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Topological states on fractal lattices
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We investigate the fate of topological states on fractal lattices. Focusing on a spinless chiral p-wave paired
superconductor, we find that this model supports two qualitatively distinct phases when defined on a Sierpinski
gasket. While the trivial phase is characterized by a self-similar spectrum with infinitely many gaps and extended
eigenstates, the “topological” phase has a gapless spectrum and hosts chiral states propagating along edges of the
graph. Besides employing theoretical probes such as the real-space Chern number, inverse participation ratio, and
energy-level statistics in the presence of disorder, we develop a simple physical picture capturing the essential
features of the model on the gasket. Extending this picture to other fractal lattices and topological states, we
show that the p + ip state admits a gapped topological phase on the Sierpinski carpet and that a higher-order
topological insulator placed on this lattice hosts gapless modes localized on corners.
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I. INTRODUCTION

The discovery of electronic insulators with topologically
nontrivial band structures has led to remarkable progress in
understanding gapped quantum phases. The prediction and
experimental discovery of topological insulators (TIs) [1–7]
and topological superconductors (TSCs) [8–11] led to a classi-
fication of gapped phases of noninteracting fermions [12,13];
this tenfold way encodes whether a system may host topolog-
ically nontrivial phases given the spatial dimension and the
symmetries under which it is invariant. The nontrivial band
topology of electronic states is manifest in striking universal
properties, including robust gapless modes confined to the
sample boundary and quantized response coefficients [14,15].

These concepts were later extended to crystalline sym-
metries, such as reflection, inversion, or rotation. Gapped
phases protected by these symmetries are called topological
crystalline insulators (TCIs) [16–20] and include higher-order
topological insulators (HOTIs) [21–25]. Specifically, an nth
order TI/TSC in d spatial dimensions is gapped everywhere
except on a d − n dimensional surface. More generally,
TI/TSCs and HOTIs are examples of symmetry-protected
topological (SPT) [26,27] and crystalline SPT (cSPT) [28–30]
phases, respectively, whose classification also accounts for
interactions. Such phases have a trivial gapped bulk but host
boundary (or hinge/corner) modes protected against local,
symmetry-preserving perturbations [31].

A defining feature of topological phases is their robust-
ness against disorder: Provided the spectral (or mobility)
gap remains finite and the disorder respects the symmetry
protecting the TI/TSC, quantized coefficients and gapless
edge modes persist [32–35]. Despite disorder breaking the
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lattice symmetries protecting TCIs, their boundary modes
can evade localization when the full ensemble of disorder
configurations remains symmetric [36,37]. Traditionally, ro-
bustness of topological states is established by adding disorder
to a clean system, thereby assuming an underlying periodic
reference state. This approach, while efficacious, fails when
no such structure exists, i.e., for aperiodic systems, including
amorphous, quasiperiodic, and fractal systems. Nonetheless,
topological phenomena have been shown to exist in both
amorphous [38–43] and quasiperiodic [44–49] systems.

That the topology of quantum states can be defined in
the absence of spatial regularity over long distances opens
the door to finding topological phases on fractal lattices,
which lack a natural distinction between bulk and boundary,
and whose (typically noninteger) Hausdorff dimensions differ
from their topological dimensions. Interest in fractal struc-
tures, which have a rich history [50–55], has been revived
given experimental advances in creating and manipulating
synthetic lattices with arbitrary structures, in both photonic
and electronic systems [56–61]. In particular, fractal lat-
tices have been fabricated using focused ion beam milling
[62], molecular chains [63–65], and scanning-tunneling-
microscopy techniques [66], with theoretical studies primarily
focusing on localization and transport phenomena [67–72].

However, our understanding of the influence of self-
similar geometry on the topological character of electronic
states remains nascent, having received attention only re-
cently [73,74]. In this paper, we fill this lacuna by devel-
oping a general framework elucidating the fate of topolog-
ical states on fractal lattices embedded in two dimensions
(2D). Through this picture, we find that the nature of ther-
modynamic phases—gapped vs gapless—on fractal lattices
depends crucially on the ratio of bulk to edge coordinated
sites. Focusing on the chiral p-wave superconductor on the
Sierpinski gasket (SG), we show that qualitative features ob-
tained through numerical diagonalization can be understood
simply through our framework. Besides characterizing the two
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FIG. 1. (a) SG with “periodic” boundary conditions, such that all
sites have coordination number four. (b) Regions A, B,C considered
in real-space Chern number calculations.

distinct phases of this model using various theoretical tools,
we further corroborate our understanding by studying both the
p-wave superconductor and a HOTI on the Sierpinski carpet
(SC).

II. MODEL

We consider a 2D spinless chiral p-wave supercon-
ductor (symmetry class D [12]) within the Bogoliubov-
deGennes (BdG) framework, with the mean-field lattice BCS
Hamiltonian:

Ĥ = −t
∑
〈r,r′〉

ĉ†
r ĉr′ − μ

∑
r

ĉ†
r ĉr +

∑
r,m

[
�mĉ†

r+em
ĉ†

r + H.c.
]
,

(1)
where ĉ†

r , ĉr satisfy fermionic anticommutation relations
{ĉr, ĉ†

r′ } = δr,r′ , t is the nearest-neighbor hopping, μ is the

chemical potential, and we set the lattice spacing a = 1.
Specifying to a triangular lattice [75], the pairing term �m =
�eiπm/3 is defined on the nearest-neighbor bonds correspond-
ing to the three lattice vectors em with azimuthal angles mπ/3
(m = 0, 1, 2). We introduce the standard Bogoliubov trans-
formation: ĉr = ∑

r [un,rγ̂n + vn,rγ̂
†
n ], where γ̂n is the Bo-

goliubov quasiparticle annihilation operator, and (un,r, vn,r )T

diagonalizes the BdG Hamiltonian Eq. (1), with eigen-
value En.

We study this model on a SG with “periodic” boundary
conditions [see Fig. 1(a)], i.e., with four gaskets arranged on
alternating faces of an octahedron, ensuring that all lattice
sites are equally (four) coordinated. We construct a lattice
regulated (with a smallest triangle) SG recursively, by adding
sites/bonds to a gasket at generation g to arrive at g + 1 SG.
The largest lattice we can probe numerically has g = 6, with
the total number of sites N ∼ 3g+1 at generation g.

Setting � > 0 and noting that the Hamiltonian Eq. (1)
admits a topological phase on a triangular lattice for −6t <

μ < 2t (see Appendix A), we find that this model admits
topologically distinct phases even on the SG. The qualitative
distinction between the two phases is illustrated in Fig. 2,
which shows the spectrum and states for g = 5. For μ >

2t or μ < −6t , we find a fully gapped “trivial” phase in
Fig. 3, where eigenstates are delocalized, thereby behaving as
bulk states in ordinary gapped systems. In the thermodynamic
(g → ∞) limit, the spectrum is self-similar, with infinitely
many gaps. In contrast, for −6t < μ < 2t we find that the
amplitude of the largest gap in the spectrum decays exponen-
tially with increasing generation (see Appendix D), such that
the spectrum is strictly gapless in the g → ∞ limit. Thus, this
parameter range describes a qualitatively distinct phase with
emergent continuous scale invariance, unlike the trivial phase

FIG. 2. Gapless topological phase of the chiral p + ip superconductor on the SG, with g = 5, � = 1, t = 0.5, μ = 0.5. Energy spectrum
and probability densities of eigenvectors at indicated energies are shown. Color scale indicates values of x, y, z coordinates, with dot size
indicating the magnitude of the probability density at that point.
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FIG. 3. Gapped trivial phase of the p + ip superconductor on the SG, with g = 5,� = 1, t = 0.5, μ = 2. Energy spectrum and probability
densities of eigenvectors at indicated energies are shown. Color scale indicates values of x, y, z coordinates, with dot size indicating the
magnitude of the probability density at that point.

which only possesses discrete scale invariance. Particle-hole
symmetry is present in both phases. While the spectra are
obtained by numerically diagonalizing the BdG Hamiltonian
Eq. (1), these can in principle also be obtained recursively (see
Appendix B for details).

An intriguing feature of the gapless phase is the edgelike
nature of eigenstates: in Fig. 2, we plot the electronic densities
for representative states at the indicated energies, revealing
states sharply localized on triangular motifs formed by sites of
various generations i.e., localized around the inner edges (or
holes) of the SG. While states closest to E = 0 are localized
on the outer edges, corresponding to the earliest generations,
there is a hierarchy of states localized on inner edges created
at subsequent generations of the SG. In the thermodynamic
limit, we expect that all eigenstates in this phase will be
sharply localized along edges. Remarkably, these localized
states are also chiral, with a wave-packet initialized on any
inner edge propagating in the direction opposite to that of one
initialized on the outermost edge (see Appendix C).

Surprisingly, we find that the transition between the triv-
ially gapped and the gapless phase coincides with the trivial
↔ topological transition of Eq. (1) on the triangular lattice.
This observation hints that the model on the SG inherits its
behavior from one defined on a triangular lattice. Indeed, we
can regard the inner edges of the SG as holes in a triangular
lattice, which, in the topological phase of Eq. (1), host gapless
chiral Majorana modes propagating counter to the outermost
edge state [76]. Since the number of these holes increases with
g, there are infinitely many gapless modes in the spectrum as
g → ∞, resulting in a gapless spectrum. This physical picture
suggests that the chiral eigenstates in the gapless phase are
descended from Majorana edge modes of the p + ip state on
a triangular lattice. We hence dub this the gapless topological
phase on the SG.

III. DIAGNOSTICS

Before building on this intuitive picture and showing that it
generalizes to other fractal lattices, such as the SC and other
topological states, we further characterize the two distinct
phases of the p + ip superconductor on the SG using some
standard diagnostics.

A. Real-space Chern number

Since our model lacks translation invariance and only
retains (discrete) scale invariance, we cannot use the
momentum-space Chern number to characterize the topo-
logical and trivial phases of the p + ip superconductor on
the SG. Thus, we instead compute the real-space Chern
number introduced in Ref. [77], which reduces to the
momentum-space Chern number in the presence of translation
invariance,

C = 12π i
∑
j∈A

∑
k∈B

∑
l∈C

(P jkPklPl j − P jlPlkPk j ), (2)

where P projects onto occupied states with respect to a given
chemical potential, and j, k, l are indices corresponding to
three distinct neighboring regions A, B,C, arranged counter-
clockwise [see Fig. 1(b)]. In Eq. (2), Pi j is a 2 × 2 matrix
whose rows correspond to c†

i , ci, and whose columns corre-
spond to c j, c†

j . Retaining the site basis, we rotate only the k
/pseudospin basis. We then diagonalize the 2 × 2 matrix in
the expression for C such that the pseudospin is now a good
quantum number, and then take the trace. With P̃i j represent-
ing the 2 × 2 block after diagonalization, the expression for
the Chern number can be rewritten as

C = 12π i
∑
j∈A

∑
k∈B

∑
l∈C

Tr(P̃ jkP̃kl P̃l j − P̃ jl P̃lkP̃k j ). (3)
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FIG. 4. The real-space Chern number (black curve) as a function of Fermi energy Ef , with the corresponding spectrum shown in red in
(a) the trivial phase (μ = 2) and (b) the topological phase (μ = 0.5). Here, g = 4, t = 0.5, and � = 0.5.

For g = 5 in the trivial phase, we find that C = 0 for all
gapped regions of the spectrum [see Fig. 4(a)]. We have
checked that this quantization becomes independent of the
specific choice of regions A, B,C at large g � 4 i.e., in the
limit when the number of sites in each region becomes large.
In the thermodynamic (g → ∞) limit, the spectrum within the
trivial phase displays an infinite hierarchy of self-similar gaps,
and we expect that C will vanish identically for each of the
infinitely many gaps in the spectrum.

In contrast, within the topological phase, the gapped re-
gions of the SG scale to zero and have a trivially quantized
Chern number. As can be seen in Fig. 4(b), we find that
indeed C = 0 within the finite-size gaps at finite g in the
topological phase. Nevertheless, similar to previous works on
topological amorphous superconductors [43] and on the quan-
tum Hall effect on fractal lattices [74], we expect the Chern
number to take a nontrivial quantized value within the gap-
less regions due to the presence of a mobility gap and the
topological nature of the phase. While our numerics suggest
that the Chern number tends toward a quantized nonzero value
with increasing g in regions corresponding to low but nonzero
density of states, we are numerically limited to g � 5, for
which finite-size effects obscure the expected quantization.

Thus, in the thermodynamic limit, the trivial phase will
exhibit a strictly quantized C = 0 within the infinitely many
gaps in the spectrum; on the other hand, although the spectrum
becomes gapless in the topological phase, we expect that
C converges to a nontrivial quantized value as g → ∞ in
the gapless regions due to the presence of a mobility gap
[74]. Verifying the latter requires investigating the model on
a SG with large g, which is beyond our current numerical
capabilities.

B. Inverse participation ratio

Another useful diagnostic is the inverse participation ratio
(IPR) of the nth eigenstate [78,79],

IPRn =
∑

r(|un,r|4 + |vn,r|4)[ ∑
r(|un,r|2 + |vn,r|2)

]2 (4)

which scales as L−2 for extended states but remains finite
for localized states even in the thermodynamic limit. In the
trivial phase, all eigenstates are delocalized [see Fig. 5(a)],
reflecting their bulk nature. Increasing g suppresses the IPR
values further toward zero. In the topological phase, the IPR
values instead abruptly jump between ∼0 and ∼1, with the
latter corresponding to eigenstates localized along the various
edges (or holes) of the SG, as in Fig. 2. The number of local-
ized states increases with g [see Figs. 5(b) and 6], consistent
with the physical picture discussed above: cutting out holes
from the triangular lattice does not introduce any edge modes
in the trivial phase, and all states remain extended. In the topo-
logical phase, however, additional gapless edge modes are
introduced, with the number of such modes increasing with g.
This agrees with the numerical observation of localized states
with IPRn ∼ 1 as shown in Fig. 5(b).

C. Level statistics

Since disorder provides an independent probe of topol-
ogy, we add an on-site term

∑
r Vrĉ†

r ĉr to the Hamiltonian
Eq. (1), with Vr drawn randomly from the uniform distribution
[−W/2,W/2]. In Fig. 7, we plot the energy-level spacing
distributions, averaged over 500 disorder realizations, for
weak and strong disorder in both phases. The normalized
level spacing is given by s = |En − En+1|/δ(En), with δ(En)
the mean-level spacing near energy En. In the trivial phase,
the distribution is Poissonian at both weak and strong disor-
der, consistent with a localized phase. The level spacings in
the topological phase follow unitary Wigner-Dyson Gaussian
Unitary Ensemble (GUE) statistics at weak disorder (W = 2)
and transition to Poisson at strong (W = 8) disorder, with the
transition [80] to the Anderson insulator occurring at W ∼ 5.
Agreement with the Wigner surmise (for β = 2) at weak
disorder (see Fig. 7) indicates that the gapless topological
phase is a diffusive metal [81,82].

IV. RECURSIVE DECIMATION

We propose a physical picture which elucidates how topo-
logical states on 2D fractal lattices inherit their behavior from
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FIG. 5. IPRn (using open boundary conditions on a single SG), with g = 4, t = 0.5, � = 0.5. All states are delocalized in the (a) trivial
phase (μ = 2) while the (b) topological phase (μ = 0.5) exhibits states localized around edges.

a “parent” state on an underlying periodic lattice. Consider
the BdG Hamiltonian Eq. (1) on a triangular lattice with
open boundary conditions, lattice spacing a, and size L =
2pa, as shown in Fig. 8. We define bulk and edge sites as
those with coordination numbers six and four, respectively
[83]. We now decimate sites and bonds recursively to gen-
erate the SG. At the gth step (g � 1), we eliminate all sites
and bonds contained inside 3g−1 inverted triangles of length
L/2g, introducing an additional 3g−1 inner boundaries into the
lattice. The procedure continues until g = gc, with L/2gc = 2a
(gc = p − 1), at which stage a generation gc SG is produced:
The ratio of bulk sites nB(g) to edge sites nE (g) vanishes
identically when g = gc (see Appendix E for details). This
process is illustrated in Fig. 8.

Starting in the topological phase, where a chiral Majo-
rana mode propagates clockwise along the outermost bound-
ary, each subsequent iteration introduces additional physical
boundaries into the lattice, each hosting a chiral Majorana
mode propagating counterclockwise [76]. In the thermody-
namic limit L/a → ∞, the decimation is repeated infinitely
many times (gc → ∞) until only boundary sites are left
and a chiral Majorana mode propagates along each of the

FIG. 6. IPRn with g = 5, t = 0.5, � = 0.5. Comparison with
Fig. 5(b) clearly shows that the number of localized states in the
middle of the spectrum increases with g.

infinitely many edges, resulting in a gapless spectrum. Thus,
the decimation picture shows that the chiral eigenstates of
the gapless topological phase are intimately linked to the
Majorana edge modes of the underlying p-wave state. Further,
the absence of any bulk sites explains why all bulk features
of the underlying model are washed out as g → ∞, with the
gapless state effectively described by a self-similar network of
chiral 1D Majorana modes.

Starting instead in the trivial phase, each iteration only
introduces additional gaps, as no edge modes appear. The
self-similar arrangement of the gaps is a consequence of
discrete scale invariance of the generated SG, and the trivial
→ topological transition on the SG can be understood as the
proliferation of chiral Majorana modes which occurs during
the transition on the underlying periodic lattice. Our analytic
picture naturally accounts for the phase boundaries of Eq. (1)
on the SG matching those on the triangular lattice. We also
expect that the gapless topological phase inherits the robust-
ness of the edge modes against arbitrary local perturbations
respecting the symmetry protecting the parent (p + ip) state.

FIG. 7. Distribution of normalized energy level spacings with
disorder W , with g = 4, t = 0.5, � = 0.5. Level statistics shown for
weak (W = 2) and strong (W = 8) disorder for the trivial (μ = 2)
and topological (μ = 0.5) phases.
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FIG. 8. Decimating a triangular lattice recursively to generate the
SG. Blue (black) dots denote sites with boundary (bulk) coordina-
tion. Sites and bonds inside the red (green) triangle(s) are eliminated
at the first (second) step.

To further test our decimation picture, we place the p + ip
Hamiltonian on the SC. This lattice can be constructed by
recursively decimating a square lattice, on which a topo-
logical phase exists for −t < μ < t . However, the ratio
limg→∞ nB(g)/nE (g) ∼ 5 for the SC, resulting in more bulk
than edge coordinated sites. Crucially, the distance between
gapless edge modes appearing along inner boundaries at each
step of the decimation process decreases with each iteration,
such that each Majorana edge mode on the recursively gen-
erated SC is separated from one with opposite chirality by
3a. In the thermodynamic limit, these edges states backscatter
and hybridize, leading to a gapped spectrum; we thus expect
that bulk features of the underlying state persist on the SC
as g → ∞ even in the topological phase. Results obtained by
numerically diagonalizing the BdG Hamiltonian Eq. (1) on
the SC vindicate our prediction: We find a trivial (C = 0) and a
gapped topological (with quantized C = 1) phase, with phase
boundaries matching those of the model on the square lattice
(see Appendix E 2 for details).

We posit that the above analysis readily generalizes to any
parent 2D topological state protected by internal symmetries:
For parameters corresponding to the topological phase on a
triangular lattice, the model will admit a gapless topolog-
ical phase on the SG, whose physics is governed by that
of the 1D gapless edge states of the parent state. On the
SC, for parameters corresponding to the topological phase
on the square lattice, the spectrum will remain gapped and
exhibit a nontrivial quantized topological invariant. Thus, the
nature of topological states on a given fractal lattice depends
crucially on whether limg→∞ nB(g)/nE (g) remains finite or
vanishes, resulting in a gapped or gapless topological phase,
respectively. The results of Ref. [73], which studied the half-
BHZ model [84] on the SG and SC, are in excellent agree-
ment with our conjecture and support the generality of our
arguments.

V. HOTI ON THE SIERPINSKI CARPET

Extending the above ideas to topological states protected
by spatial symmetries requires more care, since we must
ensure that no symmetries protecting the underlying state are
broken at any step of the recursive decimation to stay within
the same phase. For instance, for a cSPT protected by C4

rotation, we can start from a square lattice and recursively

generate the SC through decimation, resulting in a gapped
topological phase in the thermodynamic limit. To demonstrate
the applicability of our general framework to this case, we
have studied the paradigmatic four-band model of a HOTI, in-
troduced in Ref. [22], on the SC. The real-space Hamiltonian
on the square lattice is given by

H = −
∑
m,n

[
λ(1)

m,nĉ†
m+1,nĉm,n + λ(2)

m,nĉ†
m,n+1ĉm,n + H.c.

]
,

where ĉ†
m,n, ĉm,n are fermionic creation/annihilation operators

for site (m, n) of the square lattice, and where

2λ(1);(2)
m,n = λ(1 + (−1)m;n) + γ (1 − (−1)m;n).

This model preserves C4 rotation, time-reversal, and charge-
conjugation symmetries, and presents localized corner modes
when |γ /λ| < 1. Starting from the topological phase on the
square lattice, we recursively decimate the lattice to generate
the SC. Each iteration creates additional inner boundaries,
each hosting protected gapless corner modes since no sym-
metries are broken at any stage. Following our general argu-
ments, we expect a gapped topological phase on the SC as
g → ∞, with modes localized along the corners of infinitely
many inner edges. As shown in Fig. 9, we indeed find a
gapped spectrum and corner modes on all inner boundaries.
While we are numerically limited to g = 3, we expect this
behavior persists for larger generations. We also note that
the topological nature of the SC HOTI is protected only in
the presence of a particle-hole symmetry in addition to a
C4 symmetry: In the absence of particle-hole symmetry, the
zero-energy modes can be shifted around without breaking
the C4 symmetry [22]. Besides the generalization to spatial
symmetries, this analysis indicates that HOTIs remain well-
defined on fractal lattices as long as symmetries protecting
the parent state remain unbroken.

VI. CONCLUSIONS

In this paper, we have presented general principles which
determine the fate of 2D topological states on some fractal
lattices, with numerics supporting our analytic arguments.
Our results strongly suggest that lattices such as the SG
(SC) can support gapless (gapped) topological phases, whose
properties derive from those of an underlying parent state.
Understanding the role of interactions remains an important
open question, as does extending these ideas to 3D topological
phases on,e.g., the Sierpinski prism, where novel behavior
could result from the rich structure of surface states. A more
thorough investigation of the gapless topological phase of the
p + ip superconductor on the SG is also warranted and could
shed light on its low-energy effective field theory as well as
the observed topological metal-to-insulator transition. Finally,
given the progress in fabricating fractal lattices [62–66] and
in realizing HOTIs on a variety of platforms [85–88], exper-
imentally realizing corner modes on a fractal lattice could be
within reach.
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FIG. 9. (a) Spectrum and (b) nonpropagating corner modes in an HOTI defined on the SC (g = 3, γ = 0.5, λ = 1).
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APPENDIX A: p + ip ON A TRIANGULAR LATTICE

While the d = 2 BdG Hamiltonian describing the chiral
p + ip superconductor [Eq. (1) in the main text] is typically
implemented on a square lattice (see, e.g., Ref. [89]), it also
allows for a topological phase on a triangular lattice, which
we discuss briefly here. For a system with periodic boundary
conditions along both x and y directions, we can write the
Hamiltonian in momentum space as

Ĥ =
∑

k

(ĉ†
k ĉ−k )Hk

(
ĉk

ĉ†
−k

)
, (A1)

where ĉ†
k and ĉk are fermionic creation and annihilation

operators corresponding to momentum k, and where

Hk = 1

2

(
εk �1,k

�2,k −εk

)
, (A2)

with

εk = −2t

[
cos(kx ) + cos

(
kx

2
+

√
3ky

2

)

+ cos

(
kx

2
−

√
3ky

2

)]
− μ, (A3)

�1,k = −2i�

[
sin(kx ) + eiπ/3sin

(
kx

2
+

√
3ky

2

)

+ e2iπ/3sin

(
− kx

2
+

√
3ky

2

)]
, (A4)

�2,k = 2i�

[
sin(kx ) + e−iπ/3sin

(
kx

2
+

√
3ky

2

)

+ e−2iπ/3sin

(
− kx

2
+

√
3ky

2

)]
. (A5)

The energy eigenvalues of Hk are given by E (k) =
±

√
ε2

k + �1,k�2,k . Here, t is the hopping parameter, � is
the pairing amplitude, and μ is the chemical potential. It is
straightforward to check that this system has gap closings
at μ = −6t, 2t . For a triangular lattice with open boundary
conditions, the above Hamiltonian gives rise to persistent
chiral Majorana edge modes for −6t < μ < 2t for any � �=
0. These parameter values, therefore, characterize the trivial
↔ topological transition on the triangular lattice.

FIG. 10. Chern number C for the p + ip superconductor on a
triangular lattice. The plot shows that C = 1 for −6 < μ/t < 2 (the
topological phase), and C = 0 otherwise, i.e., in the trivial phase. The
above holds for any � �= 0.
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Writing the BdG Hamiltonian in Eq. (A2) as Hk = h(k) ·
σ, with h(k) being a smooth function which is nonzero for
all momenta, such that the bulk is fully gapped, we can then
define a unit vector ĥ(k) that maps the 2D momentum space
(defined on T 2) onto a unit sphere. Here, σ is the usual vector
of Pauli matrices σi, i = x, y, z. The momentum-space Chern
number C is then given by [90]

C =
∫

k∈BZ

d2k
4π

[
ĥ · (∂kx ĥ × ∂ky ĥ)

]
, (A6)

where BZ refers to Brillouin zone. We find that C = 1 in the
topological phase (−6t < μ < 2t), and C = 0 in the trivial
phase (see Fig. 10).

APPENDIX B: RECURSIVE METHOD FOR
DETERMINING THE BDG EIGENSPECTRUM ON THE

SIERPINSKI GASKET

We follow the analysis in Ref. [50] to show that it is
sufficient to study an effective model defined on a subset of
the original sites rather than solving an eigenvalue equation
involving all sites of the fractal lattice i.e., the SG. The eigen-
value equation for our system takes the form H |ψ〉 = E |ψ〉.
We divide the Hilbert space into two subspaces: one subspace
consisting of all sites added up to the (n-1)th generation, and
the other subspace with sites added at the nth generation. We
refer to these subspaces as A and B, respectively. We denote
the projection of |ψ〉 onto these two subspaces as |ψA〉 and
|ψB〉, with the eigenvalue equation then given by(

HAA HAB

HBA HBB

)(|ψA〉
|ψB〉

)
= E

(|ψA〉
|ψB〉

)
, (B1)

following which we can can formally write

|ψB〉 = (E − HBB)−1HBA|ψA〉 . (B2)

As discussed in Ref. [50], we can now define an “effective”
Hamiltonian acting only on the sites of the decimated lattice
i.e., sites belonging to subspace A:

H eff|ψA〉 = [HAA + HAB(E − HBB)−1HBA]|ψA〉 . (B3)

We now apply this formalism to the system under con-
sideration. An additional feature of the BdG Hamiltonian in
Eq. (A2) is the presence of two “orbitals” per site instead of
one. To obtain the analog of Eq. (B3), we need the hopping
matrices associated with the underlying n = 1 triangle (see
Fig. 11).

FIG. 11. Decimating a g = 1 lattice to a g = 0 lattice by using
Eq. (B3).

For i, j ∈ {1, 2, 3}, we find that

(HAA)i j = −μ

2
σzδi j,

(HAB)i j = −μ

2
σzδi j + (1 − δi j )

[
− t

2
σz − i�eiαi j σy

]
= (HBA)i j = (HBB)i j, (B4)

for the Hamiltonian defined in Eqs. (A2)–(A5). Here, αi j is
the angle between the link joining sites i and j and the local x
axis at site i. Using Eq. (B3), we find that

H eff
i j = [HAA + HAB(E − HBB)−1HBA]i j . (B5)

Since the BdG Hamiltonian gives rise to robust chiral edge
states for −6t < μ < 2t for any � �= 0, we set � = 1 and
μ = 0 here (corresponding to the topological phase for any
nonzero t) to simplify our analysis. Other parameters can
be analyzed following the procedure delineated here. Now,
we compare the effective Hamiltonian with the original BdG
Hamiltonian but now defined on the generation n = 0 lattice
and with hopping parameter t ′. This allows us to express the
effective Hamiltonian as the BdG Hamiltonian acting on sites
in the A sublattice, but with renormalized hopping strength t ′.
Using Eq. (B5), we can derive an expression for t ′ in terms of
the original parameters:

t ′ = t (48 − 12t2 + t6) − t (144 + 7t2(4 + t2))E2 + 2t2(−10 + t2)E3 + 4t (16 + 3t2)E4 − 8(2 + t2)E5

48 − 12t2 + t6 − 3(48 + 8t2 + 3t4)E3 + 4t (16 + 3t2)E4 − 16E6
. (B6)

Next, we use Eq. (B6) and the relation t ′ εn−1 = t εn to
derive a recursion relation between εn−1 and εn(= E/t ), the
dimensionless (scaled by the hopping energies t ′ and t , re-
spectively) energy eigenvalues on the generation n − 1 and
n SGs. Therefore, in principle, given an energy eigenvalue
εn−1 of the system defined on the generation (n − 1) SG,

Eq. (B6) allows us to determine the corresponding eigenvalues
on the generation n lattice. However, as pointed out in Ref.
[50], the recursion relation by itself does not give the correct
degeneracy for those eigenvalues which correspond to the
zeros of the denominator: These have to be put in by hand
at every iteration of the recurrence relation.
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FIG. 12. The evolution of a wave packet created by projecting onto edge states close to zero energy within the energy range (−0.3 < ε <

0.3) is shown. It can be seen that it moves exclusively on the edge of the system with definite chirality (g = 4, μ = 0.5, t = 0.5, � = 0.5).

APPENDIX C: CHIRAL NATURE OF EIGENSTATES IN
THE TOPOLOGICAL PHASE

To visualize the chiral nature of the edge modes that appear
in the topological phase of the p + ip superconductor on the
SG, we construct an initial wave packet localized over a few
sites belonging to some outer edge of the SG, and project it
onto edge states within an arbitrary but small energy window
close to zero, say (−0.3 < ε < 0.3), to obtain the propagating
edge mode shown in Fig. 12.

Likewise, we project a wave packet localized on an inner
edge onto the states within a similar energy range in one of the
other gaps in the spectrum to obtain Fig. 13. We find that the
chirality of wave packets initialized on any of the inner edges
(or holes) of the lattice is opposite to that of a wave packet
propagating along the outermost edge.

APPENDIX D: SCALING OF THE GAP IN THE
TOPOLOGICAL PHASE

For any finite generation g, the spectrum of the p + ip state
on the SG presents a finite number of gaps {E j}. However,
the amplitude of these gaps decreases exponentially with g,
such that the spectrum becomes gapless in the thermodynamic
limit. Specifically, we have the analyzed the scaling of the
largest gap in the spectrum as a function of g, for various

parameters corresponding to the topological phase. In Fig. 14,
we show the gap scaling on a semilog plot, which clearly
demonstrates that the largest gap in the spectrum goes to zero
exponentially fast as g → ∞ i.e.,

max jE j = Emax ∼ �e−βg , (D1)

for some β > 0, which is weakly dependent on μ/t . Since
the maximal gap Emax → 0 as g → ∞, all the other gaps also
vanish, leading to a gapless phase in the thermodynamic limit.

APPENDIX E: DETAILS REGARDING THE DECIMATION
PROCEDURE

1. SG from triangular lattice

As discussed in the main text, we consider a triangular
lattice with lattice spacing a. We assume that the lattice takes
the shape of an equilateral triangle with each side of length
L = 2pa (p ∈ Z+). The thermodynamic limit is taken in the
usual way, L/a → ∞. The coordination number of sites in
the interior of the lattice, which we denote bulk sites, equals
six, while that of those along the edge, denoted edge sites,
equals four. To ensure that the three corner sites, which have
coordination number two, are also boundary sites, we can
place four copies of this lattice in the arrangement depicted
in Fig. 1(a) of the main text. For simplicity, we discuss the

FIG. 13. The evolution of a wave packet initialized on an inner edge is shown. It can be seen that it moves exclusively on the corresponding
inner edge of the system with chirality opposite to that of the outermost edge (g = 4, μ = 0.5, t = 0.5, � = 0.5).
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FIG. 14. Scaling of the gap as a function of the generation g of
the Sierpinski gasket in the topological phase. The gap decays to zero
exponentially fast as g → ∞. Here, t = 0.5, � = 0.5.

recursive decimation for a single lattice here, with the analysis
carrying over as is for that configuration. Alternatively, we
can also simply count the corner sites as boundary sites;
since the ratio of corner sites to boundary sites vanishes in
the thermodynamic limit, this will not affect our analysis.
Defining l ≡ L/a, the number of boundary sites is hence 3l
while the number of bulk sites is 1

2 (l − 2)(l − 1), with only a
single, outer boundary present.

At the first step of the decimation procedure, we elimi-
nate sites and bonds contained in the interior of a inverted
triangular lattice with side L/2, which introduces an interior
boundary into the lattice. At the gth step (g � 1), we eliminate
all sites and bonds contained within 3g−1 inverted lattices
of length L/2g, which are arranged self-similarly within the
parent triangular lattice (see Fig. 5 in the main text). This
introduces an additional 3g−1 boundaries into the parent lat-
tice, such that the total number of boundaries at step g is
1
2 (3g + 1), which includes the single outermost boundary of
the underlying triangular lattice. Denoting the number of bulk
and edge sites present at the gth iteration as nB(g) and nE (g),
respectively, straightforward algebra shows that

nB(g) = 1

2
(l − 2)(l − 1) − 1

2

g∑
j=1

3 j−1

(
l

2 j
− 2

)(
l

2 j
− 1

)

−
g∑

j=1

3 j−1

(
3l

2 j
− 3

)
, (E1)

nE (g) = 3l +
g∑

j=1

3 j−1

(
3l

2 j
− 3

)
. (E2)

The SG is generated once all sites are edge sites with
coordination number four. Hence, we stop the process once
we have eliminated the smallest triangle containing sites and
bonds contained within its interior, i.e., at step g = gc, with
2gc = l

2 , since a triangle with side length a is the smallest

FIG. 15. Generating an SC from a square lattice. The first (sec-
ond) step results in inner edge mode(s), shown in red (green), when
starting from the topological phase of the p + ip superconductor on
a square lattice. However, a finite number of bulk sites (black dots)
remain even after the SC is generated, as shown in the zoomed-in
image on the right.

possible triangle and contains no interior sites or bonds. It is
then easy to check that nB(gc) = 0 as stated in the main text. In
the thermodynamic limit, gc → ∞ so the decimation process
must be repeated infinitely many times, leading to infinitely
many inner edges created within the parent triangular lattice.
Moreover, for a fixed l = 2p, one can check that

lim
g→p

nB(g)

nE (g)
= 0 . (E3)

2. SC from square lattice

We now repeat the above analysis to generate a lattice-
regulated SC (with a smallest square) from a square lattice
through recursive decimation. A key distinction between the
SG and the SC is that the former has a finite ramification while
the latter is infinitely ramified; in other words, only a finite
number of bonds need to be cut to separate out an extensive
piece of the gasket, while for the carpet, the number of bonds
which need cutting tends to infinity in the thermodynamic
limit. Crucially, while the SG at any generation has only
edge sites, the SC always contains a finite number of sites
with a bulk coordination number. The procedure follows that
discussed in the previous section closely: Consider a square
lattice with lattice spacing a and length L, with l = L/a.
Bulk and edge sites have coordination numbers four and
three, respectively, where we again subsume corner sites with
coordination number two as boundary sites since the ratio
of corner sites to edge sites vanishes as l → ∞. The parent
lattice thus has 4l boundary sites and (l − 2)2 bulk sites, with
a single outer boundary.

At the gth step (g � 1) of the decimation, we eliminate
sites and bonds contained within 8g−1 square lattices of length
L/3g, arranged self-similarly within the parent square lattice
(see Fig. 15). This introduces an additional 8g−1 inner edges
into the parent lattice, such that the total number of boundaries
at step g is 1

7 (8g + 6), including the outermost boundary of the
underlying square lattice. As before, denoting the number of
bulk and edge sites present at the gth iteration as nB(g) and

155135-10
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FIG. 16. p + ip state on the Sierpinski carpet: The energy eigenvalue spectrum is shown for (a) the trivial phase (t = 0.5, μ = 1, ), and
(b) the topological phase (t = 0.5, μ = 0.25). (c) shows the real-space Chern number within the gap as function of μ/t , clearly indicating the
existence of a gapped topological phase on the SC.

nE (g), respectively, we find that

nB(g) = (l − 2)2 −
g∑

j=1

8 j−1

(
l

3g
− 1

)2

−
g∑

j=1

8 j−1

(
4l

3g
− 4

)
, (E4)

nE (g) = 4l +
g∑

j=1

8 j−1

(
4l

3g
− 4

)
. (E5)

We arrive at the SC when g = gc, with 3gc = l
3 . In the thermo-

dynamic limit, we hence require gc → ∞, with

lim
gc→∞

nB(gc)

nE (gc)
= 315

64
∼ 5, (E6)

such that the ratio of bulk to edge sites remains finite.
Following the above analysis, it is also straightforward to

see that at the gth step of the decimation procedure, each chiral
edge mode is separated from another one by a distance L/3g.
At the final step g = gc, where the SC is generated, each mode
is separated by 3a from an edge mode with opposite chirality,
as illustrated in Fig. 15. Since the separation between such
counterpropagating Majorana edge modes approaches their
bulk penetration depth at large g, these states are gapped out
due to backscattering, resulting in a gapped spectrum. As

discussed in the main text, the hybridization of the gapless
edge states is a consequence of a nonvanishing ratio of bulk
to boundary coordinated sites in the thermodynamic limit,
which in turn allows the SC to host gapped topological phases
retaining the bulk features of the phase defined on the parent
square lattice.

APPENDIX F: NUMERICAL DIAGONALIZATION OF THE
BDG HAMILTONIAN ON THE SC

The pairing term of the BdG Hamiltonian [Eq. (1) in
the main text] on a square lattice is specified by �x̂ = �

and �ŷ = i�, defined on the nearest-neighbor bonds cor-
responding to the lattice vectors ex̂ and eŷ. The spectrum
is gapped everywhere for � �= 0, except at μ = ±4t , with
|μ| < 4t corresponding to the topological phase, which has
a quantized momentum space Chern number C = 1 and hosts
a chiral gapless Majorana mode along the sample boundary.
We numerically diagonalize this model on the SC and find
that, unlike the model on the SG, the spectrum remains
gapped in both the trivial (|μ| > 4t) and the topological phase
(|μ| < 4t), as shown in Figs. 16(a) and 16(b), respectively.
We also calculate the real-space Chern number [Eq. (2) in
the main text] within the gap as a function of μ/t and
find that it vanishes in the trivial phase, but takes on a
quantized value C = 1 in the topological phase, as shown in
Fig. 16(c).
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