source of uncertainty hard to quantify in this evidence
lies in the fact that DMRG is not an unbiased method, pre-
ferring low-entanglement states over highly entangled ones,
so that the last word may very well not have been spoken.
Indeed, a more recent DMRG study employing flux threading
found evidence for a much smaller spin gap than that given
by previous DMRG estimates, and suggested the possibility
of a U(1) spin liquid with an excitation spectrum containing
(gapless) Dirac cones [37].

Against this background, the work reported here revisits
possible alternative scenarios. The material presented here
is based on state-of-the-art exact diagonalization work. This
is in the tradition of exact diagonalization studies that have
historically been a linchpin of the study of kagome; their main
advantage is that they are numerically exact and unbiased,
while providing a comprehensive picture of the low-energy
physics, including the quantum numbers of the excitation
spectrum above the ground state. The main disadvantage lies
in the limitation to finite sizes, which even given Moore’s law
is only being pushed back slowly.

The quantifiable technical advance lies in our capacity to
treat a cluster of 48 sites with a Hilbert-space dimension of
248 ≈ 2.8 × 1014. Using a highly optimized, message-passing
based ED code it has been possible to obtain the low-lying
energy spectrum in symmetry sectors comprising up to ≈5 ×
1011 states. To the best of our knowledge, this is among the
largest number of S = 1

2 spins treated in exact diagonalization
in a comparable context.

Physically, the 48 site cluster has the following important
properties. First, it is a highly symmetric cluster. Second, it
is compatible with many of the principal proposed ordering
patterns. And, third, it severely reduces finite-size effects
by eliminating a large class of winding loops (loops on the
lattice winding around the periodic boundary) of length L = 8
present for the hitherto largest-studied 36 and 42 site clusters
[43].
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In the following, we first report the data on energies and
gaps, which can act as benchmark and reference for the
future. For the 48 site cluster, the ED ground-state energy is
comfortably below that determined from DMRG. Next, we
discuss the structure of the low-lying energy spectrum, which
turns out to be consistent with inversion symmetry breaking,
or with the presence of a topological degeneracy. We provide
a detailed analysis of correlations for a large system, both
spin-spin and energy-energy (dimer-dimer) correlators. We
discuss different finite-size effects, most importantly an appar-
ent absence of eigenstate thermalization, and structural shifts
of levels with respect to each other. Finally, we identify the
XXZ antiferromagnet in the Ising limit, Jxy = 1,� → ∞ (or
equivalently j ≡ Jxy/Jz � 1), with its considerably reduced
Hilbert space, as an effective model for the low-energy sector
of the Heisenberg magnet, thereby extending the stability of
its behavior to the full range of quantum models 0 < j � ∞
[44,45]. We conclude with a discussion.

II. MODEL AND METHOD

We investigate the S = 1
2 antiferromagnetic Heisenberg

model on the kagome lattice

H = J
∑

〈i, j〉
Si · S j, (1)

with the coupling constant set to J = 1. We investigate the
low-lying energy spectrum of finite kagome clusters with
periodic boundary conditions with Ns = 36, 42, and 48 sites
[46]. We apply a recently developed massively parallel exact
diagonalization code to study these systems, tackling Hilbert
spaces of up to 5 × 1011 basis states. Convergence within a
few hundred iterations is typically reached for the lowest two
to three eigenstates in each symmetry sector.

Energy spectroscopy is a powerful technique to diagnose
various states of quantum matter. A characteristic “Tower
of States” accompanies continuous and discrete symmetry
breaking, the effective theory describing quantum critical
points in one and two dimensions [47] can be accessed this
way, and ground-state degeneracy of topological origin is also
directly visible.

Given the earlier DMRG evidence for Z2 topological or-
der in the kagome antiferromagnet, it thus appears highly
desirable to evidence the required fourfold ground-state de-
generacy in ED as well. In the recent activity on chiral spin
liquids [48–51] it has been possible to observe the twofold (or
fourfold) ground-state degeneracy even with modest system
sizes accessible by ED, while DMRG simulations for the
kagome Heisenberg antiferromagnet have failed to report
the required ground-state degeneracy so far. In one of the
simplest RVB states on the kagome lattice originating from
the quantum dimer model of Misguich et al. [14], we would
expect two lying levels each at the � and the (unique) M point
for Ns = 42, while four levels at the � point are expected for
Ns = 36 and 48 [52]

III. Ns = 42 SITE SPECTRUM

Let us first discuss the symmetry sector resolved low-
energy spectrum of the Ns = 42 site cluster. The ground-

state energy and spin gap of this cluster have been reported
previously [7,8], but not the momentum and lattice π -rotation
resolved low-energy spectrum. We display the spectrum in
panel (a) of Fig. 1. For comparison we show the classic [6]
low-energy spectrum of the highly symmetric Ns = 36 site
sample in panel (b) on the same scale.

The kagome antiferromagnet is notorious for its rather
dense low-energy spectrum [5,6,12]. In the Ns = 36 sample
there is a subspace (including degeneracy) of about 200
singlets below the first triplet in the spectrum, with the singlet
singlet gap about 0.01011J . Despite not being able to fully
converge all the singlets before the first triplet in the Ns = 42
case, it is nevertheless apparent that the low-energy spectrum
is still very dense. Taking the number of all the approximate
eigenvalues below the triplet gap as a lower bound for the
exact number of singlets, we obtain at least 160 states. The
singlet-singlet gap is 0.01974J , which remarkably is almost
two times larger than for Ns = 36. Furthermore no obvious
separation of a low-lying set of multiplets forming the ground
space and the rest of the spectrum is visible.

IV. Ns = 48 SITE SPECTRUM

To break down the full Hilbert space into manageable
sectors, we use total Sz conservation, spin-flip symmetry,
translation, and point-group symmetries in order, obtaining
tractable subspaces of dimension up to ≈5 × 1011. It is cur-
rently not possible to simultaneously exploit the complete
SU(2) symmetry group and the lattice space group in large-
scale exact diagonalizations. For performance reasons we
only use a subset of the full D6 point group, generated by
the π rotation around the center of a hexagon, as well as
a reflection along either the x or y axis, depending on the
momentum sector under consideration. When labeling spatial
symmetry sectors we state the momentum sector, followed
by the eigenvalue +1(e) or −1(o) of the π rotation and/or
the reflection. Using this smaller symmetry group it is nev-
ertheless possible to identify the representation of D6 by a
compatibility table of the representations of the two symmetry
groups. We have been able to obtain the lowest energy in all
Sz = 0 sectors with even spin-parity and all but four in the
odd spin-parity sectors. The available energies are listed in
Table I in Appendix A. The ground-state energy of the 48 site
cluster is E/NJ = −0.438 703 897 156, almost 0.5% lower
than some of the previous DMRG studies for the same cluster
[32,34]. Based on the available triplet sectors our estimate for
the spin gap is �S=1/J = 0.168 217, while the singlet-singlet
gap is �S=0/J = 0.021 217. The spin gap is comparable to
earlier CORE [28] and variational results [25] on the same
system size [53].

The low-energy spectrum of the 48 site cluster is shown in
Fig. 2. In an ideal Z2 spin liquid situation with a short corre-
lation length one would expect an approximate, but clear-cut,
fourfold ground-state degeneracy, with a gap to all further ex-
citations. This is not what we observe here, implying that the
spin liquid state of the kagome Heisenberg antiferromagnet is
either a Z2 spin liquid, but with significantly larger correlation
lengths than anticipated based on the previous DMRG studies,
or we are observing a more complex spin liquid state. While
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(a) (b)

FIG. 1. Low-energy Lanczos spectra of the S = 1
2 Heisenberg model for clusters with (a) Ns = 42 and (b) Ns = 36 sites. The black, empty

symbols denote singlet levels, while the the red, full symbols indicate triplet levels. The black and red dashed lines indicate the location of
the singlet-singlet and singlet-triplet gap. The spectrum for Ns = 42 is only totally converged for the lowest level in each symmetry sector.
We nevertheless plot the complete spectrum of the tridiagonal Lanczos matrix in order to provide a visual impression of the buildup of a
comparatively high density of states in the low-energy spectrum. The spectrum shown for Ns = 36 is fully converged. In the center we display
the Brillouin zones of the two clusters including the labeling of the discrete k points. The additional orange circles in (b) denote eigenstates
with pronounced dimer-dimer correlations (see main text for details).

we are not able to pinpoint which scenario is realized based
on the available system sizes, there nevertheless are a few
pointers for the largest system size. In Fig. 2 we have labeled
the four expected energy levels for one of the Z2 spin liquids
with the labels (1),(2) [an exact doublet], and (3), all of them
at the � point in the Brillouin zone. Curiously the first excited
state is not part of this set of levels, but seems to be part
of an energy-shifted “shadow” structure of levels (i) to (iii)
which differs from (1) to (3) in their odd quantum number
with respect to π lattice rotations. It is also worth pointing
out that the lowest singlet excitations at finite momentum,
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FIG. 2. Low-energy Lanczos spectrum of the S = 1
2 Heisenberg

model for a cluster with Ns = 48 sites. Black and red dashed lines
indicate the location of the singlet-singlet and singlet-triplet gap. The
spectrum is only completely converged for the lowest level in each
symmetry sector. We nevertheless plot the complete spectrum of the
final tridiagonal Lanczos matrix in order to provide an approximate
visual impression of the low-energy spectrum. Labeled energy levels
are discussed in the main text.

e.g., levels (a)–(c), are at comparatively high energies of
≈0.05J and above. This is in stark contrast to the 36 and
42 site samples, where the lowest finite momentum levels are
either the first excited levels overall or very close in energy
(see Fig. 1).

V. Ns = 48 SITE CORRELATION FUNCTIONS

In order to explore whether the lowest excited state—
located in the �oe sector—is related to a rotation symmetry-
breaking tendency, we have calculated selected correlation
functions in the ground state and the first level in the
�oe sector. Figure 3(a) displays 〈Sz

0Sz
i 〉 in the ground state.

As in previous work [7], we find that the strongest spin-
spin correlations are not around the hexagon to which the
reference site belongs, but instead along the path which
connects the reference site with its image under periodic
boundary conditions (indicated by the straight dashed line).
Another interesting structure is the (weak) staggered corre-
lation signal along a diamond path (indicated by a dashed
diamond lozenge). The correlations in the first excited state
are not shown, but are also weak apart from the wrap-
ping path. In Figs. 3(b) and 3(c) we display the connected
“SzSz-dimer” correlations: Czzzz(i, j, k, l ) = 〈(Sz

i Sz
j )(S

z
kSz

l )〉 −
〈(Sz

i Sz
j )〉〈(Sz

kSz
l )〉, where (i, j) and (k, l ) denote nearest-

neighbor bonds. These are diagonal in the computational
basis and therefore computationally friendlier for the large
Hilbert spaces under consideration. In the ground state [panel
(b)] the correlations show some interesting structure at short
and intermediate distances. We observe a correlation sign
pattern which is largely in agreement with a diamond valence
bond crystal, first discussed in the DMRG study [33], and
more recently found to be a stable phase in an extended
Heisenberg model including ferromagnetic further neighbor
couplings [10]. The first excited state in the sector �oe [panel
(c)] also exhibits sizable correlations, with the signs of many
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FIG. 3. Selected correlators for the 48 site cluster. Filled red (blue) objects denote negative (positive) correlations. Diameters are
proportional to correlation strength. (a) 〈Sz

0Sz
i 〉 correlations in the ground state. The empty circle denotes the reference site. (b) Connected

〈(Sz
i Sz

j )(S
z
kSz

l )〉 − 〈(Sz
i Sz

j )〉〈(Sz
kSz

l )〉 nearest-neighbor “dimer” correlations in the ground state. The black bond denotes the reference bond.
(c) Connected “dimer” correlations in the first excited state (�oe sector).

correlators changed compared to the ground state. We thus
do not find evidence for a valence bond type of symmetry
breaking tendency.

VI. LOW-LYING SINGLET LEVELS

The large number of low-lying singlets is a hallmark fea-
ture in ED studies of the kagome Heisenberg antiferromagnet.
Despite the long history of the problem, the nature of the
singlets and a quantitative effective Hamiltonian describ-
ing their energetics have been elusive. Here we provide a
perspective on these questions. First we have determined the
nearest-neighbor dimer-dimer correlations in all the singlet
eigenstates of the Ns = 36 site cluster below the spin gap.
In Fig. 1(b) we highlight those levels with an orange circle
which exhibits particularly strong dimer-dimer correlations
(presented in detail in Fig. 5 in Appendix B). The fact that
these are broadly scattered across the investigated energy
range is a strong indication that the eigenstate thermalization
hypothesis (ETH) [54] is not (yet) operative. While this is
not unexpected at the boundaries of a many-body spectrum,
it is puzzling nevertheless, since the level spacing is already
quite small, reminiscent of the situation in the inner part of a
many-body energy spectrum.

VII. EFFECTIVE HAMILTONIAN

In a recent work two of us have uncovered a striking
stability of the energy spectrum of the Heisenberg antiferro-
magnet as one moves towards the easy-plane XY limit [44].
Furthermore there is also a remarkable continuity towards the
Ising limit perturbed with in-plane exchange, as observed in
ground-state properties of DMRG simulations [45]. This limit
has the interesting property that the effective Hilbert space
is reduced, because only the antiferromagnetic Ising ground
states of the kagome lattice need to be retained. For the 48
site cluster this amounts to a reduction by a factor of ≈1000
in total Hilbert-space size. In Fig. 4 we present the energy
spectrum of the XY-exchange perturbed antiferromagnetic
Ising model to first order in degenerate perturbation theory
for the 48 site cluster. Interestingly many features of the

Heisenberg singlet spectrum of Fig. 2 can be found here as
well. For example, the approximate multiplets (1)–(3) and
(i)–(iii) are found at similar locations in the spectrum. Fur-
thermore the lowest finite-momentum excitations (a) and (c)
are also low in energy in the effective model. However, there
are also some differences, for example, the level (4) [(b)] is
pushed down [up] somewhat when going from the Heisenberg
spectrum to the effective XXZ model. Overall we feel that
the XY-perturbed antiferromagnetic Ising configurations on
the kagome lattice yield a useful effective Hamiltonian, which
is actually able to reproduce many features of the low-energy
spectrum of the Heisenberg antiferromagnet, and which might
be pushed to larger system sizes, thereby possibly revealing
the true nature of the ground state of the kagome Heisenberg
antiferromagnet.

VIII. CONCLUSIONS

Even for the highly symmetric large Ns = 48 site cluster,
no clear Z2 spin liquid evidence emerges. Also, correlations
and spectra at finite wave vectors do not suggest valence bond
ordering. Absent a quantitative understanding of how a U(1)
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FIG. 4. XY perturbed antiferromagnetic Ising model (large �
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spin liquid and its Dirac cones would show up in the finite-size
spectrum on a torus, we cannot judge the likely validity of this
scenario [37]. While finite-size effects are clearly still present
in our results, some features nonetheless demand special
attention. For instance, one might have expected the gross
features of the physics in the ground state to prevail among
the lowest excited states, as it is the case for ordered magnets
or valence bond crystals. The absence of ETH in the dimer-
dimer correlations then rather suggests that the low-lying
singlets of the kagome antiferromagnet are not just a “soup” of
featureless singlets, but instead seem to host a large number of
possibly competing many-body states. In such a setting, even
mildly suboptimal energies obtained variationally may reflect
correlations in the trial state a long way from those of the
true ground state—e.g., an error of only 0.5% in the ground-
state energy of a 48 site cluster amounts to several times its
singlet-singlet gap, a region which hosts quite a number of
many-body levels. These aspects clearly require further study.
With ongoing progress on several fronts—numerically (not
least DMRG and ED), field theoretically, and with effective
models—the emergence of a consistent picture may perhaps
not prove to be quite so elusive in the foreseeable future.
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APPENDIX A: ENERGY SPECTRUM FOR Ns = 48

In Table I we list the lowest energy in each of the targeted
sectors for future reference.

APPENDIX B: DIMER-DIMER CORRELATION
FUNCTIONS IN SELECTED EIGENSTATES FOR Ns = 36

In Fig. 5 we show dimer-dimer correlation functions in
selected eigenstates for Ns = 36.

FIG. 5. Panel of Ns = 36 dimer-dimer singlet correlations (de-
fined as indicated in the figure) in the states highlighted by orange
circles in Fig. 1(b). For comparison we show the ground-state dimer-
dimer correlations in the bottom right subplot.
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