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Charge density waves in a quantum plasma
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We analyze the instability of an unpolarized uniform quantum plasma consisting of two oppositely charged
fermionic components with varying mass ratios against charge and spin density waves. Using density functional
theory, we treat each component with the local spin density approximation and a rescaled exchange-correlation
functional. Interactions between different components are treated with a mean-field approximation. In both two
and three dimensions, we find leading unstable charge density wave modes in the second-order expansion of
the energy functional, which would induce the transition to quantum liquid crystals. The transition point and
the length of the wave vector are computed numerically. Discontinuous ranges of the wave vector are found for
different mass ratios between the two components, indicating exotic quantum phase transitions. Phase diagrams
are obtained, and a scaling relation is proposed to generalize the results to two-component fermionic plasmas
with any mass scale. We discuss the implications of our results and directions for further improvement in treating
quantum plasmas.
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I. INTRODUCTION

Plasma, as one of the four fundamental states of matter,
can be generally understood as a mixture of roaming ions,
whose behavior is usually dominated by collective effects
mediated by the electromagnetic force. Past studies have
primarily focused on the classical or semiquantum region,
where at least one of the components is not fully treated
with quantum mechanics. For example, calculations with the
coupled electron-ion Monte Carlo (MC) method typically
neglect ionic exchange interaction [1,2], and path integral
MC or molecular dynamics methods often do not include a
full description of quantum statistics [3–8]. Those simplified
calculations considered not only the computational challenges
and expenses of a complete treatment of full quantum effects
but also the relative rarity of situations where the plasma is
dense and cold enough that quantum effects dominate the
behaviors of all component. Such systems, however, can be
found in the interior of giant planets or white dwarf stars and
in the world of condensed-matter physics. For example, in
semiconductors, the effective particles and holes introduced
by the electronic band structure could play the roles of the two
different types of ions [9–11], for which the behavior must
be understood with quantum theories. (See, e.g., Ref. [12] for
case studies of equal masses.) Recently, increasing attention
has focused on nuclear quantum effects [13].

A particular kind of plasma that can be viewed as having an
extremely large mass ratio, the electron gas in the background
of positively charged jellium, is one of the most fundamental
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models in many-body physics and has been extensively inves-
tigated [14,15]. Density functional theory (DFT) calculations
[16–18] rely on the correlation energies of the electron gas
as a foundation. Because of both analytical and numerical
challenges, the phase diagram of this model remains in-
complete. The intermediate phases between the high-density
limit and the opposite limit, which are the uniform liquid
phase and the Wigner crystal phase, respectively, are uncertain
[19–22]. Quantum MC (QMC) [23–38] calculations, which
have provided the parametrization for the correlation energies
to serve as the basis for most modern DFT calculations, are
the most sophisticated numerical treatment. However, one
can still be limited by the candidate structure or accuracy
(e.g., of the fixed-node approximation [23] with the trial wave
function), finite-size effects, and incommensurability with the
true ground-state structure. Many Hartree-Fock (HF) [39–43]
calculations indicate possible additional phases of magnetic
and charge order, but the relevance of these predictions to the
actual many-body ground state is difficult to establish because
of the crude nature of the approximation.

In this paper, the quantum limit (i.e., at high density and
zero temperature) of a two-component plasma is investigated
at all mass ratios by means of DFT within the framework
of the local spin density approximation (LSDA). Neglecting
the correlation effects between the two components beyond
electrostatics (Hartree), we calculate the ground-state energy
as a functional of their density distributions. An analysis
of second-order expansion of the energy functional shows
that the unpolarized uniform liquid state is unstable against
charge density waves (CDWs) with infinitesimal amplitudes at
certain densities, which could eventually lead to the formation
of (smectic) quantum liquid crystals [44–47]. We further find
discontinuities in the relation between the mass ratio and the
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magnitude of the leading unstable wave vector for both two-
(2D) and three-dimensional (3D) cases. These discontinu-
ities may indicate exotic quantum phase transitions between
crystalline phases with different structures. The ground-state
phase diagrams are concluded and partially conjectured for
both two and three dimensions. A simple scaling relation
generalizes these results to all mass scales.

II. METHODS

The system we consider here consists of positive and
negative fermionic ions. They are of the same number N ,
equally charged with unit electron charge, and confined in
a D-dimensional volume V . For convenience, we use the
Wigner-Seitz radius rs, which is the radius of a sphere con-
taining one electron, to parametrize the number density ρ0 =
N/V . All the quantities, operators, and equations are in atomic
units, and subscripts p, n indicate the positively and negatively
charged components, respectively. The total Hamiltonian for
the many-body system reads

Htotal =
∑

a=p,n

⎛
⎝−

N∑
i

∇2
a,i

2ma
+

N∑
i< j

1

|ra
i − ra

j |

⎞
⎠ −

N∑
i, j

1∣∣rp
i − rn

j

∣∣ .
(1)

Further, we will simply use γ � 1 to denote the mass ratio
between the heavier component and the lighter one and m∗
to represent the larger mass and thus the mass scale since
reversing the signs of the charges does not affect the physics
here.

The main assumption of our treatment is the neglect of the
quantum correlation between two components. It is equivalent
to separating the wave functions of different components,
which is known as the Born-Oppenheimer approximation and
has been widely adopted in molecular physics studies. The
approximation can be at least partially justified at large mass
ratio γ by recognizing the difference between the timescales
of the two components’ motions. We will further discuss the
effect of recovering such correlation in Sec. IV.

Then the two subsystems can be viewed independently,
except for the local external potentials provided by the other,
which arise from the Hartree part of the interaction between
them. The two systems can thus be treated separately with
DFT. In the high-density (low-rs) region near the quantum
limit, the plasma favors a near-uniform density distribution
due to the dominance of the kinetic energy, whose strength
is ∝r−2

s , overwhelming the ∼r−1
s interaction. Under such

circumstances, LSDA can be feasibly applied. As we will
further discuss below, the reliability of LSDA, both in the
sense of the accuracy of the functional as fitted from QMC
results and, more importantly, as an approximation applied
to our many-body Hamiltonian, is uncertain and will require
further validation. Especially in the more strongly correlated
regime, with larger rs, for instance, there can be a breakdown.

Assuming ρa = (ρa
↑, ρa

↓) and ρa = ρa
↑ + ρa

↓ represent the
(up and down) spin and the total density of component a =
p, n and defining ρ = (ρp(r), ρn(r)) = (ρ p

↑, ρ
p
↓, ρn

↑, ρn
↓), the

total ground-state energy as a functional of these density
distributions can be written as the sum of the two components’

kinetic exchange-correlation energies and the Hartree energy
of the whole system [16,17]:

E [ρ] =
∑

a=p,n

(
T a[ρa] + Ea

xc[ρa]
) + EHartree[ρ p, ρn], (2)

where T a[ρa] is the ground-state energy of an auxiliary
noninteracting system with the same density distribution ρa,
Ea

xc[ρa] = ∫
drρaεa

xc(ρa) within the LSDA, and the Hartree
term reads

EHartree[ρ p, ρn] = 1

2

∫
[ρ p(r) − ρn(r)][ρ p(r′) − ρn(r′)]

|r − r′| drdr′,

(3)

which couples the two components of the plasma. We acquire
each component’s exchange-correlation energy by scaling
electrons using the relation in the Appendix.

It is obvious that the unpolarized uniform solution ρ(r) =
1
2 (ρ0, ρ0, ρ0, ρ0) is always a stationary point of this functional
since it satisfies the Kohn-Sham equations derived from the
stationary condition δE0[ρ] = 0. At the high-density limit
(rs → 0), this solution is indeed stable. However, it is well
known that, at low densities (large rs), the ground state of the
jellium model of electron gas (γ → ∞) is a Wigner crystal
in both two- and three-dimensional cases, explicitly breaking
translation symmetry. To investigate the possible symmetry-
breaking point as a function of rs, we expand the energy
functional to the second-order of an arbitrary density fluctu-
ation δρ(r) = ρ0

∑
q δρqe−i2kF q·r around the uniform solution,

where kF denotes the magnitude of the Fermi wave vector of
a noninteracting fermionic system with the same density ρ0,
so that the wave vector q is defined in units of 2kF .

We can then directly expand the functional to the second
order and transform to momentum space. This expansion
can be written in the form of a sum of 4 × 4 matrices
Hq contracting with density fluctuations δρq over all wave
vectors q:

δ2E =
∑

q

δρ†
qHqδρq,

where

Hq = Nρ0

2

(
A + Bp + 1/χ p −A

−A A + Bn + 1/χn

)
. (4)

The spin blocks read (α, β =
)

Aαβ ≡ h =
{

π

k2
F q2 D = 3,
π

kF q D = 2,
(5)

Ba
αβ = ∂2

[
ρεa

xc(ρ↑, ρ↓)
]

∂ρα∂ρβ

∣∣∣∣
ρ=ρa

0

, (6)

which represent the Hartree and exchange-correlation energy
variations. We mention that the ions’ exchange-correlation
energy per particle εa

xc can be acquired by applying the scaling
relation on the QMC result for the electron gas. χa

αβ = δαβχa
0 ,

where the static Lindhard function

χa
0 =

{
makF
4π2

(
1 + 1−q2

2q ln
∣∣ 1+q

1−q

∣∣) D = 3,

ma
2π

[1 − �(q − 1)
√

1 − 1/q2] D = 2
(7)
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is the linear response function of the noninteracting fermionic
gas [48]. Its reciprocal evaluates the second variation of the
kinetic energy functionals [49,50].

The diagonalization of Hq gives two CDW modes’
eigenenergies λ±

CDW and two spin density wave (SDW) modes’

eigenenergies λ
a=p,n
SDW on each wave vector q. They are

λa
SDW = Nρ0

2

(
2/χa

0 + Ba
↑↑ − Ba

↑↓
)
, (8)

λ±
CDW = Nρ0

4
[up + un + 4h ±

√
16h2 + (up − un)2], (9)

where we define (a = p, n)

ua ≡ 2/χa
0 + Ba

↑↑ + Ba
↑↓. (10)

The corresponding eigenvectors are

ρ
p,n
SDW = (1,−1, 0, 0)/

√
2, (0, 0, 1,−1)/

√
2, (11)

ρ±
CDW = (v±, v±, 1, 1)/

√
2(1 + v2±), (12)

where

v± ≡ − (up − un) ±
√

16h2 + (up − un)2

4h
. (13)

With the decrement of density, the first eigenenergy ap-
proaching zero gives a leading unstable mode towards the
deformation of the unpolarized uniform state.

III. RESULTS

In our numerical calculations of CDW spectra, we found
no qualitative or quantitatively significant difference in the
results when using different fittings of exchange-correlation
energy, for example, the parametrizations of Perdew and
Zunger [51], Perdew and Wang [52], or Sun, Perdew, and
Seidl [53]. We hence adopted two recent simple forms of the
exchange-correlation energy in two- and three-dimensional
systems [25,54]. In Figs. 1 and 2, we plot several typical
energy spectra (normalized by the total number of particles)
of the lower-energy CDW mode, e(q) ≡ λ−

CDW(q)/N , for dif-
ferent rs and γ .

We notice that each SDW mode involves only the den-
sity modulation of only one component since there is no
interaction concerning spins between the two components.
In three-dimensional systems, λ

a=p,n
SDW (q) is monotonically in-

creasing, so the q = 0 mode must be the first unstable SDW
mode, which corresponds to a spontaneous polarization of the
uniform a gas. Moreover, if we define a polarization parameter
η ≡ ρ↑−ρ↓

ρ↑+ρ↓
, then λ

a=p,n
SDW is proportional to the second derivative

of the total energy of the uniform a gas with respect to η. As
shown in Fig. 5 of Ref. [33], past QMC results suggest that
this derivative would not be negative for the three-dimensional
electron gas until rs becomes larger than ∼50. The scaling
relation in the Appendix further puts this point to 50me/ma for
the a gas. Such values of rs for polarization are much larger
than the critical rs of the CDW mode analyzed below, so the
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FIG. 1. The energy response in three dimensions to the eigenmode with the smallest eigenenergy, for a mass ratio γ of (a) 24, (b) 240,
(c) 2400, (d) 5.012, (e) 5.022, and (f) 5.032. The response shown is properly normalized by the total number of particles N and plotted in units

of heavier particles’ Fermi energy EF = k2
F

2m∗ . The dashed lines mark the global minima of the spectra.
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FIG. 2. The same as in Fig. 1, but for the two-dimensional case, with γ equal to (a) 9.12, (b) 91.2, and (c) 912.

unpolarized uniform plasma would first be unstable against a
CDW mode and transit to a crystalline phase in our calcula-
tions. A similar argument applies in the two-dimensional case,
where we again find that the CDW instability occurs earlier
than the polarization point predicted by all recent studies
[14,25–27].

Now we turn to the analysis of the CDW mode whose
eigenenergy first approaches zero with increasing rs and its
corresponding wave vector qc. It is worth noting that, due to
the Kohn anomaly of the Lindhard function, the CDW spectra
share a positively divergent gradient at q = 1. Thus for certain
rs and γ a downtrend can be introduced near that point, and
the spectra would show a double-well structure, as shown in
Figs. 1(b) and 1(c) for three dimensions and Figs. 2(b) and
2(c) for two dimensions, where we have labeled the two local
minima on both sides of q = 1 by q1 and q2. This fine structure
introduces discontinuities of the leading symmetry-breaking
wave vector as γ is varied. We note that this is a pure quantum
effect which is related to the Fermi surface and thus the Pauli
exclusion principle. Similar but finer structures in the spectra
also occur when mp is close to mn for 3D systems, as shown
in Figs. 1(d)–1(f). These sudden changes in the wavelength of
the leading unstable CDW eigenmode are seen more clearly
in Fig. 3(a), where we plot the wave vector length qc of the
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FIG. 3. (a) The first unstable CDW wave vector qc when decreas-
ing density for different mass ratios and (b) the phase diagram of the
plasma in three dimensions. The solid line in (b) is the exact critical
rs-γ relation, normalized by the mass scale m∗. The dashed lines are
conjectured from the rs dependence of the energy spectra.

first unstable CDW wave against the mass ratio γ . A similar
plot is shown for 2D systems in Fig. 4(a).

To conclude these results, we plot the critical value rc
s ,

which is normalized by the mass scale m∗, versus the mass
ratio γ in Figs. 3(b) and 4(b) for three and two dimensions,
respectively. These can be viewed as phase diagrams indi-
cating the transition line between different crystalline phases
and a uniform liquid phase. The line can be divided into
parts and corresponds to different intervals of the leading
symmetry-breaking wave vector, which may indicate exotic
quantum structural phase transitions between different crys-
talline phases with a discontinuous lattice constant. Further-
more, from Figs. 1(b) and 1(e) in three dimensions and
Fig. 2(b) in two dimensions, we can see that changing rs

while fixing γ can also alter the choice of global minimum
between the two local minima in the spectrum. Based on this
information, we can infer possible phases in the vicinity of
the phase transition line, as we have indicated with the dashed
lines in Figs. 3(b) and 4(b).

IV. DISCUSSION

We first discuss two interesting limiting cases. The first
is the jellium limit as γ → ∞ and m∗ = 1. In this case, the
heavier component becomes the electrons, and the lighter
one is so free that the only role it can play is a uniform
background. In three dimensions, we obtain a critical Wigner
radius rs ≈ 29.9 and a leading unstable CDW mode of wave
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FIG. 4. The same as in Fig. 3, but for two dimensions.
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vector qc ≈ 1.10(2kF ). In the two-dimensional case, the crit-
ical Wigner radius rs ≈ 21.7, and the corresponding wave
vector qc ≈ 1.56(2kF ). These points are close to the earlier
results acquired by similar methods [50,55]. These symmetry-
breaking points occur earlier than predicted by QMC. Thus
our result could be a hint for the existence of new intermediate
phases for the ground state of a uniform electron gas, with
the discrepancy arising from the possibility that the candidate
structures searched in QMC calculations so far are not yet op-
timal. However, it is also likely the result of the approximate
treatment of the original many-body Hamiltonian by a density
functional under LSDA, especially since this is in the regime
of large rs with strong correlation effects. Our predicted
symmetry-breaking points are later than those from HF. This
is also reasonable since HF will consistently overestimate the
trend of (especially magnetic) inhomogeneity.

A closely related case is hydrogen, with γ = m� ≈ 1837.
Our results suggest the onset of CDW at a tiny rs ∼ 0.016.
(We should note that at such high densities, relativistic effects
are important but are not accounted for in our theory.) This
indeed corresponds to a much higher density than the regime
where previous more detailed calculations [56–58] have iden-
tified atomic orders. Our result may shed light on the possi-
bility of a quantum solid phase in hydrogen at an ultrahigh
density which is far beyond reach of today’s experiment. The
second case is the 1 � γ � 5.022 region in three dimensions,
where the leading unstable wave vector is zero. Near the
critical point, the q → 0 modes of negative energies have
ρ−

CDW ≈ (1, 1, 1, 1)/2, which indicates that the system favors
bodily moving and the macrofluctuations induced by the long-
wavelength density waves would force the system to be no
longer confined by the volume V but self-confined to a denser
state by cohesive force. In other words, phase separation
occurs in this regime, which also implies the nonexistence
of quantum crystal when the masses of the two components
are close. Similar results have also been reported at finite
temperatures [5,6,59].

As mentioned, it is a major approximation to treat the p-n
interaction by only the Hartree approximation. It is reasonable
to consider whether adding back the p-n correlation effect
would change our results. This, of course, cannot be definitely
answered without a better treatment. However, a few hints are
available from formal considerations. For example, we could
consider adding back a p-n correlation functional E p−n

c in
Eq. (2) like in a previous DFT study on the two-component
system [60]. This term would modify the behavior of the
mediating electronic force at the second order of expansion
but would not eliminate the Kohn anomalies in the spectra
and thus not the double-well structures near q = 1 for inter-
mediate mass ratios. Moreover, it can easily be checked that
the critical qc remains unchanged at the two limiting cases,
γ → 1 and ∞. This would imply that, as γ varies from 1 to
∞, qc still must go through a discontinuity around 1. Thus
we conclude that at least the correlation effect would not
qualitatively affect the existence of the discontinuity near 2kF

in the relation between the critical wave vector and mass ratio.
We remark that, since the anomalous discontinuity is rooted in
the nature of fermionic response functions and varying mass
ratio is equivalently tuning the strength of Coulomb screen-
ing, then adjusting other parameters that play the same role

might also introduce similar phenomena in different system
settings.

There are, indeed, regimes where this framework breaks
down. For example, when γ = 1, QMC calculations indicate
that Bose condensation of excitonic molecules occurs at rather
small rs [12,61]. In these situations, we believe the follow-
ing generalization of our approach would lead to significant
improvements while adding little additional complexity. We
could consider a Kohn-Sham variational wave function in
the form of a product of projected BCS wave functions
(antisymmetrized germinal powers), each of which describes
a pairing state between the two species (for example, one for
pairing between p↑ and n↓ and the other for p↓ and n↑). The
computational manipulations necessary for using such a wave
function with the Kohn-Sham plus p-n Hartree Hamiltonian
are readily available (see, e.g., Ref. [62]).

It is worth noting that, if the energy functional remains
valid for small density variation, the exotic phase transition
around ∼2kF could also be identified by probing differ-
ent energy dispersion relations of the phononlike Goldstone
mode. Expanding a spatially slowly varying phase u(x) of
the condensed amplitude ρqc

= |ρqc
|e−iu(x), we find that the

energy dispersion of the up mode is proportional to that of the
ρqc+p mode. Thus the quantitative (for three dimensions) or
qualitative (for two dimensions) difference in the appearance
of the energy dispersions around two local minima, shown
in Figs. 1(b) for three dimensions and Fig. 2(b) for two di-
mensions, may possibly be observed by spectroscopic exper-
iments. This is especially interesting for the case of the mini-
mum lying exactly at 2kF in the 2D system. The sharp turning
of the CDW mode dispersion indicates a linear (quadratic)
dispersion of the Goldstone mode along (perpendicular to) the
symmetry-breaking direction, which is different from tradi-
tional theory of the elastic behavior for short-range correlated
smectic liquid crystals [63].

Last, we remark that our results suggest the possible ex-
istence of “quantum crystals.” Since tuning parameters such
as mass ratio can change the characteristic length scale in the
system, lattices at intermediate density can possess noninteger
numbers of particles per unit cell, which is never the case in
classical crystals. This is an interesting direction for further
investigations, for example, with more explicit calculations.

V. CONCLUSION

In summary, we have proposed a quantum model for a two-
component fermionic plasma and a theoretical approach for
treating it. We formulated an approximate numerical solution
based on the theory of DFT using LSDA and obtained the crit-
ical values of the density and wave vector where an instability
of the uniform state against a CDW occurs. When the mass ra-
tio is varied from 1 to +∞, we identify several distinct ranges
of critical CDW wave vector lengths in both the two- and
three-dimensional cases, which may indicate different struc-
tures of quantum crystalline phases. Zero-temperature phase
diagrams are provided. A simple scaling relation is given
which allows the results to be generalized to any mass scale.
With the framework presented in this work, one can expect
that higher-order perturbative expansions of the functional
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will support the analysis of possible instabilities towards more
exotic density ordering phases (e.g., noncollinear magnetism).
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APPENDIX: A SCALING RELATION FOR DIFFERENT
MASS SCALES

We have the Hamiltonian

Ĥ = −
∑

i

1

2mi
∇2

i +
∑
i< j

qiq j

|ri − r j | (A1)

for a system confined in a given D-dimensional volume V
consisting of several components of N charged fermions.
A Wigner radius can still be defined, as in the main
text, to parametrize the number density ρ0 = N/V . Let ξ =
(r1, r2, . . . , rN ), and suppose that ψ (ξ) is an eigenstate of such
a system, which satisfies

Ĥψ (ξ) = Eψ (ξ). (A2)

Now we perform a coordinate transformation by replacing
all ri by kr̄i in the equation above:⎛

⎝−
∑

i

1

2mik2
∇̄2

i +
∑
i< j

qiq j

k|r̄i − r̄ j |

⎞
⎠ψ (kξ̄) = Eψ (kξ̄).

(A3)

Defining a compressed wave function ψ̄ (ξ̄) ≡ ψ (kξ) in the
space V̄ = V/kD and rearranging the equation into the form⎛

⎝−
∑

i

1

2kmi
∇̄2

i +
∑
i< j

qiq j

|r̄i − r̄ j |

⎞
⎠ψ̄ (ξ̄) = kE · ψ̄ (ξ̄), (A4)

we can immediately see that the operator on the left-hand side
is the Hamiltonian of another system with each component
having k times larger mass, i.e., m̄i = kmi. Hence we know
that Ē ≡ kE is an eigenenergy and ψ̄ (ξ̄) is the corresponding
eigenstate of the new system confined in the volume V̄ =
V/kD, with r̄s = rs/k. We mention that a similar argument
was proposed in [64] and that these relations can be thought
of as applications of more general scaling theory in the
renormalization group [65].

In particular, this system can be a two-component plasma,
and the eigenstate can be the ground state. Thus the ground-
state energy and density distributions we have obtained in this
paper can easily be generalized to all combinations of the
masses by scaling the whole system.

For the case of a one-component electron system, the
scaling relations of the interacting and noninteracting uniform
ground states read

E0(rs) = kĒ0(krs), T0(rs) = kT̄0(krs),

where T0 and T̄0 are the kinetic energies within the Fermi
spheres and E0 and Ē0 are the uniform ground-state energies
of two jellium systems with mass me and kme. Recalling the
definition of exchange-correlation energy of uniform electron
gas, εxc = (E0 − T0)/N , we acquire the exchange-correlation
energy ε̄xc(r̄s) = kεxc(kr̄s) for particles with mass kme and
equal charge. We note that this scaling relation holds for any
polarization since the scaling operation does not change the
ratio between up- and down-spin particles.
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